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Chapter 1

Introduction

IDAS is part of a software family called suNDIALS: SUite of Nonlinear and DIfferential/ALgebraic
equation Solvers [35]. This suite consists of CVODE, ARKODE, KINSOL, and IDA, and variants of these
with sensitivity analysis capabilities, CVODES and IDAS.

IDAS is a general purpose solver for the initial value problem (IVP) for systems of differential-
algebraic equations (DAEs). The name IDAS stands for Implicit Differential-Algebraic solver with
Sensitivity capabilities. IDAS is an extension of the IDA solver within SUNDIALS, itself based on
DASPK [14, 15]; however, like all SUNDIALS solvers, IDAS is written in ANSI-standard C rather than
FORTRANT77. Tts most notable features are that, (1) in the solution of the underlying nonlinear system
at each time step, it offers a choice of Newton/direct methods and a choice of Inexact Newton/Krylov
(iterative) methods; (2) it is written in a data-independent manner in that it acts on generic vectors
and matrices without any assumptions on the underlying organization of the data; and (3) it provides
a flexible, extensible framework for sensitivity analysis, using either forward or adjoint methods. Thus
IDAS shares significant modules previously written within CASC at LLNL to support the ordinary
differential equation (ODE) solvers CVODE [36, 22] and PVODE [18, 19], the DAE solver DA [39] on
which IDAS is based, the sensitivity-enabled ODE solver CVODES [37, 53], and also the nonlinear system
solver KINSOL [23].

At present, IDAS may utilize a variety of Krylov methods provided in SUNDIALS that can be used
in conjuction with Newton iteration: these include the GMRES (Generalized Minimal RESidual) [52],
FGMRES (Flexible Generalized Minimum RESidual) [51], Bi-CGStab (Bi-Conjugate Gradient Stabi-
lized) [56], TFQMR (Transpose-Free Quasi-Minimal Residual) [30], and PCG (Preconditioned Con-
jugate Gradient) [32] linear iterative methods. As Krylov methods, these require little matrix storage
for solving the Newton equations as compared to direct methods. However, the algorithms allow
for a user-supplied preconditioner matrix, and, for most problems, preconditioning is essential for an
efficient solution.

For very large DAE systems, the Krylov methods are preferable over direct linear solver methods,
and are often the only feasible choice. Among the Krylov methods in SUNDIALS, we recommend
GMRES as the best overall choice. However, users are encouraged to compare all options, especially
if encountering convergence failures with GMRES. Bi-CGFStab and TFQMR have an advantage
in storage requirements, in that the number of workspace vectors they require is fixed, while that
number for GMRES depends on the desired Krylov subspace size. FGMRES has an advantage in
that it is designed to support preconditioners that vary between iterations (e.g. iterative methods).
PCG exhibits rapid convergence and minimal workspace vectors, but only works for symmetric linear
systems.

IDAS is written with a functionality that is a superset of that of IDA. Sensitivity analysis capabili-
ties, both forward and adjoint, have been added to the main integrator. Enabling forward sensitivity
computations in IDAS will result in the code integrating the so-called sensitivity equations simultane-
ously with the original IVP, yielding both the solution and its sensitivity with respect to parameters
in the model. Adjoint sensitivity analysis, most useful when the gradients of relatively few functionals
of the solution with respect to many parameters are sought, involves integration of the original IVP
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forward in time followed by the integration of the so-called adjoint equations backward in time. IDAS
provides the infrastructure needed to integrate any final-condition ODE dependent on the solution of
the original IVP (in particular the adjoint system).

There are several motivations for choosing the C language for IDAS. First, a general movement away
from FORTRAN and toward C in scientific computing was apparent. Second, the pointer, structure,
and dynamic memory allocation features in C are extremely useful in software of this complexity,
with the great variety of method options offered. Finally, we prefer C over C++ for IDAS because of
the wider availability of C compilers, the potentially greater efficiency of C, and the greater ease of
interfacing the solver to applications written in extended FORTRAN.

1.1 Changes from previous versions

Changes in v4.7.0

A new NVECTOR implementation based on the SYCL abstraction layer has been added targeting Intel
GPUs. At present the only sYcL compiler supported is the DPC++ (Intel oneAPI) compiler. See
Section 9.12 for more details. This module is considered experimental and is subject to major changes
even in minor releases.

A new SUNMATRIX and SUNLINSOL implementation were added to interface with the MAGMA
linear algebra library. Both the matrix and the linear solver support general dense linear systems as
well as block diagonal linear systems, and both are targeted at GPUs (AMD or NVIDIA). See Section
11.13 for more details.

Changes in v4.6.1

Fixed a bug in the SUNDIALS CMake which caused an error if the CMAKE_CXX_STANDARD and
SUNDIALS_RAJA_BACKENDS options were not provided.
Fixed some compiler warnings when using the IBM XL compilers.

Changes in v4.6.0

A new NVECTOR implementation based on the AMD ROCm HIP platform has been added. This
vector can target NVIDIA or AMD GPUs. See 9.10 for more details. This module is considered
experimental and is subject to change from version to version.

The RAJA NVECTOR implementation has been updated to support the HIP backend in addi-
tion to the CUDA backend. Users can choose the backend when configuring SUNDIALS by using
the SUNDIALS_RAJA BACKENDS CMake variable. This module remains experimental and is subject to
change from version to version.

A new optional operation, N_VGetDeviceArrayPointer, was added to the N_Vector API. This
operation is useful for N_Vectors that utilize dual memory spaces, e.g. the native SUNDIALS CUDA
N_Vector.

The SUNMATRIX_CUSPARSE and SUNLINEARSOLVER_CUSOLVERSP_BATCHQR imple-
mentations no longer require the SUNDIALS CUDA N_Vector. Instead, they require that the vec-
tor utilized provides the N_VGetDeviceArrayPointer operation, and that the pointer returned by
N_VGetDeviceArrayPointer is a valid CUDA device pointer.

Changes in v4.5.0

Refactored the SUNDIALS build system. CMake 3.12.0 or newer is now required. Users will likely see
deprecation warnings, but otherwise the changes should be fully backwards compatible for almost all
users. SUNDIALS now exports CMake targets and installs a SUNDIALSConfig.cmake file.

Added support for SuperLU DIST 6.3.0 or newer.
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Changes in v4.4.0

Added the function IDASetLSNormFactor to specify the factor for converting between integrator
tolerances (WRMS norm) and linear solver tolerances (L2 norm) i.e., tol L2 = nrmfac * tol _WRMS.

Added a new function IDAGetNonlinearSystemData which advanced users might find useful if
providing a custom SUNNonlinSolSysFn.

This change may cause an error in existing user code. The IDASolveF function for forward
integration with checkpointing is now subject to a restriction on the number of time steps allowed to
reach the output time. This is the same restriction applied to the IDASolve function. The default
maximum number of steps is 500, but this may be changed using the IDASetMaxNumSteps function.
This change fixes a bug that could cause an infinite loop in the IDASolveF function.

The expected behavior of SUNNonlinSolGetNumIters and SUNNonlinSolGetNumConvFails in the
SUNNONLINSOL API have been updated to specify that they should return the number of nonlinear
solver iterations and convergence failures in the most recent solve respectively rather than the cumu-
lative number of iterations and failures across all solves respectively. The API documentation and
SUNDIALS provided SUNNONLINSOL implementations have been updated accordingly. As before, the
cumulative number of nonlinear iterations may be retreived by calling IDAGetNumNonlinSolvIters, or
IDAGetSensNumNonlinSolvIters, the cumulative number of failures with IDAGetNumNonlinSolvConvFails
or IDAGetSensNumNonlinSolvConvFails, or both with IDAGetNonlinSolvStats or IDAGetSensNonlinSolvStats.

A new API, SUNMemoryHelper, was added to support GPU users who have complex memory
management needs such as using memory pools. This is paired with new constructors for the NVEC-
TOR_CUDA and NVECTOR_RAJA modules that accept a SUNMemoryHelper object. Refer to sections
8.1,13.1, 9.9 and 9.11 for more information.

The NVECTOR_RAJA module has been updated to mirror the NVECTOR_CUDA module. Notably, the
update adds managed memory support to the NVECTOR_RAJA module. Users of the module will need
to update any calls to the N_VMake Raja function because that signature was changed. This module
remains experimental and is subject to change from version to version.

The NVECTOR_TRILINOS module has been updated to work with Trilinos 12.184. This update
changes the local ordinal type to always be an int.

Added support for CUDA v11.

Changes in v4.3.0

Fixed a bug in the iterative linear solver modules where an error is not returned if the Atimes function
is NULL or, if preconditioning is enabled, the PSolve function is NULL.

Added the ability to control the CUDA kernel launch parameters for the NVECTOR_CUDA and SUNMATRIX_CUSPARSE
modules. These modules remain experimental and are subject to change from version to version. In
addition, the NVECTOR_CUDA kernels were rewritten to be more flexible. Most users should see equiva-
lent performance or some improvement, but a select few may observe minor performance degradation
with the default settings. Users are encouraged to contact the SUNDIALS team about any perfomance
changes that they notice.

Added new capabilities for monitoring the solve phase in the SUNNONLINSOL_NEWTON and SUN-
NONLINSOL_FIXEDPOINT modules, and the SUNDIALS iterative linear solver modules. SUNDIALS must
be built with the CMake option SUNDIALS_BUILD_WITH MONITORING to use these capabilties.

Added the optional functions IDASetJacTimesResFn and IDASetJacTimesResFnB to specify an
alternative residual function for computing Jacobian-vector products with the internal difference quo-
tient approximation.

Changes in v4.2.0

Fixed a build system bug related to the Fortran 2003 interfaces when using the IBM XL com-
piler. When building the Fortran 2003 interfaces with an XL compiler it is recommended to set
CMAKE_Fortran_COMPILER to £2003, x1£2003, or x1£2003_r.

Fixed a linkage bug affecting Windows users that stemmed from dllimport/dllexport attributes
missing on some SUNDIALS API functions.
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Fixed a memory leak from not deallocating the ato1SminO and atolQSminO arrays.

Added a new SUNMatrix implementation, SUNMATRIX_CUSPARSE, that interfaces to the sparse ma-
trix implementation from the NVIDIA cuSPARSE library. In addition, the SUNLINSOL_CUSOLVER_BATCHQR
linear solver has been updated to use this matrix, therefore, users of this module will need to update
their code. These modules are still considered to be experimental, thus they are subject to breaking
changes even in minor releases.

The functions IDASetLinearSolutionScaling and IDASetLinearSolutionScalingB were added
to enable or disable the scaling applied to linear system solutions with matrix-based linear solvers to
account for a lagged value of « in the linear system matrix %—5 + a%—g. Scaling is enabled by default
when using a matrix-based linear solver.

Changes in v4.1.0

Fixed a build system bug related to finding LAPACK/BLAS.

Fixed a build system bug related to checking if the KLU library works.

Added a new build system option, CUDA_ARCH, that can be used to specify the CUDA architecture
to compile for.

Fixed a build system bug related to finding PETSc when using the CMake variables PETSC_INCLUDES
and PETSC_LIBRARIES instead of PETSC_DIR.

Added two utility functions, SUNDIALSFileOpen and SUNDIALSFileClose for creating/destroying
file pointers that are useful when using the Fortran 2003 interfaces.

Changes in v4.0.0
Build system changes

e Increased the minimum required CMake version to 3.5 for most SUNDIALS configurations, and
3.10 when CUDA or OpenMP with device offloading are enabled.

e The CMake option BLAS_ENABLE and the variable BLAS_LIBRARIES have been removed to simplify
builds as SUNDIALS packages do not use BLAS directly. For third party libraries that require
linking to BLAS, the path to the BLAS library should be included in the _LIBRARIES variable
for the third party library e.g., SUPERLUDIST_LIBRARIES when enabling SuperLU_DIST.

e Fixed a bug in the build system that prevented the NVECTOR_PTHREADS module from being
built.

NVECTOR module changes

e Two new functions were added to aid in creating custom NVECTOR objects. The constructor
N_VNewEmpty allocates an “empty” generic NVECTOR with the object’s content pointer and the
function pointers in the operations structure initialized to NULL. When used in the constructor
for custom objects this function will ease the introduction of any new optional operations to the
NVECTOR API by ensuring only required operations need to be set. Additionally, the function
N_VCopyOps (w, v) has been added to copy the operation function pointers between vector ob-
jects. When used in clone routines for custom vector objects these functions also will ease the
introduction of any new optional operations to the NVECTOR API by ensuring all operations are
copied when cloning objects. See §9.1.6 for more details.

e Two new NVECTOR implementations, NVECTOR_-MANYVECTOR and NVECTOR_MPIMANYVECTOR,
have been created to support flexible partitioning of solution data among different processing
elements (e.g., CPU 4+ GPU) or for multi-physics problems that couple distinct MPI-based sim-
ulations together. This implementation is accompanied by additions to user documentation and
SUNDIALS examples. See §9.15 and §9.16 for more details.
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e One new required vector operation and ten new optional vector operations have been added to
the NVECTOR API. The new required operation, N_-VGetLength, returns the global length of an
N_Vector. The optional operations have been added to support the new
NVECTOR_MPIMANYVECTOR implementation. The operation N_VGetCommunicator must be im-
plemented by subvectors that are combined to create an NVECTOR_MPIMANYVECTOR, but is not
used outside of this context. The remaining nine operations are optional local reduction oper-
ations intended to eliminate unnecessary latency when performing vector reduction operations
(norms, etc.) on distributed memory systems. The optional local reduction vector operations
are N_VDotProdLocal, N_VMaxNormLocal, N_VMinLocal, N_VL1NormLocal, N_VWSqrSumLocal,
N_VWSqrSumMaskLocal, N_VInvTestLocal, N_VConstrMaskLocal, and N_VMinQuotientLocal.
If an NVECTOR implementation defines any of the local operations as NULL, then the NVEC-
TOR_MPIMANYVECTOR will call standard NVECTOR operations to complete the computation.
See §9.1.4 for more details.

e An additional NVECTOR implementation, NVECTOR_MPIPLUSX, has been created to support
the MPI4+X paradigm where X is a type of on-node parallelism (e.g., OpenMP, CUDA). The
implementation is accompanied by additions to user documentation and SUNDIALS examples.
See §9.17 for more details.

e The * MPICuda and *_MPIRaja functions have been removed from the NVECTOR_CUDA and
NVECTOR_RAJA implementations respectively. Accordingly, the nvector mpicuda.h,
nvector mpiraja.h, libsundials nvecmpicuda.lib, and 1ibsundials _nvecmpicudaraja.lib
files have been removed. Users should use the NVECTOR_MPIPLUSX module coupled in conjunc-
tion with the NVECTOR_CUDA or NVECTOR_RAJA modules to replace the functionality. The
necessary changes are minimal and should require few code modifications. See the programs
in examples/ida/mpicuda and examples/ida/mpiraja for examples of how to use the NVEC-
TOR_MPIPLUSX module with the NVECTOR_CUDA and NVECTOR_RAJA modules respectively.

e Fixed a memory leak in the NVECTOR_PETSC module clone function.

e Made performance improvements to the NVECTOR_CUDA module. Users who utilize a non-default
stream should no longer see default stream synchronizations after memory transfers.

e Added a new constructor to the NVECTOR_CUDA module that allows a user to provide custom
allocate and free functions for the vector data array and internal reduction buffer. See §9.9.1
for more details.

e Added new Fortran 2003 interfaces for most NVECTOR modules. See Chapter 9 for more details
on how to use the interfaces.

e Added three new NVECTOR utility functions, FN_VGetVecAtIndexVectorArray,
FN_VSetVecAtIndexVectorArray, and FN_VNewVectorArray, for working with N_Vector arrays
when using the Fortran 2003 interfaces. See §9.1.6 for more details.

SUNMatrix module changes

e Two new functions were added to aid in creating custom SUNMATRIX objects. The constructor
SUNMatNewEmpty allocates an “empty” generic SUNMATRIX with the object’s content pointer and
the function pointers in the operations structure initialized to NULL. When used in the constructor
for custom objects this function will ease the introduction of any new optional operations to the
SUNMATRIX API by ensuring only required operations need to be set. Additionally, the function
SUNMatCopyOps (A, B) has been added to copy the operation function pointers between matrix
objects. When used in clone routines for custom matrix objects these functions also will ease the
introduction of any new optional operations to the SUNMATRIX API by ensuring all operations
are copied when cloning objects. See §10.1.2 for more details.
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e A new operation, SUNMatMatvecSetup, was added to the SUNMATRIX API to perform any setup
necessary for computing a matrix-vector product. This operation is useful for SUNMATRIX imple-
mentations which need to prepare the matrix itself, or communication structures before perform-
ing the matrix-vector product. Users who have implemented custom SUNMATRIX modules will
need to at least update their code to set the corresponding ops structure member, matvecsetup,
to NULL. See §10.1.1 for more details.

e The generic SUNMATRIX API now defines error codes to be returned by SUNMATRIX operations.
Operations which return an integer flag indiciating success/failure may return different values
than previously. See §10.1.3 for more details.

e A new SUNMATRIX (and SUNLINSOL) implementation was added to facilitate the use of the
SuperLU_DIST library with SUNDIALS. See §10.6 for more details.

e Added new Fortran 2003 interfaces for most SUNMATRIX modules. See Chapter 10 for more
details on how to use the interfaces.

SUNLinearSolver module changes

e A new function was added to aid in creating custom SUNLINSOL objects. The constructor
SUNLinSolNewEmpty allocates an “empty” generic SUNLINSOL with the object’s content pointer
and the function pointers in the operations structure initialized to NULL. When used in the
constructor for custom objects this function will ease the introduction of any new optional
operations to the SUNLINSOL API by ensuring only required operations need to be set. See §11.3
for more details.

e The return type of the SUNLINSOL API function SUNLinSolLastFlag has changed from long
int to sunindextype to be consistent with the type used to store row indices in dense and
banded linear solver modules.

e Added a new optional operation to the SUNLINSOL API, SUNLinSolGetID, that returns a
SUNLinearSolver_ID for identifying the linear solver module.

e The SUNLINSOL API has been updated to make the initialize and setup functions optional.

e A new SUNLINSOL (and SUNMATRIX) implementation was added to facilitate the use of the
SuperLU_DIST library with SUNDIALS. See §11.10 for more details.

e Added a new SUNLINSOL implementation, SUNLinearSolver _cuSolverSp_batchQR, which lever-
ages the NVIDIA cuSOLVER sparse batched QR method for efficiently solving block diagonal
linear systems on NVIDIA GPUs. See §11.12 for more details.

e Added three new accessor functions to the SUNLINSOL_KLU module, SUNLinSol _KLUGetSymbolic,
SUNLinSol_KLUGetNumeric, and SUNLinSol_KLUGetCommon, to provide user access to the under-
lying KLU solver structures. See §11.9.2 for more details.

e Added new Fortran 2003 interfaces for most SUNLINSOL modules. See Chapter 11 for more
details on how to use the interfaces.

SUNNonlinearSolver module changes

e A new function was added to aid in creating custom SUNNONLINSOL objects. The constructor
SUNNonlinSolNewEmpty allocates an “empty” generic SUNNONLINSOL with the object’s content
pointer and the function pointers in the operations structure initialized to NULL. When used in
the constructor for custom objects this function will ease the introduction of any new optional
operations to the SUNNONLINSOL API by ensuring only required operations need to be set. See
§12.1.8 for more details.
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e To facilitate the use of user supplied nonlinear solver convergence test functions the
SUNNonlinSolSetConvTestFn function in the SUNNONLINSOL API has been updated to take a
void* data pointer as input. The supplied data pointer will be passed to the nonlinear solver
convergence test function on each call.

e The inputs values passed to the first two inputs of the SUNNonlinSolSolve function in the SUN-
NONLINSOL have been changed to be the predicted state and the initial guess for the correction to
that state. Additionally, the definitions of SUNNonlinSolLSetupFn and SUNNonlinSolLSolveFn
in the SUNNONLINSOL API have been updated to remove unused input parameters. For more
information on the nonlinear system formulation see §12.2 and for more details on the API
functions see Chapter 12.

e Added a new SUNNONLINSOL implementation, SUNNONLINSOL_PETSCSNES, which interfaces to
the PETSc SNES nonlinear solver API. See §12.4 for more details.

e Added new Fortran 2003 interfaces for most SUNNONLINSOL modules. See Chapter 12 for more
details on how to use the interfaces.

IDAS changes

e A bug was fixed in the IDAS linear solver interface where an incorrect Jacobian-vector product
increment was used with iterative solvers other than SUNLINSOL_SPGMR and SUNLINSOL_SPFGMR.

e Fixed a bug where the IDASolveF function would not return a root in IDA_NORMAL_STEP mode
if the root occurred after the desired output time.

e Fixed a bug where the IDASolveF function would return the wrong flag under certrain cirum-
stances.

e Fixed a bug in IDAQuadReInitB where an incorrect memory structure was passed to IDAQuadReInit.

e Removed extraneous calls to N_VMin for simulations where the scalar valued absolute tolerance,
or all entries of the vector-valued absolute tolerance array, are strictly positive. In this scenario,
IDAS will remove at least one global reduction per time step.

e The IDALS interface has been updated to only zero the Jacobian matrix before calling a user-
supplied Jacobian evaluation function when the attached linear solver has type
SUNLINEARSOLVER_DIRECT.

e Added the new functions, IDAGetCurentCj, IDAGetCurrentY, IDAGetCurrentYp,
IDAComputeCurrentY, IDAComputeCurrentYp, IDAGetCurrentYSens, IDAGetCurrentYpSens,
IDAComputeCurrentYSens, and IDAComputeCurrentYpSens, which may be useful to users who
choose to provide their own nonlinear solver implementations.

e Added a Fortran 2003 interface to IDAS. See Chapter 7 for more details.

Changes in v3.1.0

An additional NVECTOR implementation was added for the Tpetra vector from the Trilinos library
to facilitate interoperability between SUNDIALS and Trilinos. This implementation is accompanied by
additions to user documentation and SUNDIALS examples.

A bug was fixed where a nonlinear solver object could be freed twice in some use cases.

The EXAMPLES_ENABLE_RAJA CMake option has been removed. The option EXAMPLES_ENABLE_CUDA
enables all examples that use CUDA including the RAJA examples with a CUDA back end (if the
RAJA NVECTOR is enabled).

The implementation header file idas_impl.h is no longer installed. This means users who are
directly manipulating the IDAMem structure will need to update their code to use IDAS’s public API.

Python is no longer required to run make test and make test_install.
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Changes in v3.0.2

Added information on how to contribute to SUNDIALS and a contributing agreement.
Moved definitions of DLS and SPILS backwards compatibility functions to a source file. The
symbols are now included in the IDAS library, libsundials_idas.

Changes in v3.0.1

No changes were made in this release.

Changes in v3.0.0

IDAS’ previous direct and iterative linear solver interfaces, IDADLS and IDASPILS, have been merged
into a single unified linear solver interface, IDALS, to support any valid SUNLINSOL module. This
includes the “DIRECT” and “ITERATIVE” types as well as the new “MATRIX_ITERATIVE” type.
Details regarding how IDALS utilizes linear solvers of each type as well as discussion regarding intended
use cases for user-supplied SUNLINSOL implementations are included in Chapter 11. All IDAS example
programs and the standalone linear solver examples have been updated to use the unified linear solver
interface.

The unified interface for the new IDALS module is very similar to the previous IDADLS and IDASPILS
interfaces. To minimize challenges in user migration to the new names, the previous C routine names
may still be used; these will be deprecated in future releases, so we recommend that users migrate to
the new names soon.

The names of all constructor routines for SUNDIALS-provided SUNLINSOL implementations have
been updated to follow the naming convention SUNLinSol_* where * is the name of the linear solver.
The new names are SUNLinSol_Band, SUNLinSol Dense, SUNLinSol KLU, SUNLinSol_LapackBand,
SUNLinSol_LapackDense, SUNLinSol_PCG, SUNLinSol_SPBCGS, SUNLinSol_SPFGMR, SUNLinSol_SPGMR,
SUNLinSol _SPTFQMR, and SUNLinSol _SuperLUMT. Solver-specific “set” routine names have been simi-
larly standardized. To minimize challenges in user migration to the new names, the previous routine
names may still be used; these will be deprecated in future releases, so we recommend that users mi-
grate to the new names soon. All IDAS example programs and the standalone linear solver examples
have been updated to use the new naming convention.

The SUNBandMatrix constructor has been simplified to remove the storage upper bandwidth ar-
gument.

SUNDIALS integrators have been updated to utilize generic nonlinear solver modules defined through
the SUNNONLINSOL API. This API will ease the addition of new nonlinear solver options and allow for
external or user-supplied nonlinear solvers. The SUNNONLINSOL API and SUNDIALS provided modules
are described in Chapter 12 and follow the same object oriented design and implementation used by
the NVECTOR, SUNMATRIX, and SUNLINSOL modules. Currently two SUNNONLINSOL implementations
are provided, SUNNONLINSOL_NEWTON and SUNNONLINSOL_FIXEDPOINT. These replicate the previ-
ous integrator specific implementations of a Newton iteration and a fixed-point iteration (previously
referred to as a functional iteration), respectively. Note the SUNNONLINSOL_FIXEDPOINT module can
optionally utilize Anderson’s method to accelerate convergence. Example programs using each of these
nonlinear solver modules in a standalone manner have been added and all IDAS example programs
have been updated to use generic SUNNONLINSOL modules.

By default IDAS uses the SUNNONLINSOL_NEWTON module. Since IDAS previously only used an
internal implementation of a Newton iteration no changes are required to user programs and func-
tions for setting the nonlinear solver options (e.g., IDASetMaxNonlinIters) or getting nonlinear solver
statistics (e.g., IDAGetNumNonlinSolvIters) remain unchanged and internally call generic SUNNON-
LINSOL functions as needed. While SUNDIALS includes a fixed-point nonlinear solver module, it is not
currently supported in IDAS. For details on attaching a user-supplied nonlinear solver to IDAS see
Chapter 4, 5, and 6.

Three fused vector operations and seven vector array operations have been added to the NVEC-
TOR API. These optional operations are disabled by default and may be activated by calling vector
specific routines after creating an NVECTOR (see Chapter 9 for more details). The new operations are
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intended to increase data reuse in vector operations, reduce parallel communication on distributed
memory systems, and lower the number of kernel launches on systems with accelerators. The fused op-
erations are N_VLinearCombination, N_.VScaleAddMulti, and N_VDotProdMulti and the vector array
operations are N_VLinearCombinationVectorArray, N_-VScaleVectorArray, N_.VConstVectorArray,
N_VWrmsNormVectorArray, N_-VWrmsNormMaskVectorArray, N_VScaleAddMultiVectorArray, and
N_VLinearCombinationVectorArray. If an NVECTOR implementation defines any of these operations
as NULL, then standard NVECTOR operations will automatically be called as necessary to complete the
computation.

Multiple updates to NVECTOR_CUDA were made:

e Changed N_VGetLength_Cuda to return the global vector length instead of the local vector length.

Added N_VGetLocallLength Cuda to return the local vector length.
e Added N_VGetMPIComm_Cuda to return the MPI communicator used.
e Removed the accessor functions in the namespace suncudavec.

e Changed the N_VMake_Cuda function to take a host data pointer and a device data pointer instead
of an N_VectorContent_Cuda object.

e Added the ability to set the cudaStream_t used for execution of the NVECTOR_CUDA kernels.
See the function N_VSetCudaStreams_Cuda.

e Added N_VNewManaged Cuda, N_VMakeManaged Cuda, and N_VIsManagedMemory_Cuda functions
to accommodate using managed memory with the NVECTOR_CUDA.

Multiple changes to NVECTOR_RAJA were made:
e Changed N_VGetLength_Raja to return the global vector length instead of the local vector length.
e Added N_VGetLocalLength Raja to return the local vector length.
e Added N_VGetMPIComm Raja to return the MPI communicator used.
e Removed the accessor functions in the namespace suncudavec.
A new NVECTOR implementation for leveraging OpenMP 4.5+ device offloading has been added,
NVECTOR_OPENMPDEV. See §9.13 for more details.
Changes in v2.2.1
The changes in this minor release include the following:

e Fixed a bug in the CUDA NVECTOR where the N_VInvTest operation could write beyond the
allocated vector data.

e Fixed library installation path for multiarch systems. This fix changes the default library instal-
lation path to CMAKE_INSTALL_PREFIX/CMAKE_INSTALL_LIBDIR from CMAKE_INSTALL_PREFIX/1ib.
CMAKE_INSTALL_LIBDIR is automatically set, but is available as a CMake option that can modi-
fied.

Changes in v2.2.0

Fixed a bug in IDAS where the saved residual value used in the nonlinear solve for consistent initial
conditions was passed as temporary workspace and could be overwritten.

Fixed a thread-safety issue when using ajdoint sensitivity analysis.
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Fixed a problem with setting sunindextype which would occur with some compilers (e.g. arm-
clang) that did not define __STDC_VERSION_..

Added hybrid MPI/CUDA and MPI/RAJA vectors to allow use of more than one MPI rank when
using a GPU system. The vectors assume one GPU device per MPI rank.

Changed the name of the RAJA NVECTOR library to libsundials_nveccudaraja.lib from
libsundials nvecraja.lib to better reflect that we only support CUDA as a backend for RAJA cur-
rently.

Several changes were made to the build system:

e CMake 3.1.3 is now the minimum required CMake version.

e Deprecate the behavior of the SUNDIALS_INDEX_TYPE CMake option and added the
SUNDIALS_INDEX_SIZE CMake option to select the sunindextype integer size.

e The native CMake FindMPI module is now used to locate an MPI installation.

e If MPI is enabled and MPI compiler wrappers are not set, the build system will check if
CMAKE <language> COMPILER can compile MPI programs before trying to locate and use an
MPI installation.

e The previous options for setting MPI compiler wrappers and the executable for running MPI
programs have been have been depreated. The new options that align with those used in native
CMake FindMPI module are MPI_C_COMPILER, MPI_CXX_COMPILER, MPI Fortran COMPILER, and
MPIEXEC_EXECUTABLE.

e When a Fortran name-mangling scheme is needed (e.g., ENABLE_LAPACK is ON) the build system
will infer the scheme from the Fortran compiler. If a Fortran compiler is not available or the in-
ferred or default scheme needs to be overridden, the advanced options SUNDIALS_F77_FUNC_CASE
and SUNDIALS_F77_FUNC_UNDERSCORES can be used to manually set the name-mangling scheme
and bypass trying to infer the scheme.

e Parts of the main CMakeLists.txt file were moved to new files in the src and example directories
to make the CMake configuration file structure more modular.

Changes in v2.1.2

The changes in this minor release include the following:

e Updated the minimum required version of CMake to 2.8.12 and enabled using rpath by default
to locate shared libraries on OSX.

e Fixed Windows specific problem where sunindextype was not correctly defined when using
64-bit integers for the SUNDIALS index type. On Windows sunindextype is now defined as the
MSVC basic type __int64.

e Added sparse SUNMatrix “Reallocate” routine to allow specification of the nonzero storage.

e Updated the KLU SUNLINSOL module to set constants for the two reinitialization types, and
fixed a bug in the full reinitialization approach where the sparse SUNMatrix pointer would go
out of scope on some architectures.

e Updated the “ScaleAdd” and “ScaleAddI” implementations in the sparse SUNMatrix module
to more optimally handle the case where the target matrix contained sufficient storage for the
sum, but had the wrong sparsity pattern. The sum now occurs in-place, by performing the sum
backwards in the existing storage. However, it is still more efficient if the user-supplied Jacobian
routine allocates storage for the sum I + «J manually (with zero entries if needed).

e Changed the LICENSE install path to instdir/include/sundials.
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Changes in v2.1.1
The changes in this minor release include the following;:

e Fixed a potential memory leak in the SPGMR and SPFGMR linear solvers: if “Initialize” was
called multiple times then the solver memory was reallocated (without being freed).

e Updated KLU SUNLinearSolver module to use a typedef for the precision-specific solve function
to be used (to avoid compiler warnings).

e Added missing typecasts for some (void*) pointers (again, to avoid compiler warnings).

e Bugfix in sunmatrix_sparse.c where we had used int instead of sunindextype in one location.
e Added missing #include <stdio.h> in NVECTOR and SUNMATRIX header files.

e Added missing prototype for IDASpilsGetNumJTSetupEvals.

e Fixed an indexing bug in the CUDA NVECTOR implementation of N_VWrmsNormMask and revised
the RAJA NVECTOR implementation of N_VWrmsNormMask to work with mask arrays using values
other than zero or one. Replaced double with realtype in the RAJA vector test functions.

In addition to the changes above, minor corrections were also made to the example programs, build
system, and user documentation.

Changes in v2.1.0

Added NVECTOR print functions that write vector data to a specified file (e.g., N.VPrintFile_Serial).
Added make test and make test_install options to the build system for testing SUNDIALS after
building with make and installing with make install respectively.

Changes in v2.0.0

All interfaces to matrix structures and linear solvers have been reworked, and all example programs
have been updated. The goal of the redesign of these interfaces was to provide more encapsulation and
to ease interfacing of custom linear solvers and interoperability with linear solver libraries. Specific
changes include:

e Added generic SUNMATRIX module with three provided implementations: dense, banded and
sparse. These replicate previous SUNDIALS Dls and Sls matrix structures in a single object-
oriented API.

e Added example problems demonstrating use of generic SUNMATRIX modules.

e Added generic SUNLinearSolver module with eleven provided implementations: SUNDIALS na-
tive dense, SUNDIALS native banded, LAPACK dense, LAPACK band, KLU, SuperLU_MT,
SPGMR, SPBCGS, SPTFQMR, SPFGMR, and PCG. These replicate previous SUNDIALS
generic linear solvers in a single object-oriented API.

e Added example problems demonstrating use of generic SUNLinearSolver modules.

e Expanded package-provided direct linear solver (Dls) interfaces and scaled, preconditioned, iter-
ative linear solver (Spils) interfaces to utilize generic SUNMATRIX and SUNLinearSolver objects.

e Removed package-specific, linear solver-specific, solver modules (e.g. CVDENSE, KINBAND, IDAKLU,
ARKSPGMR) since their functionality is entirely replicated by the generic Dls/Spils interfaces
and SUNLinearSolver/SUNMATRIX modules. The exception is CVDIAG, a diagonal approximate
Jacobian solver available to CVODE and CVODES.

e Converted all SUNDIALS example problems and files to utilize the new generic SUNMATRIX and
SUNLinearSolver objects, along with updated Dls and Spils linear solver interfaces.
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e Added Spils interface routines to ARKODE, CVODE, CVODES, IDA, and IDAS to allow specification
of a user-provided ”JTSetup” routine. This change supports users who wish to set up data
structures for the user-provided Jacobian-times-vector (”JTimes”) routine, and where the cost
of one JTSetup setup per Newton iteration can be amortized between multiple JTimes calls.

Two additional NVECTOR implementations were added — one for CUDA and one for RAJA vectors.
These vectors are supplied to provide very basic support for running on GPU architectures. Users are
advised that these vectors both move all data to the GPU device upon construction, and speedup will
only be realized if the user also conducts the right-hand-side function evaluation on the device. In
addition, these vectors assume the problem fits on one GPU. Further information about RAJA, users
are referred to the web site, https://software.llnl.gov/RAJA/. These additions are accompanied by
additions to various interface functions and to user documentation.

All indices for data structures were updated to a new sunindextype that can be configured to
be a 32- or 64-bit integer data index type. sunindextype is defined to be int32_t or int64_t when
portable types are supported, otherwise it is defined as int or long int. The Fortran interfaces
continue to use long int for indices, except for their sparse matrix interface that now uses the new
sunindextype. This new flexible capability for index types includes interfaces to PETSc, hypre,
SuperLU_MT, and KLU with either 32-bit or 64-bit capabilities depending how the user configures
SUNDIALS.

To avoid potential namespace conflicts, the macros defining booleantype values TRUE and FALSE
have been changed to SUNTRUE and SUNFALSE respectively.

Temporary vectors were removed from preconditioner setup and solve routines for all packages. It
is assumed that all necessary data for user-provided preconditioner operations will be allocated and
stored in user-provided data structures.

The file include/sundials_fconfig.h was added. This file contains SUNDIALS type information
for use in Fortran programs.

The build system was expanded to support many of the xSDK-compliant keys. The xSDK is
a movement in scientific software to provide a foundation for the rapid and efficient production of
high-quality, sustainable extreme-scale scientific applications. More information can be found at,
https://xsdk.info.

Added functions SUNDIALSGetVersion and SUNDIALSGetVersionNumber to get SUNDIALS release
version information at runtime.

In addition, numerous changes were made to the build system. These include the addition of
separate BLAS_ENABLE and BLAS_LIBRARIES CMake variables, additional error checking during CMake
configuration, minor bug fixes, and renaming CMake options to enable/disable examples for greater
clarity and an added option to enable/disable Fortran 77 examples. These changes included changing
EXAMPLES_ENABLE to EXAMPLES_ENABLE_C, changing CXX_ENABLE to EXAMPLES_ENABLE_CXX, changing
F90_ENABLE to EXAMPLES_ENABLE_F90, and adding an EXAMPLES_ENABLE_F77 option.

A bug fix was done to add a missing prototype for IDASetMaxBacksIC in ida.h.

Corrections and additions were made to the examples, to installation-related files, and to the user
documentation.

Changes in v1.3.0

Two additional NVECTOR implementations were added — one for Hypre (parallel) ParVector vectors,
and one for PETSc vectors. These additions are accompanied by additions to various interface func-
tions and to user documentation.

Each NVECTOR module now includes a function, N_VGetVectorID, that returns the NVECTOR
module name.

An optional input function was added to set a maximum number of linesearch backtracks in
the initial condition calculation, and four user-callable functions were added to support the use of
LAPACK linear solvers in solving backward problems for adjoint sensitivity analysis.

For each linear solver, the various solver performance counters are now initialized to 0 in both the
solver specification function and in solver 1init function. This ensures that these solver counters are
initialized upon linear solver instantiation as well as at the beginning of the problem solution.
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A bug in for-loop indices was fixed in IDAAckpntAllocVectors. A bug was fixed in the interpo-
lation functions used in solving backward problems.

A memory leak was fixed in the banded preconditioner interface. In addition, updates were done
to return integers from linear solver and preconditioner ’free’ functions.

In interpolation routines for backward problems, added logic to bypass sensitivity interpolation if
input sensitivity argument is NULL.

The Krylov linear solver Bi-CGstab was enhanced by removing a redundant dot product. Various
additions and corrections were made to the interfaces to the sparse solvers KLU and SuperLU_MT,
including support for CSR format when using KLU.

New examples were added for use of the OpenMP vector and for use of sparse direct solvers within
sensitivity integrations.

Minor corrections and additions were made to the IDAS solver, to the examples, to installation-
related files, and to the user documentation.

Changes in v1.2.0

Two major additions were made to the linear system solvers that are available for use with the 1DAS
solver. First, in the serial case, an interface to the sparse direct solver KLU was added. Second,
an interface to SuperLU_MT, the multi-threaded version of SuperLU, was added as a thread-parallel
sparse direct solver option, to be used with the serial version of the NVECTOR module. As part of
these additions, a sparse matrix (CSC format) structure was added to IDAS.

Otherwise, only relatively minor modifications were made to IDAS:

In IDARootfind, a minor bug was corrected, where the input array rootdir was ignored, and a
line was added to break out of root-search loop if the initial interval size is below the tolerance ttol.

In IDALapackBand, the line smu = MIN(N-1,mu+ml) was changed to smu = mu + ml to correct an
illegal input error for DGBTRF/DGBTRS.

An option was added in the case of Adjoint Sensitivity Analysis with dense or banded Jacobian:
With a call to IDAD1sSetDenseJacFnBS or IDADlsSetBandJacFnBS, the user can specify a user-
supplied Jacobian function of type IDAD1s***JacFnBS, for the case where the backward problem
depends on the forward sensitivities.

A minor bug was fixed regarding the testing of the input tstop on the first call to IDASolve.

For the Adjoint Sensitivity Analysis case in which the backward problem depends on the forward
sensitivities, options have been added to allow for user-supplied pset, psolve, and jtimes functions.

In order to avoid possible name conflicts, the mathematical macro and function names MIN, MAX,
SQR, RAbs, RSqrt, RExp, RPowerI, and RPowerR were changed to SUNMIN, SUNMAX, SUNSQR, SUNRabs,
SUNRsqrt, SUNRexp, SRpowerI, and SUNRpowerR, respectively. These names occur in both the solver
and in various example programs.

In the User Guide, a paragraph was added in Section 6.2.1 on IDAAdjRelInit, and a paragraph
was added in Section 6.2.9 on IDAGetAdjY.

Two new NVECTOR modules have been added for thread-parallel computing environments — one
for OpenMP, denoted NVECTOR_OPENMP, and one for Pthreads, denoted NVECTOR_PTHREADS.

With this version of SUNDIALS, support and documentation of the Autotools mode of installation
is being dropped, in favor of the CMake mode, which is considered more widely portable.

Changes in v1.1.0

One significant design change was made with this release: The problem size and its relatives, band-
width parameters, related internal indices, pivot arrays, and the optional output lsflag have all
been changed from type int to type long int, except for the problem size and bandwidths in user
calls to routines specifying BLAS/LAPACK routines for the dense/band linear solvers. The function
NewIntArray is replaced by a pair NewIntArray/NewLintArray, for int and long int arrays, re-
spectively. In a minor change to the user interface, the type of the index which in IDAS was changed
from long int to int.
Errors in the logic for the integration of backward problems were identified and fixed.
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A large number of minor errors have been fixed. Among these are the following: A missing
vector pointer setting was added in IDASensLineSrch. In IDACompleteStep, conditionals around
lines loading a new column of three auxiliary divided difference arrays, for a possible order increase,
were fixed. After the solver memory is created, it is set to zero before being filled. In each linear solver
interface function, the linear solver memory is freed on an error return, and the **Free function now
includes a line setting to NULL the main memory pointer to the linear solver memory. A memory leak
was fixed in two of the IDASp***Free functions. In the rootfinding functions IDARcheckl/IDARcheck?2,
when an exact zero is found, the array glo of g values at the left endpoint is adjusted, instead of
shifting the ¢ location tlo slightly. In the installation files, we modified the treatment of the macro
SUNDIALS_USE_GENERIC_MATH, so that the parameter GENERIC_MATH_LIB is either defined
(with no value) or not defined.

1.2 Reading this User Guide

The structure of this document is as follows:

e In Chapter 2, we give short descriptions of the numerical methods implemented by IDAS for
the solution of initial value problems for systems of DAEs, continue with short descriptions of
preconditioning (§2.2) and rootfinding (§2.3), and then give an overview of the mathematical
aspects of sensitivity analysis, both forward (§2.5) and adjoint (§2.6).

e The following chapter describes the structure of the SUNDIALS suite of solvers (§3.1) and the
software organization of the IDAS solver (§3.2).

e Chapter 4 is the main usage document for IDAS for simulation applications. It includes a complete
description of the user interface for the integration of DAE initial value problems. Readers that
are not interested in using IDAS for sensitivity analysis can then skip the next two chapters.

e Chapter 5 describes the usage of IDAS for forward sensitivity analysis as an extension of its IVP
integration capabilities. We begin with a skeleton of the user main program, with emphasis
on the steps that are required in addition to those already described in Chapter 4. Following
that we provide detailed descriptions of the user-callable interface routines specific to forward
sensitivity analysis and of the additonal optional user-defined routines.

e Chapter 6 describes the usage of IDAs for adjoint sensitivity analysis. We begin by describing
the IDAS checkpointing implementation for interpolation of the original IVP solution during
integration of the adjoint system backward in time, and with an overview of a user’s main
program. Following that we provide complete descriptions of the user-callable interface routines
for adjoint sensitivity analysis as well as descriptions of the required additional user-defined
routines.

e Chapter 9 gives a brief overview of the generic NVECTOR module shared amongst the various
components of SUNDIALS, as well as details on the NVECTOR implementations provided with
SUNDIALS.

e Chapter 10 gives a brief overview of the generic SUNMATRIX module shared among the vari-
ous components of SUNDIALS, and details on the SUNMATRIX implementations provided with
SUNDIALS: a dense implementation (§10.3), a banded implementation (§10.4) and a sparse im-
plementation (§10.5).

e Chapter 11 gives a brief overview of the generic SUNLINSOL module shared among the various
components of SUNDIALS. This chapter contains details on the SUNLINSOL implementations
provided with SUNDIALS. The chapter also contains details on the SUNLINSOL implementations
provided with SUNDIALS that interface with external linear solver libraries.

e Chapter 12 describes the SUNNONLINSOL API and nonlinear solver implementations shared
among the various components of SUNDIALS.
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e Finally, in the appendices, we provide detailed instructions for the installation of IDAS, within
the structure of SUNDIALS (Appendix A), as well as a list of all the constants used for input to
and output from IDAS functions (Appendix B).

Finally, the reader should be aware of the following notational conventions in this user guide:
program listings and identifiers (such as IDAInit) within textual explanations appear in typewriter
type style; fields in C structures (such as content) appear in italics; and packages or modules, such
as IDALS, are written in all capitals. Usage and installation instructions that constitute important
warnings are marked with a triangular symbol in the margin.

1.3 SUNDIALS Release License

All SUNDIALS packages are released open source, under the BSD 3-Clause license. The only require-
ments of the license are preservation of copyright and a standard disclaimer of liability. The full text
of the license and an additional notice are provided below and may also be found in the LICENSE
and NOTICE files provided with all SUNDIALS packages.

If you are using SUNDIALS with any third party libraries linked in (e.g., LAPACK, KLU, Su-
perLU_MT, PETSc, or hypre), be sure to review the respective license of the package as that license
may have more restrictive terms than the SUNDIALS license. For example, if someone builds SUNDIALS
with a statically linked KLU, the build is subject to terms of the LGPL license (which is what KLU
is released with) and not the SUNDIALS BSD license anymore.

1.3.1 BSD 3-Clause License

Copyright (c) 2002-2021, Lawrence Livermore National Security and Southern Methodist University.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

* Neither the name of the copyright holder nor the names of its contributors may be used to en-
dorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
“AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTIC-
ULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EX-
EMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PRO-
CUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABIL-
ITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
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1.3.2 Additional Notice

This work was produced under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07TNA27344.

This work was prepared as an account of work sponsored by an agency of the United States Govern-
ment. Neither the United States Government nor Lawrence Livermore National Security, LLC, nor
any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights.

Reference herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government or Lawrence Livermore National Security, LLC.

The views and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or Lawrence Livermore National Security, LLC, and shall not be used for
advertising or product endorsement purposes.

1.3.3 SUNDIALS Release Numbers

LLNL-CODE-667205 (ARKODE)
UCRL-CODE-155951 (CVODE)
UCRL-CODE-155950 (CVODES)
UCRL-CODE-155952 (IDA)
UCRL-CODE-237203 (IDAS)
LLNL-CODE-665877 (KINSOL)



Chapter 2

Mathematical Considerations

IDAS solves the initial-value problem (IVP) for a DAE system of the general form

F(t,y,9) =0, y(to) =vo, y(to) = 9o, (2.1)

where y, 9, and F are vectors in R, ¢ is the independent variable, § = dy/dt, and initial values yo,
Yo are given. (Often ¢ is time, but it certainly need not be.)
Additionally, if (2.1) depends on some parameters p € Rz, i.e.

F(t,y,9,p) =0

y(to) = o (p) ¥(to) =50(p) (2.2)

IDAS can also compute first order derivative information, performing either forward sensitivity analysis
or adjoint sensitivity analysis. In the first case, IDAS computes the sensitivities of the solution with
respect to the parameters p, while in the second case, IDAS computes the gradient of a derived function
with respect to the parameters p.

2.1 IVP solution

Prior to integrating a DAE initial-value problem, an important requirement is that the pair of vectors
yo and go are both initialized to satisfy the DAE residual F'(to, yo,90) = 0. For a class of problems that
includes so-called semi-explicit index-one systems, IDAS provides a routine that computes consistent
initial conditions from a user’s initial guess [15]. For this, the user must identify sub-vectors of y (not
necessarily contiguous), denoted yq and y,, which are its differential and algebraic parts, respectively,
such that F' depends on g4 but not on any components of g,. The assumption that the system is
“index one” means that for a given ¢ and yg4, the system F'(t,y,y) = 0 defines y, uniquely. In this
case, a solver within IDAS computes y, and ¥4 at t = tg, given y4 and an initial guess for y,. A second
available option with this solver also computes all of y(ty) given y(¢o); this is intended mainly for quasi-
steady-state problems, where ¢(tg) = 0 is given. In both cases, IDA solves the system F(to,yo, %) =0
for the unknown components of yy and 1, using Newton iteration augmented with a line search global
strategy. In doing this, it makes use of the existing machinery that is to be used for solving the linear
systems during the integration, in combination with certain tricks involving the step size (which is set
artificially for this calculation). For problems that do not fall into either of these categories, the user
is responsible for passing consistent values, or risks failure in the numerical integration.

The integration method used in IDAS is the variable-order, variable-coefficient BDF (Backward
Differentiation Formula), in fixed-leading-coeflicient form [11]. The method order ranges from 1 to 5,
with the BDF of order ¢ given by the multistep formula

q
Z Qp iYn—i = hnyn , (23)
1=0
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where y,, and ¥, are the computed approximations to y(t,) and y(t, ), respectively, and the step size
is hy, =t —tn—1. The coefficients a, ; are uniquely determined by the order ¢, and the history of the
step sizes. The application of the BDF (2.3) to the DAE system (2.1) results in a nonlinear algebraic
system to be solved at each step:

q
Gw0=F<%wmhﬁ§:mm%4>—O. (2.4)

i=0

By default 1DAS solves (2.4) with a Newton iteration but IDAS also allows for user-defined nonlinear
solvers (see Chapter 12). Each Newton iteration requires the soution of a linear system of the form

where yy,(,n) is the m-th approximation to y,. Here J is some approximation to the system Jacobian

_oG_or, or (2.6)
dy Oy 9y
where o = ay, 0/hy. The scalar o changes whenever the step size or method order changes.

For the solution of the linear systems within the Newton iteration, IDAS provides several choices,
including the option of a user-supplied linear solver module (see Chapter 11). The linear solver
modules distributed with SUNDIALS are organized in two families, a direct family comprising direct
linear solvers for dense, banded, or sparse matrices and a spils family comprising scaled preconditioned
iterative (Krylov) linear solvers. The methods offered through these modules are as follows:

e dense direct solvers, using either an internal implementation or a BLAS/LAPACK implementa-
tion (serial or threaded vector modules only),

e band direct solvers, using either an internal implementation or a BLAS/LAPACK implementa-
tion (serial or threaded vector modules only),

e sparse direct solver interfaces, using either the KLU sparse solver library [24, 3], or the thread-
enabled SuperLU_MT sparse solver library [45, 26, 9] (serial or threaded vector modules only)
[Note that users will need to download and install the KLU or SUPERLUMT packages independent
of 1DAS],

e SPGMR, a scaled preconditioned GMRES (Generalized Minimal Residual method) solver with
or without restarts,

e SPFGMR, a scaled preconditioned FGMRES (Flexible Generalized Minimal Residual method)
solver with or without restarts,

e SPBCGS, a scaled preconditioned Bi-CGStab (Bi-Conjugate Gradient Stable method) solver,

e SPTFQMR, a scaled preconditioned TFQMR (Transpose-Free Quasi-Minimal Residual method)
solver, or

e PCG, a scaled preconditioned CG (Conjugate Gradient method) solver.

For large stiff systems, where direct methods are not feasible, the combination of a BDF integrator and
a preconditioned Krylov method yields a powerful tool because it combines established methods for
stiff integration, nonlinear iteration, and Krylov (linear) iteration with a problem-specific treatment
of the dominant source of stiffness, in the form of the user-supplied preconditioner matrix [13]. For
the spils linear solvers with 1DAS, preconditioning is allowed only on the left (see §2.2). Note that
the dense, band, and sparse direct linear solvers can only be used with serial and threaded vector
representations.
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In the process of controlling errors at various levels, IDAS uses a weighted root-mean-square norm,
denoted || - |[wrwms, for all error-like quantities. The multiplicative weights used are based on the
current solution and on the relative and absolute tolerances input by the user, namely

W; = 1/[RTOL - |y;| + ATOL] . (2.7)

Because 1/W; represents a tolerance in the component y;, a vector whose norm is 1 is regarded as
“small.” For brevity, we will usually drop the subscript WRMS on norms in what follows.

In the case of a matrix-based linear solver, the default Newton iteration is a Modified Newton
iteration, in that the Jacobian J is fixed (and usually out of date) throughout the nonlinear iterations,
with a coefficient @ in place of a in J. However, in the case that a matrix-free iterative linear solver is
used, the default Newton iteration is an Inexact Newton iteration, in which J is applied in a matrix-
free manner, with matrix-vector products Jv obtained by either difference quotients or a user-supplied
routine. In this case, the linear residual JAy + G is nonzero but controlled. With the default Newton
iteration, the matrix J and preconditioner matrix P are updated as infrequently as possible to balance
the high costs of matrix operations against other costs. Specifically, this matrix update occurs when:

e starting the problem,
e the value @ at the last update is such that a/& < 3/5 or a/& > 5/3, or
e a non-fatal convergence failure occurred with an out-of-date J or P.

The above strategy balances the high cost of frequent matrix evaluations and preprocessing with
the slow convergence due to infrequent updates. To reduce storage costs on an update, Jacobian
information is always reevaluated from scratch.

The default stopping test for nonlinear solver iterations in IDAS ensures that the iteration error
Yn = Yn(m) is small relative to y itself. For this, we estimate the linear convergence rate at all iterations

m>1 as )
S\ 71
n=(5)"

where the 0, = Yn(m) — Yn(m—1) is the correction at iteration m = 1,2,.... The nonlinear solver
iteration is halted if R > 0.9. The convergence test at the m-th iteration is then

S| < 0.33, (2.8)

where S = R/(R—1) whenever m > 1 and R < 0.9. The user has the option of changing the constant
in the convergence test from its default value of 0.33. The quantity S is set to S = 20 initially and
whenever J or P is updated, and it is reset to S = 100 on a step with o # @. Note that at m = 1, the
convergence test (2.8) uses an old value for S. Therefore, at the first nonlinear solver iteration, we
make an additional test and stop the iteration if [|;] < 0.33 - 10=* (since such a &; is probably just
noise and therefore not appropriate for use in evaluating R). We allow only a small number (default
value 4) of nonlinear iterations. If convergence fails with J or P current, we are forced to reduce the
step size h,, and we replace h, by h,/4. The integration is halted after a preset number (default
value 10) of convergence failures. Both the maximum number of allowable nonlinear iterations and
the maximum number of nonlinear convergence failures can be changed by the user from their default
values.

When an iterative method is used to solve the linear system, to minimize the effect of linear
iteration errors on the nonlinear and local integration error controls, we require the preconditioned
linear residual to be small relative to the allowed error in the nonlinear iteration, i.e., | P~ (Jz+G)|| <
0.05 - 0.33. The safety factor 0.05 can be changed by the user.

When the Jacobian is stored using either dense or band SUNMATRIX objects, the Jacobian J defined
in (2.6) can be either supplied by the user or have IDAS compute one internally by difference quotients.
In the latter case, we use the approximation

Jij = [Fi(t,y + ojej, i+ acje;) — Fi(t,y,9)]/o;, with
oj = \mmaxﬂyﬂa ||, 1/W;} sign(hy;) ,
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where U is the unit roundoff, h is the current step size, and W; is the error weight for the component
y; defined by (2.7). We note that with sparse and user-supplied SUNMATRIX objects, the Jacobian
must be supplied by a user routine.
In the case of an iterative linear solver, if a routine for Jv is not supplied, such products are
approximated by
Jv = [F(t.y + 0v,5+ aov) — F(t,y, )] /o,

where the increment o = 1/||v||. As an option, the user can specify a constant factor that is inserted
into this expression for o.

During the course of integrating the system, IDAS computes an estimate of the local truncation
error, LTE, at the n-th time step, and requires this to satisfy the inequality

|ILTE|wrms < 1.

Asymptotically, LTE varies as k97! at step size h and order g, as does the predictor-corrector difference
Ay = Yn — Yn(o)- Thus there is a constant C' such that

LTE = CA,, + O(h??),

and so the norm of LTE is estimated as |C| - ||A,||. In addition, IDAS requires that the error in the
associated polynomial interpolant over the current step be bounded by 1 in norm. The leading term
of the norm of this error is bounded by C||A,|| for another constant C. Thus the local error test in
IDAS is

max{|C], CH AW < 1. (2.9)

A user option is available by which the algebraic components of the error vector are omitted from the
test (2.9), if these have been so identified.

In 1DAS, the local error test is tightly coupled with the logic for selecting the step size and order.
First, there is an initial phase that is treated specially; for the first few steps, the step size is doubled
and the order raised (from its initial value of 1) on every step, until (a) the local error test (2.9) fails,
(b) the order is reduced (by the rules given below), or (c) the order reaches 5 (the maximum). For
step and order selection on the general step, IDAS uses a different set of local error estimates, based
on the asymptotic behavior of the local error in the case of fixed step sizes. At each of the orders ¢’
equal toq, q—1 (if ¢ >1),¢—2 (if ¢ > 2), or ¢+ 1 (if ¢ < 5), there are constants C(q’) such that the
norm of the local truncation error at order ¢’ satisfies

LTE(¢") = C(d)l|¢(d + DIl + O(h' ),

where ¢(k) is a modified divided difference of order k that is retained by 1DAS (and behaves asymp-
totically as h*). Thus the local truncation errors are estimated as ELTE(q") = C(¢')||¢(q’' + 1)|| to
select step sizes. But the choice of order in IDAS is based on the requirement that the scaled derivative
norms, ||h*y*)||, are monotonically decreasing with k, for k near q. These norms are again estimated
using the ¢(k), and in fact

th’+1y(q’+l)|| ~T(q¢) = (¢ +1)ELTE(¢).

The step/order selection begins with a test for monotonicity that is made even before the local error
test is performed. Namely, the order is reset to ¢/ = ¢—11if (a) ¢ =2 and T(1) < T(2)/2, or (b) ¢ > 2
and max{T (¢ — 1), T(q — 2)} < T(q); otherwise ¢' = ¢q. Next the local error test (2.9) is performed,
and if it fails, the step is redone at order ¢ < ¢’ and a new step size h/. The latter is based on the
ha*1 asymptotic behavior of ELTE(q), and, with safety factors, is given by

n="h/h=09/[2ELTE(g)]"/(«tD)

The value of 7 is adjusted so that 0.25 < 1 < 0.9 before setting h < h’ = nh. If the local error test
fails a second time, IDAS uses 17 = 0.25, and on the third and subsequent failures it uses ¢ = 1 and
n = 0.25. After 10 failures, IDAS returns with a give-up message.
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As soon as the local error test has passed, the step and order for the next step may be adjusted.
No such change is made if ¢’ = ¢ — 1 from the prior test, if ¢ = 5, or if ¢ was increased on the previous
step. Otherwise, if the last ¢ + 1 steps were taken at a constant order ¢ < 5 and a constant step size,
IDAS considers raising the order to ¢ + 1. The logic is as follows: (a) If ¢ = 1, then reset ¢ = 2 if
T(2) <T(1)/2. (b) If ¢ > 1 then

o reset ¢ <—q—1if T(¢—1) <min{T(q),T(¢+1)};
o clsereset g« g+ 1if T(¢g+1) <T(q);
e leave ¢ unchanged otherwise [then T'(¢ — 1) > T'(¢) < T'(q + 1)].

In any case, the new step size b’ is set much as before:
n=h/h=1/]2ELTE(q)]/ @V

The value of 7 is adjusted such that (a) if n > 2, 5 is reset to 2; (b) if n < 1, n is restricted to
05 <7 <09 and (¢) if 1 <n < 2 we use n = 1. Finally A is reset to ' = nh. Thus we do not
increase the step size unless it can be doubled. See [11] for details.

IDAS permits the user to impose optional inequality constraints on individual components of the
solution vector y. Any of the following four constraints can be imposed: y; > 0, y; < 0, y; > 0,
or y; < 0. The constraint satisfaction is tested after a successful nonlinear system solution. If any
constraint fails, we declare a convergence failure of the nonlinear iteration and reduce the step size.
Rather than cutting the step size by some arbitrary factor, IDAS estimates a new step size h/ using a
linear approximation of the components in y that failed the constraint test (including a safety factor
of 0.9 to cover the strict inequality case). These additional constraints are also imposed during the
calculation of consistent initial conditions. If a step fails to satisfy the constraints repeatedly within
a step attempt then the integration is halted and an error is returned. In this case the user may need
to employ other strategies as discussed in §4.5.2 to satisfy the inequality constraints.

Normally, 1IDAS takes steps until a user-defined output value ¢ = t,y is overtaken, and then
computes y(tout) by interpolation. However, a “one step” mode option is available, where control
returns to the calling program after each step. There are also options to force IDAS not to integrate
past a given stopping point ¢ = tgp.

2.2 Preconditioning

When using a nonlinear solver that requires the solution of a linear system of the form JAy = —G (e.g.,
the default Newton iteration), IDAS makes repeated use of a linear solver. If this linear system solve
is done with one of the scaled preconditioned iterative linear solvers supplied with SUNDIALS, these
solvers are rarely successful if used without preconditioning; it is generally necessary to precondition
the system in order to obtain acceptable efficiency. A system Ax = b can be preconditioned on the
left, on the right, or on both sides. The Krylov method is then applied to a system with the matrix
P~'A or AP~ or P, ' APy, instead of A. However, within IDAS, preconditioning is allowed only on
the left, so that the iterative method is applied to systems (P~1J)Ay = —P~'G. Left preconditioning
is required to make the norm of the linear residual in the nonlinear iteration meaningful; in general,
||[JAy + G|| is meaningless, since the weights used in the WRMS-norm correspond to y.

In order to improve the convergence of the Krylov iteration, the preconditioner matrix P should in
some sense approximate the system matrix A. Yet at the same time, in order to be cost-effective, the
matrix P should be reasonably efficient to evaluate and solve. Finding a good point in this tradeoff
between rapid convergence and low cost can be very difficult. Good choices are often problem-
dependent (for example, see [13] for an extensive study of preconditioners for reaction-transport
systems).

Typical preconditioners used with IDAS are based on approximations to the iteration matrix of
the systems involved; in other words, P ~ %—Z + a%—g, where « is a scalar inversely proportional to
the integration step size h. Because the Krylov iteration occurs within a nonlinear solver iteration
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and further also within a time integration, and since each of these iterations has its own test for
convergence, the preconditioner may use a very crude approximation, as long as it captures the
dominant numerical feature(s) of the system. We have found that the combination of a preconditioner
with the Newton-Krylov iteration, using even a fairly poor approximation to the Jacobian, can be
surprisingly superior to using the same matrix without Krylov acceleration (i.e., a modified Newton
iteration), as well as to using the Newton-Krylov method with no preconditioning.

2.3 Rootfinding

The 1DAS solver has been augmented to include a rootfinding feature. This means that, while inte-
grating the Initial Value Problem (2.1), IDAS can also find the roots of a set of user-defined functions
gi(t,y,y) that depend on ¢, the solution vector y = y(t), and its t—derivative g(¢). The number of
these root functions is arbitrary, and if more than one g; is found to have a root in any given interval,
the various root locations are found and reported in the order that they occur on the ¢ axis, in the
direction of integration.

Generally, this rootfinding feature finds only roots of odd multiplicity, corresponding to changes in
sign of g;(t, y(t),y(t)), denoted g;(t) for short. If a user root function has a root of even multiplicity (no
sign change), it will probably be missed by IDAS. If such a root is desired, the user should reformulate
the root function so that it changes sign at the desired root.

The basic scheme used is to check for sign changes of any g;(t) over each time step taken, and then
(when a sign change is found) to home in on the root (or roots) with a modified secant method [33].
In addition, each time g is computed, IDAS checks to see if g;(t) = 0 exactly, and if so it reports this as
a root. However, if an exact zero of any g; is found at a point ¢, IDAS computes g at ¢t + ¢ for a small
increment J, slightly further in the direction of integration, and if any g;(t + ) = 0 also, IDAS stops
and reports an error. This way, each time IDAS takes a time step, it is guaranteed that the values of
all g; are nonzero at some past value of ¢, beyond which a search for roots is to be done.

At any given time in the course of the time-stepping, after suitable checking and adjusting has
been done, 1DAS has an interval (t,,t;] in which roots of the g;(¢) are to be sought, such that t; is
further ahead in the direction of integration, and all g;(¢;,) # 0. The endpoint ty; is either ¢,,, the end
of the time step last taken, or the next requested output time tq,; if this comes sooner. The endpoint
t1, is either ¢,,_1, or the last output time ¢,y (if this occurred within the last step), or the last root
location (if a root was just located within this step), possibly adjusted slightly toward ¢, if an exact
zero was found. The algorithm checks g at t; for zeros and for sign changes in (¢;,, tp;). If no sign
changes are found, then either a root is reported (if some g;(¢n;) = 0) or we proceed to the next time
interval (starting at ¢5;). If one or more sign changes were found, then a loop is entered to locate the
root to within a rather tight tolerance, given by

T =100%U * (|t,| + |h]) (U = unit roundoff) .

Whenever sign changes are seen in two or more root functions, the one deemed most likely to have
its root occur first is the one with the largest value of |g;(th:)|/|gi(thi) — gi(t10)|, corresponding to the
closest to t;, of the secant method values. At each pass through the loop, a new value t,,;4 is set,
strictly within the search interval, and the values of g;(¢;,iq) are checked. Then either ¢;, or tp; is reset
t0 tmiq according to which subinterval is found to have the sign change. If there is none in (¢i0, tmid)
but some g;(tmiq) = 0, then that root is reported. The loop continues until |¢t5; — ¢ < 7, and then
the reported root location is t;.
In the loop to locate the root of g;(t), the formula for ¢,,;q4 is

tmid = thi — (thi = t10)9i(thi)/[9i(thi) — agi(tio)]

where o a weight parameter. On the first two passes through the loop, « is set to 1, making t,,;q
the secant method value. Thereafter, « is reset according to the side of the subinterval (low vs high,
i.e. toward t;, vs toward t5;) in which the sign change was found in the previous two passes. If the
two sides were opposite, « is set to 1. If the two sides were the same, « is halved (if on the low
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side) or doubled (if on the high side). The value of t,,;q is closer to t;, when « < 1 and closer to tp;
when o > 1. If the above value of t,,;4 is within 7/2 of t;, or tz;, it is adjusted inward, such that its
fractional distance from the endpoint (relative to the interval size) is between .1 and .5 (.5 being the
midpoint), and the actual distance from the endpoint is at least 7/2.

2.4 Pure quadrature integration

In many applications, and most notably during the backward integration phase of an adjoint sensitivity
analysis run (see §2.6) it is of interest to compute integral quantities of the form

) = [ alru().o(r).p)dr. (2.10)

to

The most effective approach to compute z(t) is to extend the original problem with the additional
ODEs (obtained by applying Leibnitz’s differentiation rule):

Z= Q(t’y7 yap)v Z(tO) =0. (2'11)

Note that this is equivalent to using a quadrature method based on the underlying linear multistep
polynomial representation for y(t).

This can be done at the “user level” by simply exposing to IDAS the extended DAE system
(2.2)4+(2.10). However, in the context of an implicit integration solver, this approach is not desir-
able since the nonlinear solver module will require the Jacobian (or Jacobian-vector product) of this
extended DAE. Moreover, since the additional states, z, do not enter the right-hand side of the ODE
(2.10) and therefore the residual of the extended DAE system does not depend on z, it is much more
efficient to treat the ODE system (2.10) separately from the original DAE system (2.2) by “taking
out” the additional states z from the nonlinear system (2.4) that must be solved in the correction step
of the LMM. Instead, “corrected” values z, are computed explicitly as

1 , Z
th(tnayruynap) - Zan,iznfi y
Qn.0 =1

once the new approximation y,, is available.
The quadrature variables z can be optionally included in the error test, in which case corresponding
relative and absolute tolerances must be provided.

Zn =

2.5 Forward sensitivity analysis

Typically, the governing equations of complex, large-scale models depend on various parameters,
through the right-hand side vector and/or through the vector of initial conditions, as in (2.2). In
addition to numerically solving the DAEs, it may be desirable to determine the sensitivity of the results
with respect to the model parameters. Such sensitivity information can be used to estimate which
parameters are most influential in affecting the behavior of the simulation or to evaluate optimization
gradients (in the setting of dynamic optimization, parameter estimation, optimal control, etc.).

The solution sensitivity with respect to the model parameter p; is defined as the vector s;(t) =
Ody(t)/0p; and satisfies the following forward sensitivity equations (or sensitivity equations for short):

oF oF oF

—Si+ =8 +—-—=0

dy 9y Op; (2.12)
silto) = yo(p) 5ilto) = 99o(p)

1 \t0 api s 94\L0 3pi )

obtained by applying the chain rule of differentiation to the original DAEs (2.2).
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When performing forward sensitivity analysis, IDAS carries out the time integration of the combined
system, (2.2) and (2.12), by viewing it as a DAE system of size N(Ns + 1), where Ny is the number
of model parameters p;, with respect to which sensitivities are desired (N, < N,). However, major
improvements in efficiency can be made by taking advantage of the special form of the sensitivity
equations as linearizations of the original DAEs. In particular, the original DAE system and all
sensitivity systems share the same Jacobian matrix J in (2.6).

The sensitivity equations are solved with the same linear multistep formula that was selected
for the original DAEs and the same linear solver is used in the correction phase for both state and
sensitivity variables. In addition, IDAS offers the option of including (full error control) or excluding
(partial error control) the sensitivity variables from the local error test.

2.5.1 Forward sensitivity methods

In what follows we briefly describe three methods that have been proposed for the solution of the
combined DAE and sensitivity system for the vector § = [y, 51, ..., sn,].

e Staggered Direct In this approach [21], the nonlinear system (2.4) is first solved and, once an
acceptable numerical solution is obtained, the sensitivity variables at the new step are found
by directly solving (2.12) after the BDF discretization is used to eliminate $;. Although the
system matrix of the above linear system is based on exactly the same information as the
matrix J in (2.6), it must be updated and factored at every step of the integration, in contrast
to an evaluation of J which is updated only occasionally. For problems with many parameters
(relative to the problem size), the staggered direct method can outperform the methods described
below [44]. However, the computational cost associated with matrix updates and factorizations
makes this method unattractive for problems with many more states than parameters (such as
those arising from semidiscretization of PDEs) and is therefore not implemented in IDAS.

o Simultaneous Corrector In this method [48], the discretization is applied simultaneously to both
the original equations (2.2) and the sensitivity systems (2.12) resulting in an “extended” non-
linear system G(gjn) = 0 where ¥, = [Yn,---,Si,...]. This combined nonlinear system can be
solved using a modified Newton method as in (2.5) by solving the corrector equation

J[gn(m-l-l) - gn(m)} = _G(yn(m)) (213)
at each iteration, where
J
JJ
J=1|J 0 J :
Iy, O ... 0 J

J is defined as in (2.6), and J; = (9/0y) [Fys; + Fys; + Fp,]. It can be shown that 2-step
quadratic convergence can be retained by using only the block-diagonal portion of J in the
corrector equation (2.13). This results in a decoupling that allows the reuse of J without
additional matrix factorizations. However, the sum Fys; + Fy;$; + F},, must still be reevaluated
at each step of the iterative process (2.13) to update the sensitivity portions of the residual G.

e Staggered corrector In this approach [29], as in the staggered direct method, the nonlinear system
(2.4) is solved first using the Newton iteration (2.5). Then, for each sensitivity vector £ = s;, a
separate Newton iteration is used to solve the sensitivity system (2.12):

J[gn(m+1) - gn(m)] =
q
- Fy(tn7 Yn, yn)gn(m) + Fy(tnu Yn, yn) . hr_Ll (an,ogn(m) + Z an,i&ni) + F, i(tna Yn, yn)] .

=1
(2.14)
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In other words, a modified Newton iteration is used to solve a linear system. In this approach,
the matrices OF /0y, OF /0y and vectors OF/9p; need be updated only once per integration step,
after the state correction phase (2.5) has converged.

IDAS implements both the simultaneous corrector method and the staggered corrector method.

An important observation is that the staggered corrector method, combined with a Krylov linear
solver, effectively results in a staggered direct method. Indeed, the Krylov solver requires only the
action of the matrix J on a vector, and this can be provided with the current Jacobian information.
Therefore, the modified Newton procedure (2.14) will theoretically converge after one iteration.

2.5.2 Selection of the absolute tolerances for sensitivity variables

If the sensitivities are included in the error test, IDAS provides an automated estimation of absolute
tolerances for the sensitivity variables based on the absolute tolerance for the corresponding state
variable. The relative tolerance for sensitivity variables is set to be the same as for the state variables.
The selection of absolute tolerances for the sensitivity variables is based on the observation that
the sensitivity vector s; will have units of [y]/[p;]. With this, the absolute tolerance for the j-th
component of the sensitivity vector s; is set to ATOL;/|p;|, where ATOL; are the absolute tolerances for
the state variables and p is a vector of scaling factors that are dimensionally consistent with the model
parameters p and give an indication of their order of magnitude. This choice of relative and absolute
tolerances is equivalent to requiring that the weighted root-mean-square norm of the sensitivity vector
s; with weights based on s; be the same as the weighted root-mean-square norm of the vector of scaled
sensitivities §; = |p;|s; with weights based on the state variables (the scaled sensitivities 5; being
dimensionally consistent with the state variables). However, this choice of tolerances for the s; may
be a poor one, and the user of IDAS can provide different values as an option.

2.5.3 Evaluation of the sensitivity right-hand side

There are several methods for evaluating the residual functions in the sensitivity systems (2.12):
analytic evaluation, automatic differentiation, complex-step approximation, and finite differences (or
directional derivatives). IDAS provides all the software hooks for implementing interfaces to automatic
differentiation (AD) or complex-step approximation; future versions will include a generic interface
to AD-generated functions. At the present time, besides the option for analytical sensitivity right-
hand sides (user-provided), IDAS can evaluate these quantities using various finite difference-based
approximations to evaluate the terms (0F/0y)s; + (0F/0y)s; and (OF/dp;), or using directional
derivatives to evaluate [(OF/Jy)s; + (OF/0y)s; + (OF/0p;)]. As is typical for finite differences, the
proper choice of perturbations is a delicate matter. IDAS takes into account several problem-related
features: the relative DAE error tolerance RTOL, the machine unit roundoff U, the scale factor p;, and
the weighted root-mean-square norm of the sensitivity vector s;.

Using central finite differences as an example, the two terms (0F/dy)s; + (0F/0y)s; and dF/dp;
in (2.12) can be evaluated either separately:

oF oF © F(tay+0ysz7y+0-yslap) _F(t7y_ay8iay_ayéiap)

ST 58 N , 2.15
8y8 + ays 20, (2.15)
oF  F(t,y,9 ie;) — F(t,y,9,p— oie;
o Fty9.pt oiei) = F(Ly §.p — oiei) (2.15")
8pi 20’1‘
1
o; = |pi|v/max(rrOoL,U), 0, = —,
PV max(Rr0L 0,00 = U, Toallwrnas )
or simultaneously:
87FSZ_ n 6—Fsl . oF ~ F(t,y+o0s;,y+0si,p+oe;) — F(t,y — 08,y — 08,0 — 0€;) , (2.16)
dy 9y opi 20

o =min(o;, 0y),
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or by adaptively switching between (2.15)4(2.15’) and (2.16), depending on the relative size of the
two finite difference increments o; and o,,. In the adaptive scheme, if p = max(o; /0y, 0,/0;), we use
separate evaluations if p > ppax (an input value), and simultaneous evaluations otherwise.

These procedures for choosing the perturbations (o;, oy, o) and switching between derivative
formulas have also been implemented for one-sided difference formulas. Forward finite differences can
be applied to (OF/0y)s; + (0F/0y)s; and g—; separately, or the single directional derivative formula

oF OF . OF _ F(t,y+o0s,y+0s,p+oe)—F(t,y,y,p)
S8t 58+ ~
dy dy Op; o

can be used. In IDAS, the default value of pp.x = 0 indicates the use of the second-order centered
directional derivative formula (2.16) exclusively. Otherwise, the magnitude of ppax and its sign (pos-
itive or negative) indicates whether this switching is done with regard to (centered or forward) finite
differences, respectively.

2.5.4 Quadratures depending on forward sensitivities

If pure quadrature variables are also included in the problem definition (see §2.4), IDAS does not carry
their sensitivities automatically. Instead, we provide a more general feature through which integrals
depending on both the states y of (2.2) and the state sensitivities s; of (2.12) can be evaluated. In
other words, IDAS provides support for computing integrals of the form:

A1) :/ G y(r) 3, s1(r), s (7),p)

to

If the sensitivities of the quadrature variables z of (2.10) are desired, these can then be computed
by using:

Gi = Qysi +qysi +qp,, 1=1,...,Np,

as integrands for z, where gy, ¢4, and g, are the partial derivatives of the integrand function ¢ of
(2.10).

As with the quadrature variables z, the new variables z are also excluded from any nonlinear solver
phase and “corrected” values Z,, are obtained through explicit formulas.

2.6 Adjoint sensitivity analysis

In the forward semsitivity approach described in the previous section, obtaining sensitivities with
respect to Ny parameters is roughly equivalent to solving an DAE system of size (1 + Ng)N. This
can become prohibitively expensive, especially for large-scale problems, if sensitivities with respect
to many parameters are desired. In this situation, the adjoint sensitivity method is a very attractive
alternative, provided that we do not need the solution sensitivities s;, but rather the gradients with
respect to model parameters of a relatively few derived functionals of the solution. In other words, if
y(t) is the solution of (2.2), we wish to evaluate the gradient dG/dp of

G(p) = / g(t,y,p)dt, (2.17)

to

or, alternatively, the gradient dg/dp of the function g(¢,y,p) at the final time ¢t = T'. The function g
must be smooth enough that dg/0y and dg/0p exist and are bounded.

In what follows, we only sketch the analysis for the sensitivity problem for both G and g. For
details on the derivation see [20].
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2.6.1 Sensitivity of G(p)

We focus first on solving the sensitivity problem for G(p) defined by (2.17). Introducing a Lagrange
multiplier A, we form the augmented objective function

T
10)=G) - [ NF(tydat
to

Since F(t,y,y,p) = 0, the sensitivity of G with respect to p is
dG  dI r T, .
—_— == / (gp + gyyp)dt —/ N (Fp + Fyyp + Fyyp)dt, (2.18)
dp dp Jy, to

where subscripts on functions such as F' or g are used to denote partial derivatives. By integration
by parts, we have

T T
| xRt = )l =[O0 E
to to

where (---)" denotes the t—derivative. Thus equation (2.18) becomes

dG r * T * * *
S| @ NR) i [ o X E - (R - W Em (219)
(0] (0]
Now by requiring A to satisfy
(A Fy) = A"Fy = —gy, (2.20)
we obtain
dG T * * T
d7p = ; (9p = A" Fp) dt — (A Fyyp)‘to- (2.21)
0

Note that y, at t = %y is the sensitivity of the initial conditions with respect to p, which is easily ob-
tained. To find the initial conditions (at t = T') for the adjoint system, we must take into consideration
the structure of the DAE system.

For index-0 and index-1 DAE systems, we can simply take

N Fyly—r = 0, (2.22)

yielding the sensitivity equation for dG/dp

dG T

= | =N R )l (2:29
p to

This choice will not suffice for a Hessenberg index-2 DAE system. For a derivation of proper final

conditions in such cases, see [20].

The first thing to notice about the adjoint system (2.20) is that there is no explicit specification
of the parameters p; this implies that, once the solution X is found, the formula (2.21) can then be
used to find the gradient of G with respect to any of the parameters p. The second important remark
is that the adjoint system (2.20) is a terminal value problem which depends on the solution y(t) of
the original IVP (2.2). Therefore, a procedure is needed for providing the states y obtained during
a forward integration phase of (2.2) to IDAS during the backward integration phase of (2.20). The
approach adopted in IDAS, based on checkpointing, is described in §2.6.3 below.

2.6.2 Sensitivity of ¢(7',p)

Now let us consider the computation of dg/dp(T). From dg/dp(T) = (d/dT)(dG/dp) and equation
(2.21), we have

d . T . d(\*F
G (- NEID) — [ Nyt O Fygy)ims, — 2T (220

dp to dr
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where Ar denotes OA/OT. For index-0 and index-1 DAEs, we obtain

dA"Fyyp)le=r

dT =0,

while for a Hessenberg index-2 DAE system we have

AN Fyyp)li=r _ d(gya(CB)‘lfﬁ)

ar dt

The corresponding adjoint equations are
(ARFy) = ApF, = 0. (2.25)

For index-0 and index-1 DAEs (as shown above, the index-2 case is different), to find the boundary
condition for this equation we write A as A(t,T") because it depends on both ¢ and T. Then

(T, T)Fyli=r = 0.
Taking the total derivative, we obtain

* " dF;
e+ Ar)" (T, 1) Fylomr + X" (1, 1) 21— = 0.

Since A; is just A, we have the boundary condition

dFy,
i Fpller = = [N (D)L + 3 Fy oo

For the index-one DAE case, the above relation and (2.20) yield
AT Ey)li=r = [9y = A" Ey] li=r- (2.26)

For the regular implicit ODE case, Fy is invertible; thus we have A(T',T") = 0, which leads to Ar(T") =
—A(T). As with the final conditions for A\(T) in (2.20), the above selection for Ar(T) is not sufficient
for index-two Hessenberg DAEs (see [20] for details).

2.6.3 Checkpointing scheme

During the backward integration, the evaluation of the right-hand side of the adjoint system requires,
at the current time, the states y which were computed during the forward integration phase. Since
IDAS implements variable-step integration formulas, it is unlikely that the states will be available at
the desired time and so some form of interpolation is needed. The IDAS implementation being also
variable-order, it is possible that during the forward integration phase the order may be reduced as
low as first order, which means that there may be points in time where only y and g are available.
These requirements therefore limit the choices for possible interpolation schemes. IDAS implements
two interpolation methods: a cubic Hermite interpolation algorithm and a variable-degree polynomial
interpolation method which attempts to mimic the BDF interpolant for the forward integration.
However, especially for large-scale problems and long integration intervals, the number and size
of the vectors y and g that would need to be stored make this approach computationally intractable.
Thus, IDAS settles for a compromise between storage space and execution time by implementing a so-
called checkpointing scheme. At the cost of at most one additional forward integration, this approach
offers the best possible estimate of memory requirements for adjoint sensitivity analysis. To begin
with, based on the problem size N and the available memory, the user decides on the number Ny
of data pairs (y, ¢) if cubic Hermite interpolation is selected, or on the number Ny of y vectors in
the case of variable-degree polynomial interpolation, that can be kept in memory for the purpose of
interpolation. Then, during the first forward integration stage, after every Ny integration steps a
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Figure 2.1: Illustration of the checkpointing algorithm for generation of the forward solution during
the integration of the adjoint system.

checkpoint is formed by saving enough information (either in memory or on disk) to allow for a hot
restart, that is a restart which will exactly reproduce the forward integration. In order to avoid storing
Jacobian-related data at each checkpoint, a reevaluation of the iteration matrix is forced before each
checkpoint. At the end of this stage, we are left with N, checkpoints, including one at ty. During the
backward integration stage, the adjoint variables are integrated backwards from T to ty, going from
one checkpoint to the previous one. The backward integration from checkpoint ¢ + 1 to checkpoint 4
is preceded by a forward integration from 4 to ¢ + 1 during which the Ny vectors y (and, if necessary
1) are generated and stored in memory for interpolation®

This approach transfers the uncertainty in the number of integration steps in the forward inte-
gration phase to uncertainty in the final number of checkpoints. However, N, is much smaller than
the number of steps taken during the forward integration, and there is no major penalty for writ-
ing/reading the checkpoint data to/from a temporary file. Note that, at the end of the first forward
integration stage, interpolation data are available from the last checkpoint to the end of the interval
of integration. If no checkpoints are necessary (Ny is larger than the number of integration steps
taken in the solution of (2.2)), the total cost of an adjoint sensitivity computation can be as low as
one forward plus one backward integration. In addition, IDAS provides the capability of reusing a set
of checkpoints for multiple backward integrations, thus allowing for efficient computation of gradients
of several functionals (2.17).

Finally, we note that the adjoint sensitivity module in IDAS provides the necessary infrastructure
to integrate backwards in time any DAE terminal value problem dependent on the solution of the
IVP (2.2), including adjoint systems (2.20) or (2.25), as well as any other quadrature ODEs that may
be needed in evaluating the integrals in (2.21). In particular, for DAE systems arising from semi-
discretization of time-dependent PDEs, this feature allows for integration of either the discretized
adjoint PDE system or the adjoint of the discretized PDE.

2.7 Second-order sensitivity analysis

In some applications (e.g., dynamically-constrained optimization) it may be desirable to compute
second-order derivative information. Considering the DAE problem (2.2) and some model output
functional® g(y), the Hessian d?g/dp? can be obtained in a forward sensitivity analysis setting as

d?g

T
dez = (gy ® INp) Ypp + Yp GyyYp >

1The degree of the interpolation polynomial is always that of the current BDF order for the forward interpolation at
the first point to the right of the time at which the interpolated value is sought (unless too close to the i-th checkpoint, in
which case it uses the BDF order at the right-most relevant point). However, because of the FLC BDF implementation
(see §2.1), the resulting interpolation polynomial is only an approximation to the underlying BDF interpolant.

The Hermite cubic interpolation option is present because it was implemented chronologically first and it is also used
by other adjoint solvers (e.g. DASPKADJOINT). The variable-degree polynomial is more memory-efficient (it requires only
half of the memory storage of the cubic Hermite interpolation) and is more accurate.

2For the sake of simplifity in presentation, we do not include explicit dependencies of g on time ¢ or parameters p.
Moreover, we only consider the case in which the dependency of the original DAE (2.2) on the parameters p is through
its initial conditions only. For details on the derivation in the general case, see [49].
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where ® is the Kronecker product. The second-order sensitivities are solution of the matrix DAE
system:

(Fy@INp)'ypp+(Fy®INp)'ypp+(IN®yg)'(Fyyyp+Fyyyp)+(IN®y§)'(Fyz)yp+Fyyyp):O

o . o
to) = =5 ty) = —5
ypp( O) 8p2 ) ypp( 0) 8p2 ,

where y, denotes the first-order sensitivity matrix, the solution of N, systems (2.12), and y,, is a
third-order tensor. It is easy to see that, except for situations in which the number of parameters IV,
is very small, the computational cost of this so-called forward-over-forward approach is exorbitant as
it requires the solution of N, + Ng additional DAE systems of the same dimension as (2.2).

A much more efficient alternative is to compute Hessian-vector products using a so-called forward-
over-adjoint approach. This method is based on using the same “trick” as the one used in computing
gradients of pointwise functionals with the adjoint method, namely applying a formal directional for-
ward derivation to the gradient of (2.21) (or the equivalent one for a pointwise functional g(7T,y(T))).
With that, the cost of computing a full Hessian is roughly equivalent to the cost of computing the gra-
dient with forward sensitivity analysis. However, Hessian-vector products can be cheaply computed
with one additional adjoint solve.

As an illustration?®, consider the ODE problem

y=f(ty), ylto)=uy(p),

depending on some parameters p through the initial conditions only and consider the model functional
output G(p) = ftif g(t,y) dt. Tt can be shown that the product between the Hessian of G (with respect
to the parameters p) and some vector u can be computed as

0%G
szu = [(\" ® In,) yppu + y, 4] t=to

where A and p are solutions of

_ﬂ:fgﬂ+(AT®In>fyy5§ p(ty) =0
—A=fIx+gl Aty) =0 (2.27)
s$=fys; s(to) = yopu.

In the above equation, s = y,u is a linear combination of the columns of the sensitivity matrix y,.
The forward-over-adjoint approach hinges crucially on the fact that s can be computed at the cost of
a forward sensitivity analysis with respect to a single parameter (the last ODE problem above) which
is possible due to the linearity of the forward sensitivity equations (2.12).

Therefore (and this is also valid for the DAE case), the cost of computing the Hessian-vector
product is roughly that of two forward and two backward integrations of a system of DAEs of size
N. For more details, including the corresponding formulas for a pointwise model functional output,
see the work by Ozyurt and Barton [49] who discuss this problem for ODE initial value problems. As
far as we know, there is no published equivalent work on DAE problems. However, the derivations
given in [49] for ODE problems can be extended to DAEs with some careful consideration given to
the derivation of proper final conditions on the adjoint systems, following the ideas presented in [20].

To allow the foward-over-adjoint approach described above, IDAS provides support for:

e the integration of multiple backward problems depending on the same underlying forward prob-
lem (2.2), and

e the integration of backward problems and computation of backward quadratures depending on
both the states y and forward sensitivities (for this particular application, s) of the original
problem (2.2).

3The derivation for the general DAE case is too involved for the purposes of this discussion.



Chapter 3

Code Organization

3.1 SUNDIALS organization

The family of solvers referred to as SUNDIALS consists of the solvers CVODE and ARKODE (for ODE
systems), KINSOL (for nonlinear algebraic systems), and IDA (for differential-algebraic systems). In
addition, SUNDIALS also includes variants of CVODE and IDA with sensitivity analysis capabilities
(using either forward or adjoint methods), called CVODES and IDAS, respectively.

The various solvers of this family share many subordinate modules. For this reason, it is organized

as a family, with a directory structure that exploits that sharing (see Figures 3.1 and 3.2).

SUNDIALS

The

[ CVODE ] [ CVODES ] [ ARKODE ] [

IDA IDAS

)

] [ KINSOL ]

e

Figure 3.1: High-level diagram of the SUNDIALS suite.
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Figure 3.2: Directory structure of the SUNDIALS source tree.
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following is a list of the solver packages presently available, and the basic functionality of each:

e CVODE, a solver for stiff and nonstiff ODE systems dy/dt = f(t,y) based on Adams and BDF
methods;

e CVODES, a solver for stiff and nonstiff ODE systems with sensitivity analysis capabilities;

e ARKODE, a solver for stiff, nonstiff, mixed stiff-nonstiff, and multirate ODE systems Mdy/dt =
f1(t,y) + f2(t,y) based on Runge-Kutta methods;

e IDA, a solver for differential-algebraic systems F(¢,y, ) = 0 based on BDF methods;
e 1DAS, a solver for differential-algebraic systems with sensitivity analysis capabilities;
e KINSOL, a solver for nonlinear algebraic systems F'(u) = 0.

Note for modules that provide interfaces to third-party libraries (i.e., LAPACK, KLU, SUPERLUMT,
SuperLU_DIST, hypre, PETSc, Trilinos, and RAJA) users will need to download and compile those
packages independently.

3.2 IDAS organization

The 1DAS package is written in the ANSI C language. The following summarizes the basic structure
of the package, although knowledge of this structure is not necessary for its use.

The overall organization of the IDAS package is shown in Figure 3.3. The central integration
module, implemented in the files idas.h, idas_impl.h, and idas.c, deals with the evaluation of
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IDAS H IDAADJOINT ]

I
| |
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LINEAR SOLVER INTERFACE NONLINEAR SOLVER INTERFACE
VECTOR MATRIX LINEAR SOLVER NONLINEAR SOLVER
MODULES MODULES MODULES MODULES
A 4
PRECONDITIONER MODULES

IDABBDPRE

Figure 3.3: Overall structure diagram of the IDAS package. Modules specific to IDAS begin with “IDA”
(IDALS, IDANLS, and IDABBDPRE), all other items correspond to generic SUNDIALS vector, matrix, and
solver modules (see Figure 3.1).

integration coefficients, estimation of local error, selection of stepsize and order, and interpolation to
user output points, among other issues.

IDAS utilizes generic linear and nonlinear solver modules defined by the SUNLINSOL API (see Chap-
ter 11) and SUNNONLINSOL API (see Chapter 12) respectively. As such, IDAS has no knowledge of
the method being used to solve the linear and nonlinear systems that arise in each time step. For
any given user problem, there exists a single nonlinear solver interface and, if necessary, one of the
linear system solver interfaces is specified, and invoked as needed during the integration. While SUN-
DIALS includes a fixed-point nonlinear solver module, it is not currently supported in IDAS (note the
fixed-point module is listed in Figure 3.1 but not Figure 3.3).

In addition, if forward sensitivity analysis is turned on, the main module will integrate the forward
sensitivity equations simultaneously with the original IVP. The sensitivity variables may be included
in the local error control mechanism of the main integrator. IDAS provides two different strategies
for dealing with the correction stage for the sensitivity variables: IDA_SIMULTANEQUS IDA_STAGGERED
(see §2.5). The 1DAS package includes an algorithm for the approximation of the sensitivity equations
residuals by difference quotients, but the user has the option of supplying these residual functions
directly.

The adjoint sensitivity module (file idaa.c) provides the infrastructure needed for the backward
integration of any system of DAEs which depends on the solution of the original IVP, in particular the
adjoint system and any quadratures required in evaluating the gradient of the objective functional.
This module deals with the setup of the checkpoints, the interpolation of the forward solution during
the backward integration, and the backward integration of the adjoint equations.

IDAS now has a single unified linear solver interface, IDALS, supporting both direct and iterative
linear solvers built using the generic SUNLINSOL API (see Chapter 11). These solvers may utilize a
SUNMATRIX object (see Chapter 10) for storing Jacobian information, or they may be matrix-free.
Since IDAS can operate on any valid SUNLINSOL implementation, the set of linear solver modules
available to IDAS will expand as new SUNLINSOL modules are developed.

For users employing dense or banded Jacobian matrices, IDALS includes algorithms for their ap-
proximation through difference quotients, but the user also has the option of supplying the Jacobian
(or an approximation to it) directly. This user-supplied routine is required when using sparse or
user-supplied Jacobian matrices.

For users employing matrix-free iterative linear solvers, IDALS includes an algorithm for the approx-
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imation by difference quotients of the product between the Jacobian matrix and a vector, Jv. Again,
the user has the option of providing routines for this operation, in two phases: setup (preprocessing
of Jacobian data) and multiplication.

For preconditioned iterative methods, the preconditioning must be supplied by the user, again
in two phases: setup and solve. While there is no default choice of preconditioner analogous to
the difference-quotient approximation in the direct case, the references [13, 17], together with the
example and demonstration programs included with IDAS, offer considerable assistance in building
preconditioners.

IDAS’ linear solver interface consists of four primary routines, devoted to (1) memory allocation
and initialization, (2) setup of the matrix data involved, (3) solution of the system, and (4) freeing
of memory. The setup and solution phases are separate because the evaluation of Jacobians and
preconditioners is done only periodically during the integration, as required to achieve convergence.
The call list within the central IDAS module to each of the four associated functions is fixed, thus
allowing the central module to be completely independent of the linear system method.

IDAS also provides a preconditioner module, IDABBDPRE, for use with any of the Krylov iterative
linear solvers. It works in conjunction with NVECTOR_PARALLEL and generates a preconditioner that
is a block-diagonal matrix with each block being a banded matrix.

All state information used by IDAS to solve a given problem is saved in a structure, and a pointer
to that structure is returned to the user. There is no global data in the IDAS package, and so, in this
respect, it is reentrant. State information specific to the linear solver is saved in a separate structure,
a pointer to which resides in the IDAS memory structure. The reentrancy of IDAS was motivated by
the situation where two or more problems are solved by intermixed calls to the package from one user
program.



Chapter 4

Using IDAS for IVP Solution

This chapter is concerned with the use of IDAS for the integration of DAEs in a C language setting.
The following sections treat the header files, the layout of the user’s main program, description of
the IDAS user-callable functions, and description of user-supplied functions. This usage is essentially
equivalent to using IDA [39].

The sample programs described in the companion document [54] may also be helpful. Those codes
may be used as templates (with the removal of some lines involved in testing), and are included in
the 1DAS package.

Users with applications written in FORTRAN should see Chapter ??, which describes the FOR-
TRAN/C interface module.

The user should be aware that not all SUNLINSOL and SUNMATRIX modules are compatible with
all NVECTOR implementations. Details on compatibility are given in the documentation for each
SUNMATRIX module (Chapter 10) and each SUNLINSOL module (Chapter 11). For example, NVEC-
TOR_PARALLEL is not compatible with the dense, banded, or sparse SUNMATRIX types, or with the
corresponding dense, banded, or sparse SUNLINSOL modules. Please check Chapters 10 and 11 to
verify compatibility between these modules. In addition to that documentation, we note that the pre-
conditioner module IDABBDPRE can only be used with NVECTOR_PARALLEL. It is not recommended
to use a threaded vector module with SuperLU_MT unless it is the NVECTOR_OPENMP module, and
SuperLU_MT is also compiled with OpenMP.

IDAS uses various constants for both input and output. These are defined as needed in this chapter,
but for convenience are also listed separately in Appendix B.

4.1 Access to library and header files

At this point, it is assumed that the installation of IDAS, following the procedure described in Appendix
A, has been completed successfully.

Regardless of where the user’s application program resides, its associated compilation and load
commands must make reference to the appropriate locations for the library and header files required
by IDAS. The relevant library files are

e [ibdir/1libsundials_idas. [ib,
e [ibdir/1libsundials_nvecx. [ib,

where the file extension .[ib is typically .so for shared libraries and .a for static libraries. The relevant
header files are located in the subdirectories

e incdir/include/idas
e incdir/include/sundials

e incdir/include/nvector
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e incdir/include/sunmatrix
e incdir/include/sunlinsol
e incdir/include/sunnonlinsol

The directories libdir and incdir are the install library and include directories, respectively. For
a default installation, these are instdir/lib and instdir/include, respectively, where instdir is the
directory where SUNDIALS was installed (see Appendix A).

Note that an application cannot link to both the IDA and IDAS libraries because both contain
user-callable functions with the same names (to ensure that IDAS is backward compatible with IDA).
Therefore, applications that contain both DAE problems and DAEs with sensitivity analysis, should
use IDAS.

4.2 Data types

The sundials_types.h file contains the definition of the type realtype, which is used by the SUNDIALS
solvers for all floating-point data, the definition of the integer type sunindextype, which is used
for vector and matrix indices, and booleantype, which is used for certain logic operations within
SUNDIALS.

4.2.1 Floating point types

The type realtype can be float, double, or long double, with the default being double. The user
can change the precision of the SUNDIALS solvers arithmetic at the configuration stage (see §A.1.2).

Additionally, based on the current precision, sundials_types.h defines BIG_.REAL to be the largest
value representable as a realtype, SMALL _REAL to be the smallest value representable as a realtype,
and UNIT_ROUNDOFF to be the difference between 1.0 and the minimum realtype greater than 1.0.

Within SUNDIALS, real constants are set by way of a macro called RCONST. It is this macro that
needs the ability to branch on the definition realtype. In ANSI C, a floating-point constant with no
suffix is stored as a double. Placing the suffix “F” at the end of a floating point constant makes it a
float, whereas using the suffix “I.” makes it a long double. For example,

#define A 1.0
#define B 1.0F
#define C 1.0L

defines A to be a double constant equal to 1.0, B to be a float constant equal to 1.0, and C to be
a long double constant equal to 1.0. The macro call RCONST(1.0) automatically expands to 1.0 if
realtype is double, to 1.0F if realtype is float, or to 1.0L if realtype is long double. SUNDIALS
uses the RCONST macro internally to declare all of its floating-point constants.

Additionally, SUNDIALS defines several macros for common mathematical functions e.g., fabs,
sqrt, exp, etc. in sundials math.h. The macros are prefixed with SUNR and expand to the appro-
priate C function based on the realtype. For example, the macro SUNRabs expands to the C function
fabs when realtype is double, fabsf when realtype is float, and fabsl when realtype is long
double.

A user program which uses the type realtype, the RCONST macro, and the SUNR mathematical
function macros is precision-independent except for any calls to precision-specific library functions.
Our example programs use realtype, RCONST, and the SUNR macros. Users can, however, use the type
double, float, or long double in their code (assuming that this usage is consistent with the typedef
for realtype) and call the appropriate math library functions directly. Thus, a previously existing
piece of ANSI C code can use SUNDIALS without modifying the code to use realtype, RCONST, or the
SUNR macros so long as the SUNDIALS libraries use the correct precision (for details see §A.1.2).



4.3 Header files 37

4.2.2 Integer types used for indexing

The type sunindextype is used for indexing array entries in SUNDIALS modules (e.g., vectors lengths
and matrix sizes) as well as for storing the total problem size. During configuration sunindextype
may be selected to be either a 32- or 64-bit signed integer with the default being 64-bit. See §A.1.2
for the configuration option to select the desired size of sunindextype. When using a 32-bit integer
the total problem size is limited to 23! — 1 and with 64-bit integers the limit is 263 — 1. For users with
problem sizes that exceed the 64-bit limit an advanced configuration option is available to specify the
type used for sunindextype.

A user program which uses sunindextype to handle indices will work with both index storage types
except for any calls to index storage-specific external libraries. Our C and C++ example programs
use sunindextype. Users can, however, use any compatible type (e.g., int, long int, int32_t,
int64_t, or long long int) in their code, assuming that this usage is consistent with the typedef
for sunindextype on their architecture. Thus, a previously existing piece of ANSI C code can use
SUNDIALS without modifying the code to use sunindextype, so long as the SUNDIALS libraries use the
appropriate index storage type (for details see §A.1.2).

4.3 Header files

The calling program must include several header files so that various macros and data types can be
used. The header file that is always required is:

e idas/idas.h, the header file for IDAS, which defines the several types and various constants,
and includes function prototypes. This includes the header file for IDALS, ida/ida_1s.h.

Note that idas.h includes sundials_types.h, which defines the types realtype, sunindextype, and
booleantype and the constants SUNFALSE and SUNTRUE.

The calling program must also include an NVECTOR implementation header file, of the form
nvector/nvector_***.h. See Chapter 9 for the appropriate name. This file in turn includes the
header file sundials nvector.h which defines the abstract N_Vector data type.

If using a non-default nonlinear solver module, or when interacting with a SUNNONLINSOL module
directly, the calling program must also include a SUNNONLINSOL implementation header file, of the form
sunnonlinsol/sunnonlinsol_#**.h where *** is the name of the nonlinear solver module (see Chap-
ter 12 for more information). This file in turn includes the header file sundials nonlinearsolver.h
which defines the abstract SUNNonlinearSolver data type.

If using a nonlinear solver that requires the solution of a linear system of the form (2.5) (e.g.,
the default Newton iteration), a linear solver module header file is also required. The header files
corresponding to the various SUNDIALS-provided linear solver modules available for use with IDAS are:

e Direct linear solvers:
— sunlinsol/sunlinsol dense.h, which is used with the dense linear solver module, SUN-

LINSOL_DENSE;

— sunlinsol/sunlinsol_band.h, which is used with the banded linear solver module, SUN-
LINSOL_BAND;

— sunlinsol/sunlinsol_lapackdense.h, which is used with the LAPACK dense linear solver
module, SUNLINSOL_LAPACKDENSE;

— sunlinsol/sunlinsol_lapackband.h, which is used with the LAPACK banded linear
solver module, SUNLINSOL_LAPACKBAND;

— sunlinsol/sunlinsol_klu.h, which is used with the KLU sparse linear solver module,
SUNLINSOL_KLU;

— sunlinsol/sunlinsol_superlumt.h, which is used with the SUPERLUMT sparse linear
solver module, SUNLINSOL_SUPERLUMT;



38 Using IDAS for IVP Solution

e Iterative linear solvers:

— sunlinsol/sunlinsol_spgmr.h, which is used with the scaled, preconditioned GMRES
Krylov linear solver module, SUNLINSOL_SPGMR;

— sunlinsol/sunlinsol_spfgmr.h, which is used with the scaled, preconditioned FGMRES
Krylov linear solver module, SUNLINSOL_SPFGMR,;

— sunlinsol/sunlinsol_spbcgs.h, which is used with the scaled, preconditioned Bi-CGStab
Krylov linear solver module, SUNLINSOL_SPBCGS;

— sunlinsol/sunlinsol_sptfqmr.h, which is used with the scaled, preconditioned TFQMR,
Krylov linear solver module, SUNLINSOL_SPTFQMR;

— sunlinsol/sunlinsol_pcg.h, which is used with the scaled, preconditioned CG Krylov
linear solver module, SUNLINSOL_PCG;

The header files for the SUNLINSOL_DENSE and SUNLINSOL_LAPACKDENSE linear solver modules
include the file sunmatrix/sunmatrix_dense.h, which defines the SUNMATRIX_DENSE matrix module,
as as well as various functions and macros acting on such matrices.

The header files for the SUNLINSOL_BAND and SUNLINSOL_LAPACKBAND linear solver modules in-
clude the file sunmatrix/sunmatrix_band.h, which defines the SUNMATRIX_BAND matrix module, as
as well as various functions and macros acting on such matrices.

The header files for the SUNLINSOL_KLU and SUNLINSOL_SUPERLUMT sparse linear solvers include
the file sunmatrix/sunmatrix_sparse.h, which defines the SUNMATRIX_SPARSE matrix module, as
well as various functions and macros acting on such matrices.

The header files for the Krylov iterative solvers include the file sundials/sundials_iterative.h,
which enumerates the kind of preconditioning, and (for the SPGMR and SPFGMR solvers) the choices
for the Gram-Schmidt process.

Other headers may be needed, according to the choice of preconditioner, etc. For example, in the
idasFoodWeb_kry_p example (see [54]), preconditioning is done with a block-diagonal matrix. For this,
even though the SUNLINSOL_SPGMR linear solver is used, the header sundials/sundials_dense.h is
included for access to the underlying generic dense matrix arithmetic routines.

4.4 A skeleton of the user’s main program

The following is a skeleton of the user’s main program (or calling program) for the integration of a DAE
IVP. Most of the steps are independent of the NVECTOR, SUNMATRIX, SUNLINSOL, and SUNNONLINSOL
implementations used. For the steps that are not, refer to Chapter 9, 10, 11, and 12 for the specific
name of the function to be called or macro to be referenced.
1. Initialize parallel or multi-threaded environment, if appropriate
For example, call MPI_Init to initialize MPI if used, or set num_threads, the number of threads
to use within the threaded vector functions, if used.
2. Set problem dimensions etc.
This generally includes the problem size N, and may include the local vector length Nlocal.

Note: The variables N and Nlocal should be of type sunindextype.

3. Set vectors of initial values

To set the vectors yO and ypO to initial values for y and ¢, use the appropriate functions defined
by the particular NVECTOR implementation.

For native SUNDIALS vector implementations (except the CUDA and RAJA-based ones), use a call
of the form yO = N_VMake *** (..., ydata) if the realtype array ydata containing the initial
values of y already exists. Otherwise, create a new vector by making a call of the form y0 =
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N_VNew_***(...), and then set its elements by accessing the underlying data with a call of the
form ydata = N_VGetArrayPointer(y0). See §9.3-9.6 for details.

For the hypre and PETSc vector wrappers, first create and initialize the underlying vector and
then create an NVECTOR wrapper with a call of the form y0 = N_VMake_*x**(yvec), where yvec
is a hypre or PETSc vector. Note that calls like N.VNew_***(...) and N_-VGetArrayPointer(...)
are not available for these vector wrappers. See §9.7 and §9.8 for details.

If using either the CUDA- or RAJA-based vector implementations use a call of the form y0 =
N_VMake_*** (..., c) where c is a pointer to a suncudavec or sunrajavec vector class if this class
already exists. Otherwise, create a new vector by making a call of the form y0 = N_VNew_x*x(...),
and then set its elements by accessing the underlying data where it is located with a call of the
form N_VGetDeviceArrayPointer *** or N_VGetHostArrayPointer_x*x. Note that the vector
class will allocate memory on both the host and device when instantiated. See §9.9-9.11 for
details.

Set the vector ypO of initial conditions for ¢ similarly.

4. Create IDAS object

Call ida_mem = IDACreate() to create the IDAS memory block. IDACreate returns a pointer to
the IDAS memory structure. See §4.5.1 for details. This void * pointer must then be passed as
the first argument to all subsequent IDAS function calls.

5. Initialize IDAS solver

Call IDAInit(...) to provide required problem specifications (residual function, initial time, and
initial conditions), allocate internal memory for IDAS, and initialize IDAS. IDAInit returns an
error flag to indicate success or an illegal argument value. See §4.5.1 for details.

6. Specify integration tolerances

Call IDASStolerances(...) or IDASVtolerances(...) to specify, respectively, a scalar relative
tolerance and scalar absolute tolerance, or a scalar relative tolerance and a vector of absolute
tolerances. Alternatively, call IDAWFtolerances to specify a function which sets directly the
weights used in evaluating WRMS vector norms. See §4.5.2 for details.

7. Create matrix object

If a nonlinear solver requiring a linear solver will be used (e.g., the default Newton iteration)
and the linear solver will be a matrix-based linear solver, then a template Jacobian matrix must
be created by calling the appropriate constructor function defined by the particular SUNMATRIX
implementation.

For the SUNDIALS-supplied SUNMATRIX implementations, the matrix object may be created using
a call of the form

SUNMatrix J = SUNBandMatrix(...);
or
SUNMatrix J = SUNDenseMatrix(...);
or
SUNMatrix J = SUNSparseMatrix(...);
NOTE: The dense, banded, and sparse matrix objects are usable only in a serial or threaded
environment.
8. Create linear solver object

If a nonlinear solver requiring a linear solver is chosen (e.g., the default Newton iteration), then
the desired linear solver object must be created by calling the appropriate constructor function
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defined by the particular SUNLINSOL implementation.
For any of the SUNDIALS-supplied SUNLINSOL implementations, the linear solver object may be
created using a call of the form
SUNLinearSolver LS = SUNLinSol_*(...);
where * can be replaced with “Dense”, “SPGMR”, or other options, as discussed in §4.5.3 and
Chapter 11.

9. Set linear solver optional inputs

Call *Set* functions from the selected linear solver module to change optional inputs specific to
that linear solver. See the documentation for each SUNLINSOL module in Chapter 11 for details.

10. Attach linear solver module
If a nonlinear solver requiring a linear solver is chosen (e.g., the default Newton iteration), then
initialize the IDALS linear solver interface by attaching the linear solver object (and matrix object,
if applicable) with the following call (for details see §4.5.3):
ier = IDASetLinearSolver(...);

11. Set optional inputs
Optionally, call IDASet* functions to change from their default values any optional inputs that
control the behavior of IDAS. See §4.5.8.1 and §4.5.8 for details.

12. Create nonlinear solver object (optional)
If using a non-default nonlinear solver (see §4.5.4), then create the desired nonlinear solver object
by calling the appropriate constructor function defined by the particular SUNNONLINSOL imple-
mentation (e.g., NLS = SUNNonlinSol ***(...); where **x is the name of the nonlinear solver
(see Chapter 12 for details).

13. Attach nonlinear solver module (optional)
If using a non-default nonlinear solver, then initialize the nonlinear solver interface by attaching the
nonlinear solver object by calling ier = IDASetNonlinearSolver(ida mem, NLS); (see §4.5.4 for
details).

14. Set nonlinear solver optional inputs (optional)
Call the appropriate set functions for the selected nonlinear solver module to change optional
inputs specific to that nonlinear solver. These must be called after IDAInit if using the default
nonlinear solver or after attaching a new nonlinear solver to IDAS, otherwise the optional inputs
will be overridden by IDAS defaults. See Chapter 12 for more information on optional inputs.

15. Correct initial values
Optionally, call IDACalcIC to correct the initial values yO and ypO passed to IDAInit. See §4.5.5.
Also see §4.5.8.3 for relevant optional input calls.

16. Specify rootfinding problem
Optionally, call IDARootInit to initialize a rootfinding problem to be solved during the integration
of the DAE system. See §4.5.6 for details, and see §4.5.8.4 for relevant optional input calls.

17. Advance solution in time

For each point at which output is desired, call flag = IDASolve(ida_mem, tout, &tret, yret,
ypret, itask). Here itask specifies the return mode. The vector yret (which can be the same
as the vector yO above) will contain y(t), while the vector ypret (which can be the same as the
vector ypO above) will contain §(t). See §4.5.7 for details.
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18.

19.

20.

21.

22.

23.

Get optional outputs
Call IDA*Get* functions to obtain optional output. See §4.5.10 for details.

Deallocate memory for solution vectors

Upon completion of the integration, deallocate memory for the vectors yret and ypret (or y and
yp) by calling the appropriate destructor function defined by the NVECTOR implementation:

N_VDestroy(yret) ;

and similarly for ypret.

Free solver memory

IDAFree(&ida mem) to free the memory allocated for IDAS.

Free nonlinear solver memory (optional)

If a non-default nonlinear solver was used, then call SUNNonlinSolFree (NLS) to free any memory
allocated for the SUNNONLINSOL object.

Free linear solver and matrix memory

Call SUNLinSolFree and SUNMatDestroy to free any memory allocated for the linear solver and
matrix objects created above.

Finalize MPI, if used
Call MPI_Finalize() to terminate MPI.

SUNDIALS provides some linear solvers only as a means for users to get problems running and not

as highly efficient solvers. For example, if solving a dense system, we suggest using the LAPACK
solvers if the size of the linear system is > 50,000. (Thanks to A. Nicolai for his testing and rec-
ommendation.) Table 4.1 shows the linear solver interfaces available as SUNLINSOL modules and the
vector implementations required for use. As an example, one cannot use the dense direct solver inter-
faces with the MPI-based vector implementation. However, as discussed in Chapter 11 the SUNDIALS
packages operate on generic SUNLINSOL objects, allowing a user to develop their own solvers should
they so desire.

Table 4.1: SUNDIALS linear solver interfaces and vector implementations that can be used for each.

._|g]2
EIZE|E|E|L|E|5 |58
Linear Solver | o ch \E/ OQ Hcl E‘ = 8 é :mD &
Dense | v v | v v
Band | v v |V v
LapackDense | v/ v |V v
LapackBand | v/ v |V v
KLU | vV vV IV v
SUPERLUMT | v v |V v
SPGMR | v v VI IV IV IV I|IVv|VY v
SPFGMR. | v/ v VIV IVIVIVvIY v
SPBCGS | v v VI I IVIVvIVv IV |V v
SPTFQMR | v v VI IV IV IV IVvI|V v
PCG | vV v VIVIVIVIVIV v
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4.5 User-callable functions

This section describes the IDAS functions that are called by the user to set up and solve a DAE. Some of
these are required. However, starting with §4.5.8, the functions listed involve optional inputs/outputs
or restarting, and those paragraphs can be skipped for a casual use of IDAS. In any case, refer to §4.4
for the correct order of these calls.

On an error, each user-callable function returns a negative value and sends an error message to
the error handler routine, which prints the message on stderr by default. However, the user can set
a file as error output or can provide his own error handler function (see §4.5.8.1).

4.5.1 IDAS initialization and deallocation functions

The following three functions must be called in the order listed. The last one is to be called only after
the DAE solution is complete, as it frees the IDAS memory block created and allocated by the first
two calls.

IDACreate

Call ida_mem = IDACreate();
Description The function IDACreate instantiates an IDAS solver object.
Arguments IDACreate has no arguments.

Return value If successful, IDACreate returns a pointer to the newly created IDAS memory block (of
type void x). Otherwise it returns NULL.

F2003 Name FIDACreate

Call flag = IDAInit(ida_mem, res, tO, yO, ypO);

Description The function IDAInit provides required problem and solution specifications, allocates
internal memory, and initializes IDAS.

Arguments idamem (void *) pointer to the IDAS memory block returned by IDACreate.

res (IDAResFn) is the C function which computes the residual function F in the
DAE. This function has the form res(t, yy, yp, resval, user_data). For
full details see §4.6.1.

t0 (realtype) is the initial value of ¢t.
yO (N_Vector) is the initial value of y.
ypO (N_Vector) is the initial value of g.

Return value The return value flag (of type int) will be one of the following;:

IDA_SUCCESS The call to IDAInit was successful.

IDA MEM NULL The IDAS memory block was not initialized through a previous call to
IDACreate.

IDA_ MEM FAIL A memory allocation request has failed.
IDA_ILL_INPUT An input argument to IDAInit has an illegal value.

Notes If an error occurred, IDAInit also sends an error message to the error handler function.

F2003 Name FIDAInit
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Call IDAFree(&ida_mem) ;

Description The function IDAFree frees the pointer allocated by a previous call to IDACreate.
Arguments  The argument is the pointer to the IDAS memory block (of type void *).

Return value The function IDAFree has no return value.

F2003 Name FIDAFree

4.5.2 IDAS tolerance specification functions

One of the following three functions must be called to specify the integration tolerances (or directly
specify the weights used in evaluating WRMS vector norms). Note that this call must be made after
the call to IDAInit.

’IDASStolerances

Call flag = IDASStolerances(ida_mem, reltol, abstol);
Description The function IDASStolerances specifies scalar relative and absolute tolerances.
Arguments idamem (void *) pointer to the IDAS memory block returned by IDACreate.
reltol (realtype) is the scalar relative error tolerance.
abstol (realtype) is the scalar absolute error tolerance.
Return value The return value flag (of type int) will be one of the following;:

IDA_SUCCESS The call to IDASStolerances was successful.

IDA MEM NULL The IDAS memory block was not initialized through a previous call to
IDACreate.

IDA_NO_MALLOC The allocation function IDAInit has not been called.
IDA_ILL_INPUT One of the input tolerances was negative.

F2003 Name FIDASStolerances

’IDASVtolerances

Call flag = IDASVtolerances(ida_mem, reltol, abstol);

Description The function IDASVtolerances specifies scalar relative tolerance and vector absolute
tolerances.

Arguments idamem (void *) pointer to the IDAS memory block returned by IDACreate.
reltol (realtype) is the scalar relative error tolerance.

abstol (N_Vector) is the vector of absolute error tolerances.
Return value The return value flag (of type int) will be one of the following;:

IDA_SUCCESS The call to IDASVtolerances was successful.

IDA_MEM NULL The IDAS memory block was not initialized through a previous call to
IDACreate.

IDA_NO_MALLOC The allocation function IDAInit has not been called.
IDA_ILL_INPUT The relative error tolerance was negative or the absolute tolerance had
a negative component.

Notes This choice of tolerances is important when the absolute error tolerance needs to be
different for each component of the state vector y.

F2003 Name FIDASVtolerances
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’IDAWFtolerances
Call flag = IDAWFtolerances(ida mem, efun);

Description The function IDAWFtolerances specifies a user-supplied function efun that sets the
multiplicative error weights W; for use in the weighted RMS norm, which are normally
defined by Eq. (2.7).

Arguments idamem (void *) pointer to the IDAS memory block returned by IDACreate.
efun (IDAEwtFn) is the C function which defines the ewt vector (see §4.6.3).

Return value The return value flag (of type int) will be one of the following;:

IDA_SUCCESS The call to IDAWFtolerances was successful.

IDAMEM_NULL The IDAS memory block was not initialized through a previous call to
IDACreate.

IDA_NO_MALLOC The allocation function IDAInit has not been called.
F2003 Name FIDAWFtolerances

General advice on choice of tolerances. For many users, the appropriate choices for tolerance
values in reltol and abstol are a concern. The following pieces of advice are relevant.

(1) The scalar relative tolerance reltol is to be set to control relative errors. So reltol=10"%
means that errors are controlled to .01%. We do not recommend using reltol larger than 1073,
On the other hand, reltol should not be so small that it is comparable to the unit roundoff of the
machine arithmetic (generally around 1071%).

(2) The absolute tolerances abstol (whether scalar or vector) need to be set to control absolute
errors when any components of the solution vector y may be so small that pure relative error control
is meaningless. For example, if y[i] starts at some nonzero value, but in time decays to zero, then
pure relative error control on y[i] makes no sense (and is overly costly) after y[i] is below some
noise level. Then abstol (if scalar) or abstol[i] (if a vector) needs to be set to that noise level. If
the different components have different noise levels, then abstol should be a vector. See the example
idasRoberts_dns in the IDAS package, and the discussion of it in the IDAS Examples document [54].
In that problem, the three components vary between 0 and 1, and have different noise levels; hence the
abstol vector. It is impossible to give any general advice on abstol values, because the appropriate
noise levels are completely problem-dependent. The user or modeler hopefully has some idea as to
what those noise levels are.

(3) Finally, it is important to pick all the tolerance values conservatively, because they control the
error committed on each individual time step. The final (global) errors are a sort of accumulation of
those per-step errors. A good rule of thumb is to reduce the tolerances by a factor of .01 from the actual
desired limits on errors. So if you want .01% accuracy (globally), a good choice is reltol= 10"%. But
in any case, it is a good idea to do a few experiments with the tolerances to see how the computed
solution values vary as tolerances are reduced.

Advice on controlling unphysical negative values. In many applications, some components
in the true solution are always positive or non-negative, though at times very small. In the numerical
solution, however, small negative (hence unphysical) values can then occur. In most cases, these values
are harmless, and simply need to be controlled, not eliminated. The following pieces of advice are
relevant.

(1) The way to control the size of unwanted negative computed values is with tighter absolute
tolerances. Again this requires some knowledge of the noise level of these components, which may or
may not be different for different components. Some experimentation may be needed.

(2) If output plots or tables are being generated, and it is important to avoid having negative
numbers appear there (for the sake of avoiding a long explanation of them, if nothing else), then
eliminate them, but only in the context of the output medium. Then the internal values carried by
the solver are unaffected. Remember that a small negative value in yret returned by IDAS, with
magnitude comparable to abstol or less, is equivalent to zero as far as the computation is concerned.

(3) The user’s residual routine res should never change a negative value in the solution vector yy
to a non-negative value, as a ”solution” to this problem. This can cause instability. If the res routine
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cannot tolerate a zero or negative value (e.g., because there is a square root or log of it), then the
offending value should be changed to zero or a tiny positive number in a temporary variable (not in
the input yy vector) for the purposes of computing F'(t,y, 7).

(4) 1DAS provides the option of enforcing positivity or non-negativity on components. Also, such
constraints can be enforced by use of the recoverable error return feature in the user-supplied residual
function. However, because these options involve some extra overhead cost, they should only be
exercised if the use of absolute tolerances to control the computed values is unsuccessful.

4.5.3 Linear solver interface functions

As previously explained, if the nonlinear solver requires the solution of linear systems of the form (2.5)
(e.g., the default Newton iteration, then solution of these linear systems is handled with the IDALS
linear solver interface. This interface supports all valid SUNLINSOL modules. Here, matrix-based
SUNLINSOL modules utilize SUNMATRIX objects to store the Jacobian matrix J = 0F /0y + adF/dy
and factorizations used throughout the solution process. Conversely, matrix-free SUNLINSOL modules
instead use iterative methods to solve the linear systems of equations, and only require the action of
the Jacobian on a vector, Juv.

With most iterative linear solvers, preconditioning can be done on the left only, on the right only,
on both the left and the right, or not at all. The exceptions to this rule are SPFGMR that supports
right preconditioning only and PCG that performs symmetric preconditioning. However, in IDAS only
left preconditioning is supported. For the specification of a preconditioner, see the iterative linear
solver sections in §4.5.8 and §4.6. A preconditioner matrix P must approximate the Jacobian J, at
least crudely.

To specify a generic linear solver to IDAS, after the call to IDACreate but before any calls to
IDASolve, the user’s program must create the appropriate SUNLINSOL object and call the function
IDASetLinearSolver, as documented below. To create the SUNLinearSolver object, the user may
call one of the SUNDIALS-packaged SUNLINSOL module constructor routines via a call of the form

SUNLinearSolver LS = SUNLinSol_*(...);

The current list of such constructor routines includes SUNLinSol Dense, SUNLinSol Band,
SUNLinSol_LapackDense, SUNLinSol_LapackBand, SUNLinSol KLU, SUNLinSol_SuperLUMT,
SUNLinSol_SPGMR, SUNLinSol_SPFGMR, SUNLinSol_SPBCGS, SUNLinSol_SPTFQMR, and SUNLinSol_PCG.

Alternately, a user-supplied SUNLinearSolver module may be created and used instead. The use
of each of the generic linear solvers involves certain constants, functions and possibly some macros,
that are likely to be needed in the user code. These are available in the corresponding header file
associated with the specific SUNMATRIX or SUNLINSOL module in question, as described in Chapters
10 and 11.

Once this solver object has been constructed, the user should attach it to IDAS via a call to
IDASetLinearSolver. The first argument passed to this function is the IDAS memory pointer returned
by IDACreate; the second argument is the desired SUNLINSOL object to use for solving systems. The
third argument is an optional SUNMATRIX object to accompany matrix-based SUNLINSOL inputs (for
matrix-free linear solvers, the third argument should be NULL). A call to this function initializes the
IDALS linear solver interface, linking it to the main IDAS integrator, and allows the user to specify
additional parameters and routines pertinent to their choice of linear solver.

’IDASetLinearSolver
Call flag = IDASetLinearSolver(idamem, LS, J);

Description  The function IDASetLinearSolver attaches a generic SUNLINSOL object LS and corre-
sponding template Jacobian SUNMATRIX object J (if applicable) to IDAS, initializing the
IDALS linear solver interface.

Arguments idamem (void *) pointer to the IDAS memory block.

LS (SUNLinearSolver) SUNLINSOL object to use for solving linear systems of the
form (2.5.
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J (SUNMatrix) SUNMATRIX object for used as a template for the Jacobian (or
NULL if not applicable).

Return value The return value flag (of type int) is one of

IDALS_SUCCESS The IDALS initialization was successful.
IDALS MEM NULL The ida mem pointer is NULL.

IDALS_ILL_INPUT The IDALS interface is not compatible with the LS or J input objects
or is incompatible with the current NVECTOR module.

IDALS_SUNLS_FAIL A call to the LS object failed.
IDALS_MEM_FAIL A memory allocation request failed.

Notes If LS is a matrix-based linear solver, then the template Jacobian matrix J will be used
in the solve process, so if additional storage is required within the SUNMATRIX object
(e.g., for factorization of a banded matrix), ensure that the input object is allocated
with sufficient size (see the documentation of the particular SUNMATRIX type in Chapter
10 for further information).

The previous routines IDADl1sSetLinearSolver and IDASpilsSetLinearSolver are
now wrappers for this routine, and may still be used for backward-compatibility. How-
ever, these will be deprecated in future releases, so we recommend that users transition
to the new routine name soon.

F2003 Name FIDASetLinearSolver

4.5.4 Nonlinear solver interface function

By default IDAS uses the SUNNONLINSOL implementation of Newton’s method defined by the SUNNON-
LINSOL_NEWTON module (see §12.3). To specify a different nonlinear solver in IDAS, the user’s program
must create a SUNNONLINSOL object by calling the appropriate constructor routine. The user must
then attach the SUNNONLINSOL object to IDAS by calling IDASetNonlinearSolver, as documented
below.

When changing the nonlinear solver in IDAS, IDASetNonlinearSolver must be called after IDAInit.
If any calls to IDASolve have been made, then IDAS will need to be reinitialized by calling IDAReInit
to ensure that the nonlinear solver is initialized correctly before any subsequent calls to IDASolve.

The first argument passed to the routine IDASetNonlinearSolver is the IDAS memory pointer
returned by IDACreate and the second argument is the SUNNONLINSOL object to use for solving the
nonlinear system 2.4. A call to this function attaches the nonlinear solver to the main IDAS integrator.
We note that at present, the SUNNONLINSOL object must be of type SUNNONLINEARSOLVER ROOTFIND.

’IDASetNonlinearSolver‘
Call flag = IDASetNonlinearSolver(ida_mem, NLS);

Description  The function IDASetNonLinearSolver attaches a SUNNONLINSOL object (NLS) to IDAS.

Arguments idamem (void *) pointer to the IDAS memory block.
NLS (SUNNonlinearSolver) SUNNONLINSOL object to use for solving nonlinear sys-
tems.

Return value The return value flag (of type int) is one of

IDA_SUCCESS  The nonlinear solver was successfully attached.

IDA MEM NULL The ida_mem pointer is NULL.

IDA_ILL_INPUT The SUNNONLINSOL object is NULL, does not implement the required
nonlinear solver operations, is not of the correct type, or the residual

function, convergence test function, or maximum number of nonlinear
iterations could not be set.
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Notes When forward sensitivity analysis capabilities are enabled and the IDA_STAGGERED cor-
rector method is used this function sets the nonlinear solver method for correcting state

variables (see §5.2.3 for more details).

F2003 Name FIDASetNonlinearSolver

4.5.5 Initial condition calculation function

IDACalcIC calculates corrected initial conditions for the DAE system for certain index-one problems
including a class of systems of semi-implicit form. (See §2.1 and Ref. [15].) It uses Newton iteration
combined with a linesearch algorithm. Calling IDACalcIC is optional. It is only necessary when
the initial conditions do not satisfy the given system. Thus if yO and ypO are known to satisfy
F(to,y0,90) = 0, then a call to IDACalcIC is generally not necessary.

A call to the function IDACalcIC must be preceded by successful calls to IDACreate and IDAInit
(or IDAReInit), and by a successful call to the linear system solver specification function. The call to
IDACalcIC should precede the call(s) to IDASolve for the given problem.

IDACalcIC

Call
Description

Arguments

Return value

flag = IDACalcIC(ida_mem, icopt, toutl);

The function IDACalcIC corrects the initial values yO and ypO at time tO.

idamem (void *) pointer to the IDAS memory block.

icopt

(int) is one of the following two options for the initial condition calculation.

icopt=IDA_YA YDP_INIT directs IDACalcIC to compute the algebraic compo-
nents of y and differential components of ¢, given the differential components
of y. This option requires that the N_Vector id was set through IDASetId,
specifying the differential and algebraic components.

icopt=IDA_Y_INIT directs IDACalcIC to compute all components of y, given
y. In this case, id is not required.

toutl

(realtype) is the first value of ¢ at which a solution will be requested (from

IDASolve). This value is needed here only to determine the direction of inte-
gration and rough scale in the independent variable .

The return value flag (of type int) will be one of the following:

IDA_SUCCESS
IDA_MEM_NULL
IDA_NO_MALLOC
IDA_TLL_INPUT
IDA_LSETUP_FAIL

IDA_LINIT_FAIL
IDA_LSOLVE_FAIL

IDA_BAD_EWT

IDA_FIRST_RES_FAIL

IDA_RES_FAIL

IDA_NO_RECOVERY

IDA_CONSTR_FAIL

IDASolve succeeded.

The argument ida mem was NULL.

The allocation function IDAInit has not been called.
One of the input arguments was illegal.

The linear solver’s setup function failed in an unrecoverable man-
ner.

The linear solver’s initialization function failed.

The linear solver’s solve function failed in an unrecoverable man-
ner.

Some component of the error weight vector is zero (illegal), either
for the input value of y0O or a corrected value.

The user’s residual function returned a recoverable error flag on
the first call, but IDACalcIC was unable to recover.

The user’s residual function returned a nonrecoverable error flag.
The user’s residual function, or the linear solver’s setup or solve
function had a recoverable error, but IDACalcIC was unable to
recover.

IDACalcIC was unable to find a solution satisfying the inequality
constraints.
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IDA_LINESEARCH FAIL The linesearch algorithm failed to find a solution with a step
larger than steptol in weighted RMS norm, and within the
allowed number of backtracks.

IDA_CONV_FAIL IDACalcIC failed to get convergence of the Newton iterations.

Notes All failure return values are negative and therefore a test flag < 0 will trap all
IDACalcIC failures.

Note that IDACalcIC will correct the values of y(ty) and y(ty) which were specified
in the previous call to IDAInit or IDAReInit. To obtain the corrected values, call
IDAGetconsistentIC (see §4.5.10.3).

F2003 Name FIDACalcIC

4.5.6 Rootfinding initialization function

While integrating the IVP, IDAS has the capability of finding the roots of a set of user-defined functions.
To activate the rootfinding algorithm, call the following function. This is normally called only once,
prior to the first call to IDASolve, but if the rootfinding problem is to be changed during the solution,
IDARootInit can also be called prior to a continuation call to IDASolve.

IDARootInit

Call flag = IDARootInit(ida_mem, nrtfn, g);

Description  The function IDARootInit specifies that the roots of a set of functions g;(t,y,¢) are to
be found while the IVP is being solved.
Arguments idamem (void *) pointer to the IDAS memory block returned by IDACreate.
nrtfn  (int) is the number of root functions g;.
g (IDARootFn) is the C function which defines the nrtfn functions g;(¢,y,9)
whose roots are sought. See §4.6.4 for details.
Return value The return value flag (of type int) is one of

IDA_SUCCESS  The call to IDARootInit was successful.
IDA_MEM NULL The ida_mem argument was NULL.
IDA_MEM FAIL A memory allocation failed.
IDA_ILL_INPUT The function g is NULL, but nrtfn> 0.

Notes If a new IVP is to be solved with a call to IDAReInit, where the new IVP has no
rootfinding problem but the prior one did, then call IDARootInit with nrtfn= 0.

F2003 Name FIDARootInit

4.5.7 IDAS solver function

This is the central step in the solution process, the call to perform the integration of the DAE. One
of the input arguments (itask) specifies one of two modes as to where IDAS is to return a solution.
But these modes are modified if the user has set a stop time (with IDASetStopTime) or requested
rootfinding.

Call flag = IDASolve(ida_mem, tout, &tret, yret, ypret, itask);
Description  The function IDASolve integrates the DAE over an interval in ¢.

Arguments idamem (void *) pointer to the IDAS memory block.
tout (realtype) the next time at which a computed solution is desired.
tret (realtype) the time reached by the solver (output).
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Return value

yret (N_Vector) the computed solution vector y.

ypret (N_Vector) the computed solution vector y.

itask (int) a flag indicating the job of the solver for the next user step. The
IDA_NORMAL task is to have the solver take internal steps until it has reached or
just passed the user specified tout parameter. The solver then interpolates in
order to return approximate values of y(tout) and g(tout). The IDA_ONE_STEP
option tells the solver to just take one internal step and return the solution at
the point reached by that step.

IDASolve returns vectors yret and ypret and a corresponding independent variable
value t = tret, such that (yret, ypret) are the computed values of (y(t), y(t)).

In IDA_NORMAL mode with no errors, tret will be equal to tout and yret = y(tout),

ypret = y(tout).

The return value flag (of type int) will be one of the following:

IDA_SUCCESS
IDA_TSTOP_RETURN

IDA_ROOT_RETURN

IDA_MEM_NULL
IDA_TILL_INPUT

IDA_TOO_MUCH_WORK

IDA_TOO_MUCH_ACC

IDA_ERR_FAIL

IDA_CONV_FAIL

IDA_LINIT_FAIL
IDA_LSETUP_FAIL

IDA_LSOLVE_FAIL
IDA_CONSTR_FAIL

IDA_REP_RES_ERR

IDA_RES_FAIL
IDA_RTFUNC_FAIL

IDASolve succeeded.

IDASolve succeeded by reaching the stop point specified through
the optional input function IDASetStopTime. See §4.5.8.1 for more
information.

IDASolve succeeded and found one or more roots. In this case,
tret is the location of the root. If nrtfn > 1, call IDAGetRootInfo
to see which g; were found to have a root. See §4.5.10.4 for more
information.

The ida mem argument was NULL.

One of the inputs to IDASolve was illegal, or some other input
to the solver was either illegal or missing. The latter category
includes the following situations: (a) The tolerances have not been
set. (b) A component of the error weight vector became zero during
internal time-stepping. (c) The linear solver initialization function
(called by the user after calling IDACreate) failed to set the linear
solver-specific 1solve field in idamem. (d) A root of one of the
root functions was found both at a point ¢ and also very near ¢. In
any case, the user should see the printed error message for details.

The solver took mxstep internal steps but could not reach tout.
The default value for mxstep is MXSTEP_DEFAULT = 500.

The solver could not satisfy the accuracy demanded by the user for
some internal step.

Error test failures occurred too many times (MXNEF = 10) during
one internal time step or occurred with || = hApip-

Convergence test failures occurred too many times (MXNCF = 10)
during one internal time step or occurred with |h| = Apip.

The linear solver’s initialization function failed.

The linear solver’s setup function failed in an unrecoverable man-
ner.

The linear solver’s solve function failed in an unrecoverable manner.

The inequality constraints were violated and the solver was unable
to recover.

The user’s residual function repeatedly returned a recoverable error
flag, but the solver was unable to recover.

The user’s residual function returned a nonrecoverable error flag.

The rootfinding function failed.
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Notes The vector yret can occupy the same space as the vector yO of initial conditions that
was passed to IDAInit, and the vector ypret can occupy the same space as ypO.

In the IDA_ONE_STEP mode, tout is used on the first call only, and only to get the
direction and rough scale of the independent variable.

If a stop time is enabled (through a call to IDASetStopTime), then IDASolve returns
the solution at tstop. Once the integrator returns at a stop time, any future testing for
tstop is disabled (and can be reenabled only though a new call to IDASetStopTime).

All failure return values are negative and therefore a test £lag < 0 will trap all IDASolve
failures.

On any error return in which one or more internal steps were taken by IDASolve, the
returned values of tret, yret, and ypret correspond to the farthest point reached in
the integration. On all other error returns, these values are left unchanged from the
previous IDASolve return.

F2003 Name FIDASolve

4.5.8 Optional input functions

There are numerous optional input parameters that control the behavior of the IDAS solver. IDAS
provides functions that can be used to change these optional input parameters from their default
values. Table 4.2 lists all optional input functions in IDAS which are then described in detail in the
remainder of this section. For the most casual use of IDAS, the reader can skip to §4.6.

We note that, on an error return, all of the optional input functions also send an error message
to the error handler function. All error return values are negative, so the test flag < 0 will catch all
errors. Finally, a call to a IDASet*** function can be made from the user’s calling program at any
time and, if successful, takes effect immediately.

4.5.8.1 Main solver optional input functions

The calls listed here can be executed in any order. However, if the user’s program calls either
IDASetErrFile or IDASetErrHandlerFn, then that call should appear first, in order to take effect for
any later error message.

| IDASetErrFile]
Call flag = IDASetErrFile(idamem, errfp);

Description The function IDASetErrFile specifies the pointer to the file where all IDAS messages
should be directed when the default IDAS error handler function is used.

Arguments idamem (void *) pointer to the IDAS memory block.
errfp (FILE *) pointer to output file.

Return value The return value flag (of type int) is one of
IDA_SUCCESS The optional value has been successfully set.
IDA MEM NULL The ida_mem pointer is NULL.

Notes The default value for errfp is stderr.

Passing a value NULL disables all future error message output (except for the case in
which the IDAS memory pointer is NULL). This use of IDASetErrFile is strongly dis-
couraged.

If IDASetErrFile is to be called, it should be called before any other optional input
functions, in order to take effect for any later error message.

F2003 Name FIDASetErrFile
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Table 4.2: Optional inputs for IDAS and IDALS
Optional input \ Function name \ Default
IDAS main solver
Pointer to an error file IDASetErrFile stderr
Error handler function IDASetErrHandlerFn internal fn.
User data IDASetUserData NULL
Maximum order for BDF method IDASetMax0rd 5
Maximum no. of internal steps before oyt IDASetMaxNumSteps 500
Initial step size IDASetInitStep estimated
Maximum absolute step size IDASetMaxStep 00
Value of tst0p IDASetStopTime %)
Maximum no. of error test failures IDASetMaxErrTestFails 10
Maximum no. of nonlinear iterations IDASetMaxNonlinIters 4
Maximum no. of convergence failures IDASetMaxConvFails 10
Coeff. in the nonlinear convergence test IDASetNonlinConvCoef 0.33
Suppress alg. vars. from error test IDASetSuppressAlg SUNFALSE
Variable types (differential /algebraic) IDASetId NULL
Inequality constraints on solution IDASetConstraints NULL
Direction of zero-crossing IDASetRootDirection both
Disable rootfinding warnings IDASetNoInactiveRootWarn none
IDAS initial conditions calculation
Coeff. in the nonlinear convergence test IDASetNonlinConvCoefIC 0.0033
Maximum no. of steps IDASetMaxNumStepsIC 5
Maximum no. of Jacobian/precond. evals. IDASetMaxNumJacsIC 4
Maximum no. of Newton iterations IDASetMaxNumItersIC 10
Max. linesearch backtracks per Newton iter. IDASetMaxBacksIC 100
Turn off linesearch IDASetLineSearchOffIC SUNFALSE
Lower bound on Newton step IDASetStepTolerancelIC uround?/3
IDALS linear solver interface
Jacobian function IDASetJacFn DQ
Enable or disable linear solution scaling IDASetLinearSolutionScaling | on
Jacobian-times-vector function IDASetJacTimes NULL, DQ
Preconditioner functions IDASetPreconditioner NULL, NULL
Ratio between linear and nonlinear tolerances IDASetEpsLin 0.05
Increment factor used in DQ Jv approx. IDASetIncrementFactor 1.0
Jacobian-times-vector DQ Res function IDASetJacTimesResFn NULL
Newton linear solve tolerance conversion factor | IDASetLSNormFactor vector length
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’IDASetErrHandlean‘

Call flag = IDASetErrHandlerFn(ida mem, ehfun, eh data);

Description The function IDASetErrHandlerFn specifies the optional user-defined function to be
used in handling error messages.

Arguments idamem (void *) pointer to the IDAS memory block.

Return value

ehfun (IDAErrHandlerFn) is the user’s C error handler function (see §4.6.2).
eh_data (void x) pointer to user data passed to ehfun every time it is called.

The return value flag (of type int) is one of

IDA_SUCCESS The function ehfun and data pointer eh_data have been successfully set.
IDA MEM NULL The ida_mem pointer is NULL.

Notes Error messages indicating that the IDAS solver memory is NULL will always be directed
to stderr.

F2003 Name FIDASetErrHandlerFn

| IDASetUserData

Call flag = IDASetUserData(ida_mem, user_data);

Description The function IDASetUserData specifies the user data block user_data and attaches it
to the main IDAS memory block.

Arguments idamem (void *) pointer to the IDAS memory block.

Return value

Notes

F2003 Name

user_data (void *) pointer to the user data.
The return value flag (of type int) is one of

IDA_SUCCESS The optional value has been successfully set.
IDA MEM NULL The ida_mem pointer is NULL.

If specified, the pointer to user_data is passed to all user-supplied functions that have
it as an argument. Otherwise, a NULL pointer is passed.

If user_data is needed in user linear solver or preconditioner functions, the call to
IDASetUserData must be made before the call to specify the linear solver.

FIDASetUserData

IDASetMax0rd

Call
Description

Arguments

Return value

Notes

F2003 Name

flag = IDASetMax0Ord(ida_mem, maxord);

The function IDASetMax0rd specifies the maximum order of the linear multistep method.
idamem (void *) pointer to the IDAS memory block.

maxord (int) value of the maximum method order. This must be positive.

The return value flag (of type int) is one of

IDA_SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida_mem pointer is NULL.
IDA_ILL_INPUT The input value maxord is < 0, or larger than its previous value.

The default value is 5. If the input value exceeds 5, the value 5 will be used. Since
maxord affects the memory requirements for the internal IDAS memory block, its value
cannot be increased past its previous value.

FIDASetMax0rd
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IDASetMaxNumSteps

Call flag = IDASetMaxNumSteps(ida_mem, mxsteps);

Description The function IDASetMaxNumSteps specifies the maximum number of steps to be taken
by the solver in its attempt to reach the next output time.

Arguments idamem (void *) pointer to the IDAS memory block.

mxsteps (long int) maximum allowed number of steps.
Return value The return value flag (of type int) is one of

IDA_SUCCESS The optional value has been successfully set.
IDA MEM NULL The ida_mem pointer is NULL.

Notes Passing mxsteps = 0 results in IDAS using the default value (500).
Passing mxsteps < 0 disables the test (not recommended).

F2003 Name FIDASetMaxNumSteps

IDASetInitStep

Call flag = IDASetInitStep(ida_mem, hin);
Description  The function IDASetInitStep specifies the initial step size.

Arguments idamem (void *) pointer to the IDAS memory block.

hin (realtype) value of the initial step size to be attempted. Pass 0.0 to have
IDAS use the default value.

Return value The return value flag (of type int) is one of

IDA_SUCCESS The optional value has been successfully set.
IDA_MEM_NULL The ida_mem pointer is NULL.

Notes By default, IDAS estimates the initial step as the solution of ||hg|lwrms = 1/2, with an
added restriction that |h| < .001|tout - tO|.

F2003 Name FIDASetInitStep

IDASetMaxStep‘

Call flag = IDASetMaxStep(idamem, hmax);
Description  The function IDASetMaxStep specifies the maximum absolute value of the step size.
Arguments idamem (void *) pointer to the IDAS memory block.
hmax (realtype) maximum absolute value of the step size.
Return value The return value flag (of type int) is one of
IDA_SUCCESS The optional value has been successfully set.
IDA MEM NULL The ida mem pointer is NULL.

IDA_ILL_INPUT Either hmax is not positive or it is smaller than the minimum allowable
step.

Notes Pass hmax= 0 to obtain the default value co.

F2003 Name FIDASetMaxStep
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IDASetStopTime

Call flag = IDASetStopTime(ida_mem, tstop);

Description  The function IDASetStopTime specifies the value of the independent variable ¢ past
which the solution is not to proceed.

Arguments idamem (void *) pointer to the IDAS memory block.

tstop (realtype) value of the independent variable past which the solution should
not proceed.

Return value The return value flag (of type int) is one of

IDA_SUCCESS The optional value has been successfully set.
IDA_MEM_NULL The ida_mem pointer is NULL.
IDA_TLL_INPUT The value of tstop is not beyond the current ¢ value, t,,.

Notes The default, if this routine is not called, is that no stop time is imposed.

Once the integrator returns at a stop time, any future testing for tstop is disabled (and
can be reenabled only though a new call to IDASetStopTime).

F2003 Name FIDASetStopTime

’IDASetMaxErrTestFails

Call flag = IDASetMaxErrTestFails(ida_mem, maxnef);

Description The function IDASetMaxErrTestFails specifies the maximum number of error test
failures in attempting one step.

Arguments idamem (void *) pointer to the IDAS memory block.

maxnef (int) maximum number of error test failures allowed on one step (> 0).
Return value The return value flag (of type int) is one of

IDA_SUCCESS The optional value has been successfully set.
IDA MEM NULL The ida_mem pointer is NULL.

Notes The default value is 10.
F2003 Name FIDASetMaxErrTestFails

| IDASetMaxNonlinIters |

Call flag = IDASetMaxNonlinIters(ida mem, maxcor);

Description  The function IDASetMaxNonlinIters specifies the maximum number of nonlinear solver
iterations at one step.

Arguments idamem (void *) pointer to the IDAS memory block.

maxcor (int) maximum number of nonlinear solver iterations allowed on one step

(> 0).
Return value The return value flag (of type int) is one of

IDA_SUCCESS The optional value has been successfully set.
IDA MEM NULL The ida_mem pointer is NULL.
IDA_MEM_FAIL The SUNNONLINSOL module is NULL.

Notes The default value is 4.
F2003 Name FIDASetMaxNonlinIters
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’IDASetMaxConvFails‘

Call

Description

Arguments

Return value

flag = IDASetMaxConvFails(ida_mem, maxncf);

The function IDASetMaxConvFails specifies the maximum number of nonlinear solver

convergence failures at one step.

idamem (void *) pointer to the IDAS memory block.

maxncf (int) maximum number of allowable nonlinear solver convergence failures on
one step (> 0).

The return value flag (of type int) is one of

IDA_SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida_mem pointer is NULL.

Notes The default value is 10.

F2003 Name FIDASetMaxConvFails

’IDASetNonlinConvCoef‘

Call flag = IDASetNonlinConvCoef (ida mem, nlscoef);

Description The function IDASetNonlinConvCoef specifies the safety factor in the nonlinear con-
vergence test; see Chapter 2, Eq. (2.8).

Arguments idamem (void *) pointer to the IDAS memory block.

Return value

nlscoef (realtype) coefficient in nonlinear convergence test (> 0.0).
The return value flag (of type int) is one of
IDA_SUCCESS The optional value has been successfully set.

IDA_MEM_NULL The ida_mem pointer is NULL.
IDA_ILL_INPUT The value of nlscoef is <= 0.0.

Notes The default value is 0.33.

F2003 Name FIDASetNonlinConvCoef

IDASetSuppressAlg

Call flag = IDASetSuppressAlg(ida_mem, suppressalg);

Description  The function IDASetSuppressAlg indicates whether or not to suppress algebraic vari-
ables in the local error test.

Arguments  ida mem (void *) pointer to the IDAS memory block.

Return value

Notes

F2003 Name

suppressalg (booleantype) indicates whether to suppress (SUNTRUE) or not (SUNFALSE)
the algebraic variables in the local error test.

The return value flag (of type int) is one of

IDA_SUCCESS The optional value has been successfully set.
IDA MEM NULL The ida_mem pointer is NULL.

The default value is SUNFALSE.

If suppressalg=SUNTRUE is selected, then the id vector must be set (through IDASetId)
to specify the algebraic components.

In general, the use of this option (with suppressalg = SUNTRUE) is discouraged when
solving DAE systems of index 1, whereas it is generally encouraged for systems of index
2 or more. See pp. 146-147 of Ref. [11] for more on this issue.

FIDASetSuppressAlg
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Call
Description

Arguments

Return value

flag = IDASetId(ida_mem, id);
The function IDASetId specifies algebraic/differential components in the y vector.

idamem (void *) pointer to the IDAS memory block.

id (N_Vector) state vector. A value of 1.0 indicates a differential variable, while
0.0 indicates an algebraic variable.

The return value flag (of type int) is one of

IDA_SUCCESS The optional value has been successfully set.
IDA MEM NULL The ida_mem pointer is NULL.

Notes The vector id is required if the algebraic variables are to be suppressed from the lo-
cal error test (see IDASetSuppressAlg) or if IDACalcIC is to be called with icopt =
IDA_YA_YDP_INIT (see §4.5.5).

F2003 Name FIDASetId

| IDASetConstraints |

Call flag = IDASetConstraints(ida_mem, constraints);

Description The function IDASetConstraints specifies a vector defining inequality constraints for
each component of the solution vector y.

Arguments idamem (void *) pointer to the IDAS memory block.

Return value

Notes

F2003 Name

constraints (N_Vector) vector of constraint flags. If constraints[i] is

0.0 then no constraint is imposed on y;.

1.0 then y; will be constrained to be y; > 0.0.
—1.0 then y; will be constrained to be y; < 0.0.

2.0 then y; will be constrained to be y; > 0.0.
—2.0 then y; will be constrained to be y; < 0.0.

The return value flag (of type int) is one of

IDA_SUCCESS The optional value has been successfully set.

IDA_MEM NULL The ida_mem pointer is NULL.

IDA_ILL_INPUT The constraints vector contains illegal values or the simultaneous cor-
rector option has been selected when doing forward sensitivity analysis.

The presence of a non-NULL constraints vector that is not 0.0 in all components will
cause constraint checking to be performed. However, a call with 0.0 in all components
of constraints will result in an illegal input return.

Constraint checking when doing forward sensitivity analysis with the simultaneous cor-
rector option is currently disallowed and will result in an illegal input return.

FIDASetConstraints

4.5.8.2 Linear solver interface optional input functions

The mathematical explanation of the linear solver methods available to IDAS is provided in §2.1. We
group the user-callable routines into four categories: general routines concerning the overall IDALS
linear solver interface, optional inputs for matrix-based linear solvers, optional inputs for matrix-free
linear solvers, and optional inputs for iterative linear solvers. We note that the matrix-based and
matrix-free groups are mutually exclusive, whereas the “iterative” tag can apply to either case.
When using matrix-based linear solver modules, the IDALS solver interface needs a function to com-
pute an approximation to the Jacobian matrix J(¢,y, ). This function must be of type IDALsJacFn.
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The user can supply a Jacobian function, or if using a dense or banded matrix J can use the de-
fault internal difference quotient approximation that comes with the IDALS interface. To specify a
user-supplied Jacobian function jac, IDALS provides the function IDASetJacFn. The IDALS interface
passes the pointer user_data to the Jacobian function. This allows the user to create an arbitrary
structure with relevant problem data and access it during the execution of the user-supplied Jacobian
function, without using global data in the program. The pointer user_data may be specified through
IDASetUserData.

IDASetJacFn

Call flag = IDASetJacFn(idamem, jac);

Description  The function IDASetJacFn specifies the Jacobian approximation function to be used for
a matrix-based solver within the IDALS interface.

Arguments idamem (void *) pointer to the IDAS memory block.
jac (IDALsJacFn) user-defined Jacobian approximation function.

Return value The return value flag (of type int) is one of

IDALS_SUCCESS The optional value has been successfully set.
IDALS_MEM NULL The ida_mem pointer is NULL.
IDALS_LMEM NULL The IDALS linear solver interface has not been initialized.

Notes This function must be called after the IDALS linear solver interface has been initialized
through a call to IDASetLinearSolver.

By default, IDALS uses an internal difference quotient function for dense and band
matrices. If NULL is passed to jac, this default function is used. An error will occur if
no jac is supplied when using other matrix types.

The function type IDALsJacFn is described in §4.6.5.

The previous routine IDAD1sSetJacFn is now a wrapper for this routine, and may still
be used for backward-compatibility. However, this will be deprecated in future releases,
so we recommend that users transition to the new routine name soon.

F2003 Name FIDASetJacFn

When using a matrix-based linear solver the matrix information will be updated infrequently to reduce
matrix construction and, with direct solvers, factorization costs. As a result the value of o may not
be current and a scaling factor is applied to the solution of the linear system to account for the lagged
value of a. See §11.4.1 for more details. The function IDASetLinearSolutionScaling can be used
to disable this scaling when necessary, e.g., when providing a custom linear solver that updates the
matrix using the current « as part of the solve.

IDASetLinearSolutionScaling

Call flag = IDASetLinearSolutionScaling(ida mem, onoff);

Description  The function IDASetLinearSolutionScaling enables or disables scaling the linear sys-
tem solution to account for a change in « in the linear system. For more details see
§11.4.1.

Arguments idamem (void *) pointer to the IDAS memory block.
onoff (booleantype) flag to enable (SUNTRUE) or disable (SUNFALSE) scaling

Return value The return value flag (of type int) is one of

IDALS_SUCCESS The flag value has been successfully set.

IDALS MEM NULL The ida_mem pointer is NULL.

IDALS_LMEM_NULL The IDALS linear solver interface has not been initialized.
IDALS_ILL_INPUT The attached linear solver is not matrix-based.
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Notes This function must be called after the IDALS linear solver interface has been initialized
through a call to IDASetLinearSolver.

By default scaling is enabled with matrix-based linear solvers.

F2003 Name FIDASetLinearSolutionScaling

When using matrix-free linear solver modules, the IDALS solver interface requires a function to compute
an approximation to the product between the Jacobian matrix J(t,y) and a vector v. The user can
supply a Jacobian-times-vector approximation function, or use the default internal difference quotient
function that comes with the IDALS solver interface.

A user-defined Jacobian-vector function must be of type IDALsJacTimesVecFn and can be specified
through a call to IDASetJacTimes (see §4.6.6 for specification details). The evaluation and processing
of any Jacobian-related data needed by the user’s Jacobian-times-vector function may be done in the
optional user-supplied function jtsetup (see §4.6.7 for specification details). The pointer user_data
received through IDASetUserData (or a pointer to NULL if user_data was not specified) is passed
to the Jacobian-times-vector setup and product functions, jtsetup and jtimes, each time they are
called. This allows the user to create an arbitrary structure with relevant problem data and access it
during the execution of the user-supplied functions without using global data in the program.

’IDASetJacTimes‘

Call flag = IDASetJacTimes(ida_mem, jsetup, jtimes);

Description The function IDASetJacTimes specifies the Jacobian-vector setup and product func-
tions.
Arguments idamem (void *) pointer to the IDAS memory block.

jtsetup (IDALsJacTimesSetupFn) user-defined function to set up the Jacobian-vector
product. Pass NULL if no setup is necessary.

jtimes (IDALsJacTimesVecFn) user-defined Jacobian-vector product function.
Return value The return value flag (of type int) is one of

IDALS_SUCCESS  The optional value has been successfully set.

IDALS_MEM_NULL The ida_mem pointer is NULL.

IDALS_LMEM_NULL The IDALS linear solver has not been initialized.

IDALS_SUNLS_FAIL An error occurred when setting up the system matrix-times-vector

routines in the SUNLINSOL object used by the IDALS interface.

Notes The default is to use an internal finite difference quotient for jtimes and to omit
jtsetup. If NULL is passed to jtimes, these defaults are used. A user may specify
non-NULL jtimes and NULL jtsetup inputs.

This function must be called after the IDALS linear solver interface has been initialized
through a call to IDASetLinearSolver.

The function type IDALsJacTimesSetupFn is described in §4.6.7.
The function type IDALsJacTimesVecFn is described in §4.6.6.

The previous routine IDASpilsSetJacTimes is now a wrapper for this routine, and may
still be used for backward-compatibility. However, this will be deprecated in future
releases, so we recommend that users transition to the new routine name soon.

F2003 Name FIDASetJacTimes

When using the default difference-quotient approximation to the Jacobian-vector product, the user
may specify the factor to use in setting increments for the finite-difference approximation, via a call
to IDASetIncrementFactor.
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’IDASetIncrementFactor

Call flag = IDASetIncrementFactor(ida_mem, dgqincfac);

Description The function IDASetIncrementFactor specifies the increment factor to be used in the
difference-quotient approximation to the product Jv. Specifically, Jv is approximated
via the formula

Jv==[F(t,3,7) - F(t,y,y")],

where § =y + ov, ¥ =y + ¢jov, ¢; is a BDF parameter proportional to the step size,
o = v N dqgincfac, and N is the number of equations in the DAE system.

Q|

Arguments idamem (void *) pointer to the IDAS memory block.
dgincfac (realtype) user-specified increment factor (positive).

Return value The return value flag (of type int) is one of

IDALS_SUCCESS The optional value has been successfully set.
IDALS MEM NULL The ida_mem pointer is NULL.

IDALS_LMEM NULL The IDALS linear solver has not been initialized.
IDALS_ILL_INPUT The specified value of dgincfac is < 0.

Notes The default value is 1.0.

This function must be called after the IDALS linear solver interface has been initialized
through a call to IDASetLinearSolver.

The previous routine IDASpilsSetIncrementFactor is now a wrapper for this routine,
and may still be used for backward-compatibility. However, this will be deprecated in
future releases, so we recommend that users transition to the new routine name soon.

F2003 Name FIDASetIncrementFactor

Additionally, when using the internal difference quotient, the user may also optionally supply an alter-

native residual function for use in the Jacobian-vector product approximation by calling IDASetJacTimesResFn.
The alternative residual function should compute a suitable (and differentiable) approximation to the
residual function provided to IDAInit. For example, as done in [28] for an ODE in explicit form,

the alternative function may use lagged values when evaluating a nonlinearity to avoid differencing a
potentially non-differentiable factor.

’IDASetJacTimesRean
Call flag = IDASetJacTimesResFn(ida_mem, jtimesResFn);

Description  The function IDASetJacTimesResFn specifies an alternative DAE residual function for
use in the internal Jacobian-vector product difference quotient approximation.
Arguments  ida mem (void *) pointer to the IDAS memory block.

jtimesResFn (IDAResFn) is the C function which computes the alternative DAE resid-
ual function to use in Jacobian-vector product difference quotient ap-
proximations. This function has the form res(t, yy, yp, resval,
user_data). For full details see §4.6.1.

Return value The return value flag (of type int) is one of

IDALS_SUCCESS The optional value has been successfully set.
IDALS MEM NULL The ida_mem pointer is NULL.

IDALS_LMEM_NULL The IDALS linear solver has not been initialized.
IDALS_ILL_INPUT The internal difference quotient approximation is disabled.

Notes The default is to use the residual function provided to IDAInit in the internal difference
quotient. If the input resudual function is NULL, the default is used.

This function must be called after the IDALS linear solver interface has been initialized
through a call to IDASetLinearSolver.
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F2003 Name FIDASetJacTimesResFn

When using an iterative linear solver, the user may supply a preconditioning operator to aid in
solution of the system. This operator consists of two user-supplied functions, psetup and psolve,
that are supplied to IDAS using the function IDASetPreconditioner. The psetup function supplied
to this routine should handle evaluation and preprocessing of any Jacobian data needed by the user’s
preconditioner solve function, psolve. Both of these functions are fully specified in §4.6. The user
data pointer received through IDASetUserData (or a pointer to NULL if user data was not specified) is
passed to the psetup and psolve functions. This allows the user to create an arbitrary structure with
relevant problem data and access it during the execution of the user-supplied preconditioner functions
without using global data in the program.

Also, as described in §2.1, the IDALS interface requires that iterative linear solvers stop when the
norm of the preconditioned residual satisfies

€1 €

<
Il < &

where € is the nonlinear solver tolerance, and the default e;, = 0.05; this value may be modified by
the user through the IDASetEpsLin function.

’IDASetPreconditioner

Call flag = IDASetPreconditioner(ida mem, psetup, psolve);

Description  The function IDASetPreconditioner specifies the preconditioner setup and solve func-
tions.

Arguments idamem (void *) pointer to the IDAS memory block.

psetup (IDALsPrecSetupFn) user-defined function to set up the preconditioner. Pass
NULL if no setup is necessary.

psolve (IDALsPrecSolveFn) user-defined preconditioner solve function.
Return value The return value flag (of type int) is one of

IDALS_SUCCESS  The optional values have been successfully set.

IDALS MEM NULL The ida_mem pointer is NULL.

IDALS_LMEM NULL The IDALS linear solver has not been initialized.

IDALS_SUNLS_FAIL An error occurred when setting up preconditioning in the SUNLINSOL
object used by the IDALS interface.

Notes The default is NULL for both arguments (i.e., no preconditioning).

This function must be called after the IDALS linear solver interface has been initialized
through a call to IDASetLinearSolver.

The function type IDALsPrecSolveFn is described in §4.6.8.
The function type IDALsPrecSetupFn is described in §4.6.9.

The previous routine IDASpilsSetPreconditioner is now a wrapper for this routine,
and may still be used for backward-compatibility. However, this will be deprecated in
future releases, so we recommend that users transition to the new routine name soon.

F2003 Name FIDASetPreconditioner

IDASetEpsLin

Call flag = IDASetEpsLin(ida_mem, eplifac);

Description The function IDASetEpsLin specifies the factor by which the Krylov linear solver’s
convergence test constant is reduced from the nonlinear iteration test constant.

Arguments idamem (void *) pointer to the IDAS memory block.
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Return value

Notes

F2003 Name

eplifac (realtype) linear convergence safety factor (> 0.0).

The return value flag (of type int) is one of

IDALS_SUCCESS  The optional value has been successfully set.
IDALS MEM NULL The ida_mem pointer is NULL.

IDALS_LMEM_NULL The IDALS linear solver has not been initialized.
IDALS_ILL_INPUT The factor eplifac is negative.

The default value is 0.05.

This function must be called after the IDALS linear solver interface has been initialized
through a call to IDASetLinearSolver.

If eplifac= 0.0 is passed, the default value is used.

The previous routine IDASpilsSetEpsLin is now a wrapper for this routine, and may
still be used for backward-compatibility. However, this will be deprecated in future
releases, so we recommend that users transition to the new routine name soon.

FIDASetEpsLin

’IDASetLSNormFactor‘

Call

Description

Arguments

Return value

Notes

F2003 Name

flag = IDASetLSNormFactor(ida mem, nrmfac);

The function IDASetLSNormFactor specifies the factor to use when converting from the
integrator tolerance (WRMS norm) to the linear solver tolerance (L2 norm) for Newton
linear system solves e.g., tol L2 = fac * tol _WRMS.
ida mem (void *) pointer to the IDAS memory block.
nrmfac (realtype) the norm conversion factor. If nrmfac is:

> 0 then the provided value is used.

= 0 then the conversion factor is computed using the vector length i.e., nrmfac
= N_VGetLength(y) (default).

< 0 then the conversion factor is computed using the vector dot product nrmfac
= N_VDotProd(v,v) where all the entries of v are one.
The return value flag (of type int) is one of
IDA_SUCCESS The optional value has been successfully set.
IDA MEM NULL The ida_mem pointer is NULL.

This function must be called after the IDALS linear solver interface has been initialized
through a call to IDASetLinearSolver.

Prior to the introduction of N_VGetLength in SUNDIALS v5.0.0 (IDAS v4.0.0) the value
of nrmfac was computed using the vector dot product i.e., the nrmfac < 0 case.

FIDASetLSNormFactor

4.5.8.3 Initial condition calculation optional input functions

The following functions can be called just prior to calling IDACalcIC to set optional inputs controlling
the initial condition calculation.

| IDASetNonlinConvCoefIC

Call

Description

Arguments

flag = IDASetNonlinConvCoefIC(idamem, epiccon);

The function IDASetNonlinConvCoefIC specifies the positive constant in the Newton
iteration convergence test within the initial condition calculation.

idamem (void *) pointer to the IDAS memory block.
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Return value

epiccon (realtype) coefficient in the Newton convergence test (> 0).
The return value flag (of type int) is one of
IDA_SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.
IDA_ILL_INPUT The epiccon factor is <= 0.0.

Notes The default value is 0.01 - 0.33.
This test uses a weighted RMS norm (with weights defined by the tolerances). For
new initial value vectors y and ¥ to be accepted, the norm of J~!F(tg,y, ) must be <
epiccon, where J is the system Jacobian.

F2003 Name FIDASetNonlinConvCoefIC

IDASetMaxNumStepsIC

Call flag = IDASetMaxNumStepsIC(ida_mem, maxnh);

Description The function IDASetMaxNumStepsIC specifies the maximum number of steps allowed
when icopt=IDA_YA_YDP_INIT in IDACalcIC, where h appears in the system Jacobian,
J=0F/0y + (1/h)0F/0y.

Arguments idamem (void *) pointer to the IDAS memory block.

Return value

maxnh  (int) maximum allowed number of values for h.
The return value flag (of type int) is one of
IDA_SUCCESS The optional value has been successfully set.

IDA_MEM NULL The ida_mem pointer is NULL.
IDA_ILL_INPUT maxnh is non-positive.

Notes The default value is 5.

F2003 Name FIDASetMaxNumStepsIC

’IDASetMaxNumJacsIC‘

Call flag = IDASetMaxNumJacsIC(ida mem, maxnj) ;

Description  The function IDASetMaxNumJacsIC specifies the maximum number of the approximate
Jacobian or preconditioner evaluations allowed when the Newton iteration appears to
be slowly converging.

Arguments idamem (void *) pointer to the IDAS memory block.

Return value

maxnj (int) maximum allowed number of Jacobian or preconditioner evaluations.
The return value flag (of type int) is one of
IDA_SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida_mem pointer is NULL.
IDA_ILL_INPUT maxnj is non-positive.

Notes The default value is 4.

F2003 Name FIDASetMaxNumJacsIC

| IDASetMaxNumItersIC

Call flag = IDASetMaxNumItersIC(ida mem, maxnit);

Description The function IDASetMaxNumItersIC specifies the maximum number of Newton itera-
tions allowed in any one attempt to solve the initial conditions calculation problem.

Arguments idamem (void *) pointer to the IDAS memory block.
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maxnit (int) maximum number of Newton iterations.
Return value The return value flag (of type int) is one of
IDA_SUCCESS The optional value has been successfully set.
IDA MEM NULL The ida_mem pointer is NULL.
IDA_ILL_INPUT maxnit is non-positive.
Notes The default value is 10.
F2003 Name FIDASetMaxNumItersIC

| IDASetMaxBacksIC|
Call flag = IDASetMaxBacksIC(ida-mem, maxbacks);

Description The function IDASetMaxBacksIC specifies the maximum number of linesearch back-
tracks allowed in any Newton iteration, when solving the initial conditions calculation
problem.

Arguments idamem (void *) pointer to the IDAS memory block.
maxbacks (int) maximum number of linesearch backtracks per Newton step.

Return value The return value flag (of type int) is one of
IDA_SUCCESS The optional value has been successfully set.
IDA MEM NULL The ida mem pointer is NULL.
IDA_TLL_INPUT maxbacks is non-positive.

Notes The default value is 100.

If IDASetMaxBacksIC is called in a Forward Sensitivity Analysis, the the limit maxbacks
applies in the calculation of both the initial state values and the initial sensititivies.

F2003 Name FIDASetMaxBacksIC

’IDASetLineSearchOffIC
Call flag = IDASetLineSearchOffIC(ida_mem, lsoff);

Description  The function IDASetLineSearchOffIC specifies whether to turn on or off the linesearch
algorithm.

Arguments idamem (void *) pointer to the IDAS memory block.

lsoff (booleantype) a flag to turn off (SUNTRUE) or keep (SUNFALSE) the linesearch
algorithm.

Return value The return value flag (of type int) is one of

IDA_SUCCESS The optional value has been successfully set.
IDA MEM NULL The ida_mem pointer is NULL.

Notes The default value is SUNFALSE.
F2003 Name FIDASetLineSearchOffIC

IDASetStepToleranceIC

Call flag = IDASetStepTolerancelIC(ida_mem, steptol);

Description  The function IDASetStepToleranceIC specifies a positive lower bound on the Newton
step.

Arguments idamem (void *) pointer to the IDAS memory block.
steptol (int) Minimum allowed WRMS-norm of the Newton step (> 0.0).

Return value The return value flag (of type int) is one of
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IDA_SUCCESS  The optional value has been successfully set.
IDA MEM NULL The ida mem pointer is NULL.
IDA_ILL_INPUT The steptol tolerance is <= 0.0.

Notes The default value is (unit roundoff)?/3.

F2003 Name FIDASetStepToleranceIC

4.5.8.4 Rootfinding optional input functions

The following functions can be called to set optional inputs to control the rootfinding algorithm.

’ IDASetRootDirection‘
Call flag = IDASetRootDirection(ida mem, rootdir);

Description The function IDASetRootDirection specifies the direction of zero-crossings to be lo-
cated and returned to the user.
Arguments idamem (void *) pointer to the IDAS memory block.

rootdir (int *) state array of length nrtfn, the number of root functions g;, as spec-
ified in the call to the function IDARootInit. A value of 0 for rootdir[i]
indicates that crossing in either direction should be reported for g;. A value
of +1 or —1 indicates that the solver should report only zero-crossings where
g; 1s increasing or decreasing, respectively.

Return value The return value flag (of type int) is one of

IDA_SUCCESS The optional value has been successfully set.
IDA_MEM NULL The ida_mem pointer is NULL.
IDA_ILL_INPUT rootfinding has not been activated through a call to IDARootInit.

Notes The default behavior is to locate both zero-crossing directions.

F2003 Name FIDASetRootDirection

’ IDASetNoInactiveRootWarn ‘

Call flag = IDASetNoInactiveRootWarn(ida_mem) ;

Description  The function IDASetNoInactiveRootWarn disables issuing a warning if some root func-
tion appears to be identically zero at the beginning of the integration.

Arguments idamem (void *) pointer to the IDAS memory block.

Return value The return value flag (of type int) is one of
IDA_SUCCESS The optional value has been successfully set.
IDA MEM NULL The ida_mem pointer is NULL.

Notes IDAS will not report the initial conditions as a possible zero-crossing (assuming that one
or more components g; are zero at the initial time). However, if it appears that some g;

is identically zero at the initial time (i.e., g; is zero at the initial time and after the first
step), IDAS will issue a warning which can be disabled with this optional input function.

F2003 Name FIDASetNoInactiveRootWarn

4.5.9 Interpolated output function

An optional function IDAGetDky is available to obtain additional output values. This function must be

called after a successful return from IDASolve and provides interpolated values of y or its derivatives

of order up to the last internal order used for any value of ¢ in the last internal step taken by IDAS.
The call to the IDAGetDky function has the following form:



4.5 User-callable functions 65

IDAGetDky

Call flag = IDAGetDky(idamem, t, k, dky);

Description  The function IDAGetDky computes the interpolated values of the k" derivative of y for
any value of ¢t in the last internal step taken by IDAS. The value of £ must be non-
negative and smaller than the last internal order used. A value of 0 for k£ means that
the y is interpolated. The value of ¢t must satisfy t,, — h, < t < t,,, where t,, denotes
the current internal time reached, and h,, is the last internal step size used successfully.

Arguments idamem (void *) pointer to the IDAS memory block.

t (realtype) time at which to interpolate.
k (int) integer specifying the order of the derivative of y wanted.
dky (N_Vector) vector containing the interpolated k" derivative of y(t).

Return value The return value flag (of type int) is one of

IDA_SUCCESS IDAGetDky succeeded.
IDA_MEM_NULL The ida_mem argument was NULL.
IDA_BAD_T t is not in the interval [t, — hy, t,].
IDA_BAD K k is not one of {0, 1, ..., klast}.
IDA_BAD_DKY dky is NULL.

Notes It is only legal to call the function IDAGetDky after a successful return from IDASolve.
Functions IDAGetCurrentTime, IDAGetLastStep and IDAGetLastOrder (see §4.5.10.2)
can be used to access t,, h, and klast.

F2003 Name FIDAGetDky

4.5.10 Optional output functions

IDAS provides an extensive list of functions that can be used to obtain solver performance information.
Table 4.3 lists all optional output functions in IDAS, which are then described in detail in the remainder
of this section.

Some of the optional outputs, especially the various counters, can be very useful in determining
how successful the IDAS solver is in doing its job. For example, the counters nsteps and nrevals
provide a rough measure of the overall cost of a given run, and can be compared among runs with
differing input options to suggest which set of options is most efficient. The ratio nniters/nsteps
measures the performance of the nonlinear solver in solving the nonlinear systems at each time step;
typical values for this range from 1.1 to 1.8. The ratio njevals/nniters (in the case of a matrix-
based linear solver), and the ratio npevals/nniters (in the case of an iterative linear solver) measure
the overall degree of nonlinearity in these systems, and also the quality of the approximate Jacobian
or preconditioner being used. Thus, for example, njevals/nniters can indicate if a user-supplied
Jacobian is inaccurate, if this ratio is larger than for the case of the corresponding internal Jacobian.
The ratio nliters/nniters measures the performance of the Krylov iterative linear solver, and thus
(indirectly) the quality of the preconditioner.

4.5.10.1 SUNDIALS version information

The following functions provide a way to get SUNDIALS version information at runtime.

’ SUNDIALSGetVersion ‘
Call flag = SUNDIALSGetVersion(version, len);

Description  The function SUNDIALSGetVersion fills a character array with SUNDIALS version infor-
mation.

Arguments version (char *) character array to hold the SUNDIALS version information.
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Table 4.3: Optional outputs from IDAS and IDALS

Optional output

Function name

IDAS main solver

Size of IDAS real and integer workspace IDAGetWorkSpace
Cumulative number of internal steps IDAGetNumSteps

No. of calls to residual function IDAGetNumResEvals

No. of calls to linear solver setup function IDAGetNumLinSolvSetups
No. of local error test failures that have occurred IDAGetNumErrTestFails
Order used during the last step IDAGetLastOrder

Order to be attempted on the next step IDAGetCurrentOrder
Order reductions due to stability limit detection IDAGetNumStabLimOrderReds
Actual initial step size used IDAGetActualInitStep
Step size used for the last step IDAGetLastStep

Step size to be attempted on the next step IDAGetCurrentStep
Current internal time reached by the solver IDAGetCurrentTime
Suggested factor for tolerance scaling IDAGetTolScaleFactor
Error weight vector for state variables IDAGetErrWeights
Estimated local errors IDAGetEstLocalErrors

No. of nonlinear solver iterations
No. of nonlinear convergence failures

IDAGetNumNonlinSolvIters

IDAGetNumNonlinSolvConvFails

Array showing roots found IDAGetRootInfo

No. of calls to user root function IDAGetNumGEvals

Name of constant associated with a return flag IDAGetReturnFlagName
IDAS initial conditions calculation

Number of backtrack operations IDAGetNumBacktrackops

Corrected initial conditions IDAGetConsistentIC

IDALS linear solver interface

Size of real and integer workspace IDAGetLinWorkSpace
No. of Jacobian evaluations IDAGetNumJacEvals

No. of residual calls for finite diff. Jacobian[-vector] evals. | IDAGetNumLinResEvals
No. of linear iterations IDAGetNumLinIters

No. of linear convergence failures IDAGetNumLinConvFails
No. of preconditioner evaluations IDAGetNumPrecEvals
No. of preconditioner solves IDAGetNumPrecSolves
No. of Jacobian-vector setup evaluations IDAGetNumJTSetupEvals
No. of Jacobian-vector product evaluations IDAGetNumJtimesEvals
Last return from a linear solver function IDAGetLastLinFlag

Name of constant associated with a return flag

IDAGetLinReturnFlagName
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len (int) allocated length of the version character array.

Return value If successful, SUNDIALSGetVersion returns 0 and version contains the SUNDIALS ver-
sion information. Otherwise, it returns —1 and version is not set (the input character
array is too short).

Notes A string of 25 characters should be sufficient to hold the version information. Any
trailing characters in the version array are removed.

| SUNDIALSGetVersionNumber |
Call flag = SUNDIALSGetVersionNumber(&major, &minor, &patch, label, len);

Description  The function SUNDIALSGetVersionNumber set integers for the SUNDIALS major, minor,
and patch release numbers and fills a character array with the release label if applicable.

Arguments major (int) SUNDIALS release major version number.
minor (int) SUNDIALS release minor version number.
patch (int) SUNDIALS release patch version number.
label (char *) character array to hold the SUNDIALS release label.
len (int) allocated length of the label character array.
Return value If successful, SUNDIALSGetVersionNumber returns 0 and the major, minor, patch, and

label values are set. Otherwise, it returns —1 and the values are not set (the input
character array is too short).

Notes A string of 10 characters should be sufficient to hold the label information. If a label
is not used in the release version, no information is copied to label. Any trailing
characters in the label array are removed.

4.5.10.2 Main solver optional output functions

IDAS provides several user-callable functions that can be used to obtain different quantities that may
be of interest to the user, such as solver workspace requirements, solver performance statistics, as well
as additional data from the IDAS memory block (a suggested tolerance scaling factor, the error weight
vector, and the vector of estimated local errors). Also provided are functions to extract statistics
related to the performance of the SUNNONLINSOL nonlinear solver being used. As a convenience, ad-
ditional extraction functions provide the optional outputs in groups. These optional output functions
are described next.

IDAGetWorkSpace‘

Call flag = IDAGetWorkSpace(ida_mem, &lenrw, &leniw);
Description The function IDAGetWorkSpace returns the IDAS real and integer workspace sizes.

Arguments idamem (void *) pointer to the IDAS memory block.
lenrw (long int) number of real values in the IDAS workspace.
leniw (long int) number of integer values in the IDAS workspace.

Return value The return value flag (of type int) is one of

IDA_SUCCESS The optional output value has been successfully set.
IDA MEM NULL The ida_mem pointer is NULL.

Notes In terms of the problem size N, the maximum method order maxord, and the number
nrtfn of root functions (see §4.5.6), the actual size of the real workspace, in realtype
words, is given by the following:

e base value: lenrw = 55+ (m + 6) * N, + 3snrtfn;

e with IDASVtolerances: lenrw = lenrw +N,;
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e with constraint checking (see IDASetConstraints): lenrw = lenrw +N;;

e with id specified (see IDASetId): lenrw = lenrw +N,;

where m = max(maxord, 3), and N, is the number of real words in one N_Vector (= N).
The size of the integer workspace (without distinction between int and long int words)
is given by:

e base value: leniw = 384 (m +6) * N; + nrtfn;

e with IDASVtolerances: leniw = leniw +N;;

e with constraint checking: lenrw = lenrw +N;;

e with id specified: lenrw = lenrw +N;;
where N; is the number of integer words in one N_Vector (= 1 for NVECTOR_SERIAL
and 2*npes for NVECTOR_PARALLEL Ol npes processors).

For the default value of maxord, with no rootfinding, no id, no constraints, and with
no call to IDASVtolerances, these lengths are given roughly by: lenrw = 55+ 11N,
leniw = 49.

Note that additional memory is allocated if quadratures and/or forward sensitivity
integration is enabled. See §4.7.1 and §5.2.1 for more details.

F2003 Name FIDAGetWorkSpace
IDAGetNumSteps ‘
Call flag = IDAGetNumSteps(ida_mem, &nsteps);

Description

Arguments

Return value

The function IDAGetNumSteps returns the cumulative number of internal steps taken
by the solver (total so far).

idamem (void *) pointer to the IDAS memory block.

nsteps (long int) number of steps taken by IDAS.
The return value flag (of type int) is one of

IDA_SUCCESS The optional output value has been successfully set.
IDA MEM NULL The ida_mem pointer is NULL.

F2003 Name FIDAGetNumSteps

’IDAGetNumResEvals

Call flag = IDAGetNumResEvals(ida_mem, &nrevals);

Description The function IDAGetNumResEvals returns the number of calls to the user’s residual
evaluation function.

Arguments idamem (void *) pointer to the IDAS memory block.

Return value

Notes

F2003 Name

nrevals (long int) number of calls to the user’s res function.
The return value flag (of type int) is one of

IDA_SUCCESS The optional output value has been successfully set.
IDA MEM NULL The ida_mem pointer is NULL.

The nrevals value returned by IDAGetNumResEvals does not account for calls made to
res from a linear solver or preconditioner module.

FIDAGetNumResEvals
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IDAGetNumLinSolvSetups

Call flag = IDAGetNumLinSolvSetups(idamem, &nlinsetups);

Description  The function IDAGetNumLinSolvSetups returns the cumulative number of calls made
to the linear solver’s setup function (total so far).

Arguments ida_mem (void *) pointer to the IDAS memory block.
nlinsetups (long int) number of calls made to the linear solver setup function.

Return value The return value flag (of type int) is one of

IDA_SUCCESS The optional output value has been successfully set.
IDA MEM NULL The ida_mem pointer is NULL.

F2003 Name FIDAGetNumLinSolvSetups

’IDAGetNumErrTestFails‘
Call flag = IDAGetNumErrTestFails(ida_mem, &netfails);

Description The function IDAGetNumErrTestFails returns the cumulative number of local error
test failures that have occurred (total so far).

Arguments idamem (void *) pointer to the IDAS memory block.
netfails (long int) number of error test failures.

Return value The return value flag (of type int) is one of

IDA_SUCCESS The optional output value has been successfully set.
IDA_MEM_NULL The ida_mem pointer is NULL.

F2003 Name FIDAGetNumErrTestFails

’IDAGetLastOrder‘
Call flag = IDAGetLastOrder(ida_mem, &klast);

Description The function IDAGetLastOrder returns the integration method order used during the
last internal step.

Arguments idamem (void *) pointer to the IDAS memory block.
klast (int) method order used on the last internal step.

Return value The return value flag (of type int) is one of

IDA_SUCCESS The optional output value has been successfully set.
IDA MEM NULL The ida mem pointer is NULL.

F2003 Name FIDAGetLastOrder

’IDAGetCurrentDrder
Call flag = IDAGetCurrentOrder(ida_mem, &kcur);

Description  The function IDAGetCurrentOrder returns the integration method order to be used on
the next internal step.

Arguments idamem (void *) pointer to the IDAS memory block.
kcur (int) method order to be used on the next internal step.

Return value The return value flag (of type int) is one of

IDA_SUCCESS The optional output value has been successfully set.
IDA MEM NULL The ida_mem pointer is NULL.

F2003 Name FIDAGetCurrentOrder
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IDAGetLastStep‘

Call flag = IDAGetLastStep(ida_mem, &hlast);

Description  The function IDAGetLastStep returns the integration step size taken on the last internal
step (if from IDASolve), or the last value of the artificial step size h (if from IDACalcIC).

Arguments idamem (void *) pointer to the IDAS memory block.

hlast (realtype) step size taken on the last internal step by IDAS, or last artificial
step size used in IDACalcIC, whichever was called last.

Return value The return value flag (of type int) is one of

IDA_SUCCESS The optional output value has been successfully set.
IDA_MEM NULL The ida_mem pointer is NULL.

F2003 Name FIDAGetLastStep

IDAGetCurrentStep

Call flag = IDAGetCurrentStep(ida_mem, &hcur);

Description  The function IDAGetCurrentStep returns the integration step size to be attempted on
the next internal step.

Arguments idamem (void *) pointer to the IDAS memory block.
hcur (realtype) step size to be attempted on the next internal step.

Return value The return value flag (of type int) is one of

IDA_SUCCESS The optional output value has been successfully set.
IDA MEM NULL The ida_mem pointer is NULL.

F2003 Name FIDAGetCurrentStep

IDAGetActualInitStep

Call flag = IDAGetActualInitStep(ida_mem, &hinused);

Description  The function IDAGetActualInitStep returns the value of the integration step size used
on the first step.

Arguments idamem (void *) pointer to the IDAS memory block.
hinused (realtype) actual value of initial step size.

Return value The return value flag (of type int) is one of
IDA_SUCCESS The optional output value has been successfully set.
IDA MEM NULL The ida_mem pointer is NULL.

Notes Even if the value of the initial integration step size was specified by the user through
a call to IDASetInitStep, this value might have been changed by IDAS to ensure that
the step size is within the prescribed bounds (hmin < ko < Amax), OF to meet the local
error test.

F2003 Name FIDAGetActuallnitStep

’IDAGetCurrentTime
Call flag = IDAGetCurrentTime(ida_mem, &tcur);

Description The function IDAGetCurrentTime returns the current internal time reached by the
solver.

Arguments idamem (void *) pointer to the IDAS memory block.
tcur (realtype) current internal time reached.
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Return value The return value flag (of type int) is one of

IDA_SUCCESS The optional output value has been successfully set.
IDA MEM NULL The ida_mem pointer is NULL.

F2003 Name FIDAGetCurrentTime

’IDAGetTolScaleFactor
Call flag = IDAGetTolScaleFactor(ida mem, &tolsfac);

Description The function IDAGetTolScaleFactor returns a suggested factor by which the user’s
tolerances should be scaled when too much accuracy has been requested for some internal
step.

Arguments idamem (void *) pointer to the IDAS memory block.
tolsfac (realtype) suggested scaling factor for user tolerances.
Return value The return value flag (of type int) is one of

IDA_SUCCESS The optional output value has been successfully set.
IDA MEM NULL The ida_mem pointer is NULL.

F2003 Name FIDAGetTolScaleFactor

IDAGetErrWeights

Call flag = IDAGetErrWeights(ida mem, eweight);

Description  The function IDAGetErrWeights returns the solution error weights at the current time.
These are the W; given by Eq. (2.7) (or by the user’s IDAEwtFn).

Arguments idamem (void *) pointer to the IDAS memory block.
eweight (N_Vector) solution error weights at the current time.

Return value The return value flag (of type int) is one of

IDA_SUCCESS The optional output value has been successfully set.
IDA MEM NULL The ida_mem pointer is NULL.

Notes The user must allocate space for eweight.
F2003 Name FIDAGetErrWeights

’IDAGetEstLocalErrors‘
Call flag = IDAGetEstLocalErrors(ida mem, ele);

Description The function IDAGetEstLocalErrors returns the estimated local errors.

Arguments idamem (void *) pointer to the IDAS memory block.
ele (N_Vector) estimated local errors at the current time.

Return value The return value flag (of type int) is one of

IDA_SUCCESS The optional output value has been successfully set.
IDA MEM NULL The ida mem pointer is NULL.

Notes The user must allocate space for ele.
The values returned in ele are only valid if IDASolve returned a non-negative value.

The ele vector, togther with the eweight vector from IDAGetErrWeights, can be used
to determine how the various components of the system contributed to the estimated
local error test. Specifically, that error test uses the RMS norm of a vector whose
components are the products of the components of these two vectors. Thus, for example,
if there were recent error test failures, the components causing the failures are those
with largest values for the products, denoted loosely as eweight [i]*ele[i].

F2003 Name FIDAGetEstLocalErrors
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IDAGetIntegratorStats

Call flag = IDAGetIntegratorStats(ida_mem, &nsteps, &nrevals, &nlinsetups,
&netfails, &klast, &kcur, &hinused,
&hlast, &hcur, &tcur);

Description  The function IDAGetIntegratorStats returns the IDAS integrator statistics as a group.

Arguments ida_mem (void *) pointer to the IDAS memory block.
nsteps (long int) cumulative number of steps taken by IDAS.
nrevals (long int) cumulative number of calls to the user’s res function.

nlinsetups (long int) cumulative number of calls made to the linear solver setup
function.

netfails (long int) cumulative number of error test failures.

klast (int) method order used on the last internal step.

kcur (int) method order to be used on the next internal step.
hinused (realtype) actual value of initial step size.

hlast (realtype) step size taken on the last internal step.

hcur (realtype) step size to be attempted on the next internal step.
tcur (realtype) current internal time reached.

Return value The return value flag (of type int) is one of

IDA_SUCCESS the optional output values have been successfully set.
IDA MEM NULL the ida_mem pointer is NULL.

F2003 Name FIDAGetIntegratorStats

’IDAGetNumNonlinSoleters

Call flag = IDAGetNumNonlinSolvIters(ida_mem, &nniters);

Description  The function IDAGetNumNonlinSolvIters returns the cumulative number of nonlinear
iterations performed.

Arguments idamem (void *) pointer to the IDAS memory block.

nniters (long int) number of nonlinear iterations performed.
Return value The return value flag (of type int) is one of

IDA_SUCCESS The optional output value has been successfully set.
IDA MEM NULL The ida_mem pointer is NULL.
IDA_MEM FAIL The SUNNONLINSOL module is NULL.

F2003 Name FIDAGetNumNonlinSolvIters

| IDAGetNumNonlinSolvConvFails |
Call flag = IDAGetNumNonlinSolvConvFails(ida mem, &nncfails);

Description The function IDAGetNumNonlinSolvConvFails returns the cumulative number of non-
linear convergence failures that have occurred.

Arguments idamem (void *) pointer to the IDAS memory block.

nncfails (long int) number of nonlinear convergence failures.
Return value The return value flag (of type int) is one of

IDA_SUCCESS The optional output value has been successfully set.
IDA MEM NULL The ida_mem pointer is NULL.

F2003 Name FIDAGetNumNonlinSolvConvFails
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’IDAGetNonlinSoletats

Call flag = IDAGetNonlinSolvStats(ida_mem, &nniters, &nncfails);
Description  The function IDAGetNonlinSolvStats returns the IDAS nonlinear solver statistics as a
group.
Arguments idamem (void *) pointer to the IDAS memory block.
nniters (long int) cumulative number of nonlinear iterations performed.
nncfails (long int) cumulative number of nonlinear convergence failures.
Return value The return value flag (of type int) is one of
IDA_SUCCESS The optional output value has been successfully set.
IDA MEM NULL The ida_mem pointer is NULL.
IDA_MEM_FAIL The SUNNONLINSOL module is NULL.
F2003 Name FIDAGetNonlinSolvStats

IDAGetReturnFlagName

Call name = IDAGetReturnFlagName(flag);

Description  The function IDAGetReturnFlagName returns the name of the IDAS constant correspond-
ing to flag.

Arguments  The only argument, of type int, is a return flag from an IDAS function.
Return value The return value is a string containing the name of the corresponding constant.

F2003 Name FIDAGetReturnFlagName

4.5.10.3 Initial condition calculation optional output functions

IDAGetNumBcktrackOps

Call flag = IDAGetNumBacktrackOps(ida_mem, &nbacktr);

Description  The function IDAGetNumBacktrackOps returns the number of backtrack operations done
in the linesearch algorithm in IDACalcIC.

Arguments idamem (void *) pointer to the IDAS memory block.
nbacktr (long int) the cumulative number of backtrack operations.

Return value The return value flag (of type int) is one of

IDA_SUCCESS The optional output value has been successfully set.
IDA_MEM NULL The ida_mem pointer is NULL.

F2003 Name FIDAGetNumBcktrackOps

’IDAGetConSistentIC

Call flag = IDAGetConsistentIC(ida_mem, yyO.mod, ypO_mod);

Description The function IDAGetConsistentIC returns the corrected initial conditions calculated
by IDACalcIC.

Arguments idamem (void *) pointer to the IDAS memory block.
yyOmod (N_Vector) consistent solution vector.
ypOmod (N_Vector) consistent derivative vector.

Return value The return value flag (of type int) is one of

IDA_SUCCESS The optional output value has been successfully set.



74 Using IDAS for IVP Solution

IDA_ILL_INPUT The function was not called before the first call to IDASolve.
IDA MEM NULL The ida_mem pointer is NULL.

Notes If the consistent solution vector or consistent derivative vector is not desired, pass NULL
for the corresponding argument.

The user must allocate space for yy0_mod and ypO_mod (if not NULL).
F2003 Name FIDAGetConsistentIC

4.5.10.4 Rootfinding optional output functions

There are two optional output functions associated with rootfinding.

| IDAGetRootInfo
Call flag = IDAGetRootInfo(ida_mem, rootsfound);

Description  The function IDAGetRootInfo returns an array showing which functions were found to
have a root.
Arguments idamem (void *) pointer to the IDAS memory block.

rootsfound (int *) array of length nrtfn with the indices of the user functions g;
found to have a root. For ¢ = 0,...,nrtfn —1, rootsfound[i] # 0 if g; has a
root, and = 0 if not.

Return value The return value flag (of type int) is one of

IDA_SUCCESS The optional output values have been successfully set.
IDA MEM NULL The ida_mem pointer is NULL.

Notes Note that, for the components g; for which a root was found, the sign of rootsfound][i]
indicates the direction of zero-crossing. A value of +1 indicates that g; is increasing,
while a value of —1 indicates a decreasing g;.

The user must allocate memory for the vector rootsfound.
F2003 Name FIDAGetRootInfo

’IDAGetNumGEvals
Call flag = IDAGetNumGEvals(ida mem, &ngevals);

Description  The function IDAGetNumGEvals returns the cumulative number of calls to the user root
function g.

Arguments idamem (void *) pointer to the IDAS memory block.
ngevals (long int) number of calls to the user’s function g so far.

Return value The return value flag (of type int) is one of

IDA_SUCCESS The optional output value has been successfully set.
IDA MEM NULL The ida_mem pointer is NULL.

F2003 Name FIDAGetNumGEvals

4.5.10.5 1DALS linear solver interface optional output functions

The following optional outputs are available from the IDALS modules: workspace requirements, number
of calls to the Jacobian routine, number of calls to the residual routine for finite-difference Jacobian
or Jacobian-vector product approximation, number of linear iterations, number of linear convergence
failures, number of calls to the preconditioner setup and solve routines, number of calls to the Jacobian-
vector setup and product routines, and last return value from an IDALS function. Note that, where
the name of an output would otherwise conflict with the name of an optional output from the main
solver, a suffix LS (for Linear Solver) has been added (e.g., LenrwLS).
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IDAGetLinWorkSpace

Call flag = IDAGetLinWorkSpace(ida mem, &lenrwLS, &leniwLS);

Description  The function IDAGetLinWorkSpace returns the sizes of the real and integer workspaces
used by the IDALS linear solver interface.

Arguments idamem (void *) pointer to the IDAS memory block.

Return value

lenrwLS (long int) the number of real values in the IDALS workspace.
leniwLS (long int) the number of integer values in the IDALS workspace.

The return value flag (of type int) is one of
IDALS_SUCCESS  The optional output value has been successfully set.

IDALS MEM_NULL The ida_mem pointer is NULL.
IDALS_LMEM_NULL The IDALS linear solver has not been initialized.

Notes The workspace requirements reported by this routine correspond only to memory allo-

cated within this interface and to memory allocated by the SUNLINSOL object attached
to it. The template Jacobian matrix allocated by the user outside of IDALS is not
included in this report.
The previous routines IDAD1sGetWorkspace and IDASpilsGetWorkspace are now wrap-
pers for this routine, and may still be used for backward-compatibility. However, these
will be deprecated in future releases, so we recommend that users transition to the new
routine name soon.

F2003 Name FIDAGetLinWorkSpace

’IDAGetNumJacEvals‘

Call flag = IDAGetNumJacEvals(ida_mem, &njevals);

Description  The function IDAGetNumJacEvals returns the cumulative number of calls to the IDALS
Jacobian approximation function.

Arguments idamem (void *) pointer to the IDAS memory block.

Return value

njevals (long int) the cumulative number of calls to the Jacobian function (total so
far).

The return value flag (of type int) is one of
IDALS_SUCCESS  The optional output value has been successfully set.

IDALS MEM NULL The ida_mem pointer is NULL.
IDALS_LMEM_NULL The IDALS linear solver has not been initialized.

Notes The previous routine IDAD1sGetNumJacEvals is now a wrapper for this routine, and
may still be used for backward-compatibility. However, this will be deprecated in future
releases, so we recommend that users transition to the new routine name soon.

F2003 Name FIDAGetNumJacEvals

’IDAGetNumLinResEvals‘

Call flag = IDAGetNumLinResEvals(ida mem, &nrevalsLS);

Description  The function IDAGetNumLinResEvals returns the cumulative number of calls to the user
residual function due to the finite difference Jacobian approximation or finite difference
Jacobian-vector product approximation.

Arguments idamem  (void *) pointer to the IDAS memory block.

Return value

nrevalsLS (long int) the cumulative number of calls to the user residual function.

The return value flag (of type int) is one of



76 Using IDAS for IVP Solution
IDALS_SUCCESS  The optional output value has been successfully set.
IDALS MEM NULL The ida mem pointer is NULL.

IDALS_LMEM NULL The IDALS linear solver has not been initialized.

Notes The value nrevalsLS is incremented only if one of the default internal difference quotient

functions is used.
The previous routines IDAD1sGetNumRhsEvals and IDASpilsGetNumRhsEvals are now
wrappers for this routine, and may still be used for backward-compatibility. However,
these will be deprecated in future releases, so we recommend that users transition to
the new routine name soon.

F2003 Name FIDAGetNumLinResEvals

| IDAGetNumLinIters

Call flag = IDAGetNumLinIters(ida mem, &nliters);

Description The function IDAGetNumLinIters returns the cumulative number of linear iterations.

Arguments idamem (void *) pointer to the IDAS memory block.

Return value

nliters (long int) the current number of linear iterations.
The return value flag (of type int) is one of
IDALS_SUCCESS The optional output value has been successfully set.

IDALS MEM NULL The ida_mem pointer is NULL.
IDALS_LMEM_NULL The IDALS linear solver has not been initialized.

Notes The previous routine IDASpilsGetNumLinIters is now a wrapper for this routine, and
may still be used for backward-compatibility. However, this will be deprecated in future
releases, so we recommend that users transition to the new routine name soon.

F2003 Name FIDAGetNumLinIters

| IDAGetNumLinConvFails

Call flag = IDAGetNumLinConvFails(ida_mem, &nlcfails);

Description  The function IDAGetNumLinConvFails returns the cumulative number of linear conver-
gence failures.

Arguments idamem (void *) pointer to the IDAS memory block.

Return value

nlcfails (long int) the current number of linear convergence failures.
The return value flag (of type int) is one of
IDALS_SUCCESS The optional output value has been successfully set.

IDALS MEM_NULL The ida_mem pointer is NULL.
IDALS_LMEM_NULL The IDALS linear solver has not been initialized.

Notes The previous routine IDASpilsGetNumConvFails is now a wrapper for this routine, and
may still be used for backward-compatibility. However, this will be deprecated in future
releases, so we recommend that users transition to the new routine name soon.

F2003 Name FIDAGetNumLinConvFails

’IDAGetNumPrecEvals

Call flag = IDAGetNumPrecEvals(ida mem, &npevals);

Description The function IDAGetNumPrecEvals returns the cumulative number of preconditioner
evaluations, i.e., the number of calls made to psetup.

Arguments idamem (void *) pointer to the IDAS memory block.
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Return value

npevals (long int) the cumulative number of calls to psetup.
The return value flag (of type int) is one of
IDALS_SUCCESS The optional output value has been successfully set.

IDALS MEM NULL The ida mem pointer is NULL.
IDALS_LMEM_NULL The IDALS linear solver has not been initialized.

Notes The previous routine IDASpilsGetNumPrecEvals is now a wrapper for this routine, and
may still be used for backward-compatibility. However, this will be deprecated in future
releases, so we recommend that users transition to the new routine name soon.

F2003 Name FIDAGetNumPrecEvals

’IDAGetNumPrecSolves

Call flag = IDAGetNumPrecSolves(ida mem, &npsolves);

Description The function IDAGetNumPrecSolves returns the cumulative number of calls made to
the preconditioner solve function, psolve.

Arguments idamem (void *) pointer to the IDAS memory block.

Return value

npsolves (long int) the cumulative number of calls to psolve.
The return value flag (of type int) is one of
IDALS_SUCCESS The optional output value has been successfully set.

IDALS MEM NULL The ida_mem pointer is NULL.
IDALS_LMEM_NULL The IDALS linear solver has not been initialized.

Notes The previous routine IDASpilsGetNumPrecSolves is now a wrapper for this routine,
and may still be used for backward-compatibility. However, this will be deprecated in
future releases, so we recommend that users transition to the new routine name soon.

F2003 Name FIDAGetNumPrecSolves

IDAGetNumJTSetupEvals

Call flag = IDAGetNumJTSetupEvals(ida_mem, &njtsetup);

Description  The function IDAGetNumJTSetupEvals returns the cumulative number of calls made to
the Jacobian-vector setup function jtsetup.

Arguments idamem (void *) pointer to the IDAS memory block.

Return value

njtsetup (long int) the current number of calls to jtsetup.
The return value flag (of type int) is one of
IDALS_SUCCESS  The optional output value has been successfully set.

IDALS MEM NULL The ida mem pointer is NULL.
IDALS_LMEM_NULL The IDALS linear solver has not been initialized.

Notes The previous routine IDASpilsGetNumJTSetupEvals is now a wrapper for this routine,
and may still be used for backward-compatibility. However, this will be deprecated in
future releases, so we recommend that users transition to the new routine name soon.

F2003 Name FIDAGetNumJTSetupEvals

| IDAGetNumJtimesEvals |

Call flag = IDAGetNumJtimesEvals(ida_mem, &njvevals);

Description  The function IDAGetNumJtimesEvals returns the cumulative number of calls made to

the Jacobian-vector function, jtimes.
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Arguments

Return value

idamem (void *) pointer to the IDAS memory block.

njvevals (long int) the cumulative number of calls to jtimes.

The return value flag (of type int) is one of

IDALS_SUCCESS The optional output value has been successfully set.

IDALS MEM NULL The ida mem pointer is NULL.
IDALS_LMEM_NULL The IDALS linear solver has not been initialized.

Notes The previous routine IDASpilsGetNumJtimesEvals is now a wrapper for this routine,
and may still be used for backward-compatibility. However, this will be deprecated in
future releases, so we recommend that users transition to the new routine name soon.

F2003 Name FIDAGetNumJtimesEvals

IDAGetLastLinFlag‘

Call flag = IDAGetLastLinFlag(ida_mem, &lsflag);

Description  The function IDAGetLastLinFlag returns the last return value from an IDALS routine.

Arguments idamem (void *) pointer to the IDAS memory block.

Return value

Notes

F2003 Name

1lsflag (long int) the value of the last return flag from an IDALS function.
The return value flag (of type int) is one of

IDALS_SUCCESS The optional output value has been successfully set.
IDALS MEM NULL The ida mem pointer is NULL.
IDALS_LMEM_NULL The IDALS linear solver has not been initialized.

If the IDALS setup function failed (i.e., IDASolve returned IDA_LSETUP_FAIL) when
using the SUNLINSOL_DENSE or SUNLINSOL_BAND modules, then the value of 1sflag is
equal to the column index (numbered from one) at which a zero diagonal element was
encountered during the LU factorization of the (dense or banded) Jacobian matrix.

If the IDALS setup function failed when using another SUNLINSOL module, then 1sflag
will be SUNLS_PSET_FAIL_UNREC, SUNLS_ASET_FAIL_UNREC, or
SUNLS_PACKAGE_FAIL_UNREC.

If the IDALS solve function failed (IDASolve returned IDA_LSOLVE_FAIL), 1sflag con-
tains the error return flag from the SUNLINSOL object, which will be one of:
SUNLS_MEM_NULL, indicating that the SUNLINSOL memory is NULL;
SUNLS_ATIMES FAIL UNREC, indicating an unrecoverable failure in the J % v function;
SUNLS_PSOLVE_FAIL_UNREC, indicating that the preconditioner solve function psolve
failed unrecoverably; SUNLS_GS_FAIL, indicating a failure in the Gram-Schmidt proce-
dure (generated only in SPGMR or SPFGMR); SUNLS_QRSOL_FAIL, indicating that the
matrix R was found to be singular during the QR solve phase (SPGMR and SPFGMR
only); or SUNLS_PACKAGE FAIL UNREC, indicating an unrecoverable failure in an external
iterative linear solver package.

The previous routines IDAD1sGetLastFlag and IDASpilsGetLastFlag are now wrap-
pers for this routine, and may still be used for backward-compatibility. However, these
will be deprecated in future releases, so we recommend that users transition to the new
routine name soon.

FIDAGetLastLinFlag

IDAGetLinReturnFlagName

Call

Description

name = IDAGetLinReturnFlagName (1sflag);

The function IDAGetLinReturnFlagName returns the name of the IDALS constant cor-
responding to 1sflag.
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Arguments The only argument, of type long int, is a return flag from an IDALS function.
Return value The return value is a string containing the name of the corresponding constant.
If 1 <1sflag < N (LU factorization failed), this function returns “NONE”.

Notes The previous routines IDAD1sGetReturnFlagName and IDASpilsGetReturnFlagName
are now wrappers for this routine, and may still be used for backward-compatibility.
However, these will be deprecated in future releases, so we recommend that users tran-
sition to the new routine name soon.

F2003 Name FIDAGetLinReturnFlagName

4.5.11 IDAS reinitialization function

The function IDAReInit reinitializes the main IDAS solver for the solution of a new problem, where
a prior call to IDAInit has been made. The new problem must have the same size as the previous
one. IDAReInit performs the same input checking and initializations that IDAInit does, but does
no memory allocation, as it assumes that the existing internal memory is sufficient for the new prob-
lem. A call to IDAReInit deletes the solution history that was stored internally during the previous
integration. Following a successful call to IDAReInit, call IDASolve again for the solution of the new
problem.

The use of IDAReInit requires that the maximum method order, maxord, is no larger for the new
problem than for the problem specified in the last call to IDAInit. In addition, the same NVECTOR
module set for the previous problem will be reused for the new problem.

If there are changes to the linear solver specifications, make the appropriate calls to either the
linear solver objects themselves, or to the IDALS interface routines, as described in §4.5.3.

If there are changes to any optional inputs, make the appropriate IDASet*** calls, as described in
§4.5.8. Otherwise, all solver inputs set previously remain in effect.

One important use of the IDAReInit function is in the treating of jump discontinuities in the
residual function. Except in cases of fairly small jumps, it is usually more efficient to stop at each point
of discontinuity and restart the integrator with a readjusted DAE model, using a call to IDAReInit.
To stop when the location of the discontinuity is known, simply make that location a value of tout. To
stop when the location of the discontinuity is determined by the solution, use the rootfinding feature.
In either case, it is critical that the residual function not incorporate the discontinuity, but rather have
a smooth extention over the discontinuity, so that the step across it (and subsequent rootfinding, if
used) can be done efficiently. Then use a switch within the residual function (communicated through
user_data) that can be flipped between the stopping of the integration and the restart, so that the
restarted problem uses the new values (which have jumped). Similar comments apply if there is to be
a jump in the dependent variable vector.

IDAReInit

Call flag = IDAReInit(ida_mem, t0, yO, ypO);
Description  The function IDAReInit provides required problem specifications and reinitializes IDAS.

Arguments idamem (void *) pointer to the IDAS memory block.

t0 (realtype) is the initial value of ¢.
yO (N_Vector) is the initial value of y.
ypO (N_Vector) is the initial value of y.

Return value The return value flag (of type int) will be one of the following;:

IDA_SUCCESS The call to IDAReInit was successful.

IDA MEM NULL The IDAS memory block was not initialized through a previous call to
IDACreate.

IDA_NO_MALLOC Memory space for the IDAS memory block was not allocated through a
previous call to IDAInit.
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IDA_TLL_INPUT An input argument to IDAReInit has an illegal value.

Notes If an error occurred, IDAReInit also sends an error message to the error handler func-
tion.

F2003 Name FIDARelInit

4.6 User-supplied functions

The user-supplied functions consist of one function defining the DAE residual, (optionally) a function
that handles error and warning messages, (optionally) a function that provides the error weight vector,
(optionally) one or two functions that provide Jacobian-related information for the linear solver, and
(optionally) one or two functions that define the preconditioner for use in any of the Krylov iteration
algorithms.

4.6.1 Residual function

The user must provide a function of type IDAResFn defined as follows:

Definition typedef int (*IDAResFn) (realtype tt, N_Vector yy, N_Vector yp,
N_Vector rr, void *user_data);

Purpose This function computes the problem residual for given values of the independent variable
t, state vector y, and derivative 7.

Arguments tt is the current value of the independent variable.
vy is the current value of the dependent variable vector, y(t).
yp is the current value of y(¢).
rr is the output residual vector F(t,y, 7).

user_data is a pointer to user data, the same as the user_data parameter passed to
IDASetUserData.

Return value An IDAResFn function type should return a value of 0 if successful, a positive value
if a recoverable error occurred (e.g., yy has an illegal value), or a negative value if a
nonrecoverable error occurred. In the last case, the integrator halts. If a recoverable
error occurred, the integrator will attempt to correct and retry.

Notes A recoverable failure error return from the IDAResFn is typically used to flag a value
of the dependent variable y that is “illegal” in some way (e.g., negative where only a
non-negative value is physically meaningful). If such a return is made, IDAS will attempt
to recover (possibly repeating the nonlinear solve, or reducing the step size) in order to
avoid this recoverable error return.

For efficiency reasons, the DAE residual function is not evaluated at the converged solu-
tion of the nonlinear solver. Therefore, in general, a recoverable error in that converged
value cannot be corrected. (It may be detected when the right-hand side function is
called the first time during the following integration step, but a successful step cannot
be undone.) However, if the user program also includes quadrature integration, the
state variables can be checked for legality in the call to IDAQuadRhsFn, which is called
at the converged solution of the nonlinear system, and therefore IDAS can be flagged to
attempt to recover from such a situation. Also, if sensitivity analysis is performed with
the staggered method, the DAE residual function is called at the converged solution of
the nonlinear system, and a recoverable error at that point can be flagged, and IDAS
will then try to correct it.

Allocation of memory for yp is handled within IDAS.
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4.6.2 Error message handler function

As an alternative to the default behavior of directing error and warning messages to the file pointed to
by errfp (see IDASetErrFile), the user may provide a function of type IDAErrHandlerFn to process
any such messages. The function type IDAErrHandlerFn is defined as follows:

IDAErrHandlerFn |

Definition

Purpose

Arguments

Return value

Notes

typedef void (*IDAErrHandlerFn) (int error_code, const char *module,
const char *function, char *msg,
void *eh_data);

This function processes error and warning messages from IDAS and its sub-modules.

error_code is the error code.
module is the name of the IDAS module reporting the error.

function is the name of the function in which the error occurred.

msg is the error message.
eh_data is a pointer to user data, the same as the eh_data parameter passed to
IDASetErrHandlerFn.

A IDAErrHandlerFn function has no return value.

error_code is negative for errors and positive (IDA_-WARNING) for warnings. If a function
that returns a pointer to memory encounters an error, it sets error_code to 0.

4.6.3 Error weight function

As an alternative to providing the relative and absolute tolerances, the user may provide a function of
type IDAEwtFn to compute a vector ewt containing the multiplicative weights W; used in the WRMS
norm || v|lwrms = \/(1/]\7) Zf[(Wi -v;)2. These weights will used in place of those defined by Eq.
(2.7). The function type IDAEwtFn is defined as follows:

Definition
Purpose

Arguments

Return value

Notes

typedef int (*IDAEwtFn) (N_Vector y, N Vector ewt, void *user_data);
This function computes the WRMS error weights for the vector y.

y is the value of the dependent variable vector at which the weight vector is
to be computed.

ewt is the output vector containing the error weights.

user_data is a pointer to user data, the same as the user_data parameter passed to
IDASetUserData.

An IDAEwtFn function type must return 0 if it successfully set the error weights and —1
otherwise.

Allocation of memory for ewt is handled within IDAS.

The error weight vector must have all components positive. It is the user’s responsiblity
to perform this test and return —1 if it is not satisfied.

4.6.4 Rootfinding function

If a rootfinding problem is to be solved during the integration of the DAE system, the user must
supply a C function of type IDARootFn, defined as follows:
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IDARootFn

Definition typedef int (*IDARootFn) (realtype t, N_Vector y, N_Vector yp,
realtype *gout, void *user_data);

Purpose This function computes a vector-valued function ¢(¢,y,y) such that the roots of the
nrtfn components g;(t,y,y) are to be found during the integration.
Arguments t is the current value of the independent variable.
y is the current value of the dependent variable vector, y(t).
yp is the current value of §(t), the t—derivative of y.
gout is the output array, of length nrtfn, with components g;(t,y, v).

user_data is a pointer to user data, the same as the user_data parameter passed to
IDASetUserData.

Return value An IDARootFn should return 0 if successful or a non-zero value if an error occurred (in
which case the integration is halted and IDASolve returns IDA RTFUNC_FAIL).

Notes Allocation of memory for gout is handled within IDAS.

4.6.5 Jacobian construction (matrix-based linear solvers)

If a matrix-based linear solver module is used (i.e. a non-NULL SUNMATRIX object was supplied to
IDASetLinearSolver), the user may provide a function of type IDALsJacFn defined as follows:

IDALsJacFn

Definition typedef int (*IDALsJacFn) (realtype tt, realtype cj,
N_Vector yy, N_Vector yp, N_Vector rr,
SUNMatrix Jac, void *user_data,
N_Vector tmpl, N_Vector tmp2, N_Vector tmp3);

Purpose This function computes the Jacobian matrix J of the DAE system (or an approximation
to it), defined by Eq. (2.6).
Arguments  tt is the current value of the independent variable ¢.
cj is the scalar in the system Jacobian, proportional to the inverse of the step
size (a in Eq. (2.6) ).
yy is the current value of the dependent variable vector, y(t).
yp is the current value of y(¢).
rr is the current value of the residual vector F(¢,y, 7).
Jac is the output (approximate) Jacobian matrix (of type SUNMatrix), J =

OF /0y + ¢j OF/0y.
user_data is a pointer to user data, the same as the user_data parameter passed to

IDASetUserData.
tmpl
tmp2
tmp3 are pointers to memory allocated for variables of type N_Vector which can

be used by IDALsJacFn function as temporary storage or work space.

Return value An IDALsJacFn should return 0 if successful, a positive value if a recoverable error
occurred, or a negative value if a nonrecoverable error occurred.

In the case of a recoverable eror return, the integrator will attempt to recover by reducing
the stepsize, and hence changing « in (2.6).

Notes Information regarding the structure of the specific SUNMATRIX structure (e.g., number
of rows, upper/lower bandwidth, sparsity type) may be obtained through using the
implementation-specific SUNMATRIX interface functions (see Chapter 10 for details).
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With direct linear solvers (i.e., linear solvers with type SUNLINEARSOLVER DIRECT), the
Jacobian matrix J(¢,y) is zeroed out prior to calling the user-supplied Jacobian function
so only nonzero elements need to be loaded into Jac.

With the default nonlinear solver (the native SUNDIALS Netwon method), each call to
the user’s IDALsJacFn function is preceded by a call to the IDAResFn user function with
the same (tt, yy, yp) arguments. Thus the Jacobian function can use any auxiliary
data that is computed and saved during the evaluation of the DAE residual. In the
case of a user-supplied or external nonlinear solver, this is also true if the residual
function is evaluated prior to calling the linear solver setup function (see §12.1.4 for
more information).

If the user’s IDALsJacFn function uses difference quotient approximations, it may need
to access quantities not in the call list. These quantities may include the current stepsize,
the error weights, etc. To obtain these, the user will need to add a pointer to ida_mem to
user_data and then use the IDAGet* functions described in §4.5.10.2. The unit roundoff
can be accessed as UNIT_ROUNDOFF defined in sundials_types.h.

dense:

A user-supplied dense Jacobian function must load the Neq x Neq dense matrix Jac
with an approximation to the Jacobian matrix J(¢,y,y) at the point (tt, yy, yp). The
accessor macros SM_ELEMENT D and SM_COLUMN_D allow the user to read and write dense
matrix elements without making explicit references to the underlying representation of
the SUNMATRIX_DENSE type. SM_ELEMENT D(J, i, j) references the (i, j)-th element
of the dense matrix Jac (with i, j = 0...N — 1). This macro is meant for small
problems for which efficiency of access is not a major concern. Thus, in terms of
the indices m and n ranging from 1 to IV, the Jacobian element J,,,, can be set using
the statement SM_ELEMENT D(J, m-1, n-1) =.J,,,. Alternatively, SM_.COLUMN.D(J, j)
returns a pointer to the first element of the j-th column of Jac (with j =0...N—1),
and the elements of the j-th column can then be accessed using ordinary array indexing.
Consequently, J,, , can be loaded using the statements col.n = SM_COLUMN_D(J, n-1);
colmn[m-1]1 = J,, ,. For large problems, it is more efficient to use SM_COLUMN_D than to
use SM_ELEMENT_D. Note that both of these macros number rows and columns starting
from 0. The SUNMATRIX_DENSE type and accessor macros are documented in §10.3.

banded:

A user-supplied banded Jacobian function must load the Neq x Neq banded matrix
Jac with an approximation to the Jacobian matrix J(t,y,y) at the point (tt, yy, yp).
The accessor macros SM_ELEMENT_B, SM_COLUMN_B, and SM_COLUMN_ELEMENT_B allow the
user to read and write banded matrix elements without making specific references to
the underlying representation of the SUNMATRIX_BAND type. SM_ELEMENT B(J, i, j)
references the (i, j)-th element of the banded matrix Jac, counting from 0. This
macro is meant for use in small problems for which efficiency of access is not a major
concern. Thus, in terms of the indices m and n ranging from 1 to N with (m,n)
within the band defined by mupper and mlower, the Jacobian element J,, , can be
loaded using the statement SM_ELEMENT B(J, m-1, n-1) = .J,, ,. The elements within
the band are those with -mupper < m-n < mlower. Alternatively, SM_COLUMN B(J,
j) returns a pointer to the diagonal element of the j-th column of Jac, and if we
assign this address to realtype *col_j, then the i-th element of the j-th column
is given by SM_COLUMN_ELEMENT B(col_j, i, j), counting from 0. Thus, for (m,n)
within the band, J, , can be loaded by setting col.n = SM_COLUMN.B(J, n-1); and
SM_COLUMN_ELEMENT B(colm, m-1, n-1) = J,, ,. The elements of the j-th column
can also be accessed via ordinary array indexing, but this approach requires knowledge
of the underlying storage for a band matrix of type SUNMATRIX_BAND. The array col n
can be indexed from —mupper to mlower. For large problems, it is more efficient to
use SM_COLUMN_B and SM_COLUMN_ELEMENT B than to use the SM_ELEMENT B macro. As
in the dense case, these macros all number rows and columns starting from 0. The
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SUNMATRIX_BAND type and accessor macros are documented in §10.4.

sparse:

A user-supplied sparse Jacobian function must load the Neq x Neq compressed-sparse-
column or compressed-sparse-row matrix Jac with an approximation to the Jacobian
matrix J(t,y,y) at the point (tt, yy, yp). Storage for Jac already exists on entry to
this function, although the user should ensure that sufficient space is allocated in Jac
to hold the nonzero values to be set; if the existing space is insufficient the user may
reallocate the data and index arrays as needed. The amount of allocated space in a
SUNMATRIX_SPARSE object may be accessed using the macro SM_NNZ_S or the routine
SUNSparseMatrix NNZ. The SUNMATRIX_SPARSE type and accessor macros are docu-
mented in §10.5.

The previous function type IDAD1sJacFn is identical to IDALsJacFn, and may still be
used for backward-compatibility. However, this will be deprecated in future releases, so
we recommend that users transition to the new function type name soon.

4.6.6 Jacobian-vector product (matrix-free linear solvers)

If a matrix-free linear solver is to be used (i.e., a NULL-valued SUNMATRIX was supplied to
IDASetLinearSolver), the user may provide a function of type IDALsJacTimesVecFn in the following
form, to compute matrix-vector products Jv. If such a function is not supplied, the default is a
difference quotient approximation to these products.

’ IDALsJacTimesVecFn ‘

Definition

Purpose

Arguments

Return value

Notes

typedef int (*IDALsJacTimesVecFn) (realtype tt, N_Vector yy,
N_Vector yp, N_Vector rr,
N_Vector v, N_Vector Jv,
realtype cj, void *user_data,
N_Vector tmpl, N_Vector tmp2);

This function computes the product Jv of the DAE system Jacobian J (or an approxi-
mation to it) and a given vector v, where J is defined by Eq. (2.6).

tt is the current value of the independent variable.

yy is the current value of the dependent variable vector, y(t).

yp is the current value of y(¢).

T is the current value of the residual vector F'(¢,y,9).

v is the vector by which the Jacobian must be multiplied to the right.

Jv is the computed output vector.

cj is the scalar in the system Jacobian, proportional to the inverse of the step

size (a in Eq. (2.6) ).

user_data is a pointer to user data, the same as the user_data parameter passed to
IDASetUserData.

tmpl

tmp2 are pointers to memory allocated for variables of type N_Vector which can
be used by IDALsJacTimesVecFn as temporary storage or work space.

The value returned by the Jacobian-times-vector function should be 0 if successful. A
nonzero value indicates that a nonrecoverable error occurred.

This function must return a value of J % v that uses the current value of J, i.e. as
evaluated at the current (¢,y,9).

If the user’s IDALsJacTimesVecFn function uses difference quotient approximations, it
may need to access quantities not in the call list. These include the current stepsize, the
error weights, etc. To obtain these, the user will need to add a pointer to ida_mem to
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user_data and then use the IDAGet* functions described in §4.5.10.2. The unit roundoff
can be accessed as UNIT _ROUNDOFF defined in sundials_types.h.

The previous function type IDASpilsJacTimesVecFn is identical to
IDALsJacTimesVecFn, and may still be used for backward-compatibility. However, this
will be deprecated in future releases, so we recommend that users transition to the new
function type name soon.

4.6.7 Jacobian-vector product setup (matrix-free linear solvers)

If the user’s Jacobian-times-vector requires that any Jacobian-related data be preprocessed or evalu-
ated, then this needs to be done in a user-supplied function of type IDALsJacTimesSetupFn, defined
as follows:

IDALsJacTimesSetupFn

Definition typedef int (*IDALsJacTimesSetupFn) (realtype tt, N_Vector yy,
N_Vector yp, N_Vector rr,
realtype cj, void *user_data);

Purpose This function preprocesses and/or evaluates Jacobian data needed by the Jacobian-
times-vector routine.
Arguments tt is the current value of the independent variable.
vy is the current value of the dependent variable vector, y(t).
yp is the current value of y(¢).
rr is the current value of the residual vector F(¢,y, 7).
cj is the scalar in the system Jacobian, proportional to the inverse of the step

size (a in Eq. (2.6) ).
user_data is a pointer to user data, the same as the user_data parameter passed to
IDASetUserData.

Return value The value returned by the Jacobian-vector setup function should be 0 if successful,
positive for a recoverable error (in which case the step will be retried), or negative for
an unrecoverable error (in which case the integration is halted).

Notes Each call to the Jacobian-vector setup function is preceded by a call to the IDAResFn
user function with the same (t,y, yp) arguments. Thus, the setup function can use any
auxiliary data that is computed and saved during the evaluation of the DAE residual.

If the user’s IDALsJacTimesVecFn function uses difference quotient approximations, it
may need to access quantities not in the call list. These include the current stepsize, the
error weights, etc. To obtain these, the user will need to add a pointer to ida_mem to
user_data and then use the IDAGet* functions described in §4.5.10.2. The unit roundoff
can be accessed as UNIT_ROUNDOFF defined in sundials_types.h.

The previous function type IDASpilsJacTimesSetupFn is identical to
IDALsJacTimesSetupFn, and may still be used for backward-compatibility. However,
this will be deprecated in future releases, so we recommend that users transition to the
new function type name soon.

4.6.8 Preconditioner solve (iterative linear solvers)

If a user-supplied preconditioner is to be used with a SUNLINSOL solver module, then the user must
provide a function to solve the linear system Pz = r where P is a left preconditioner matrix which
approximates (at least crudely) the Jacobian matrix J = 0F/0y + ¢j OF/9y. This function must be
of type IDALsPrecSolveFn, defined as follows:
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IDALsPrecSolvan‘

Definition typedef int (*IDALsPrecSolveFn)(realtype tt, N_Vector yy,
N_Vector yp, N_Vector rr,
N_Vector rvec, N_Vector zvec,
realtype cj, realtype delta,
void *user_data);

Purpose This function solves the preconditioning system Pz = r.
Arguments  tt is the current value of the independent variable.
vy is the current value of the dependent variable vector, y(t).
yp is the current value of y(t).
rr is the current value of the residual vector F'(¢,y, ).
rvec is the right-hand side vector r of the linear system to be solved.
zvec is the computed output vector.
cj is the scalar in the system Jacobian, proportional to the inverse of the step
size (o in Eq. (2.6) ).
delta is an input tolerance to be used if an iterative method is employed in the

solution. In that case, the residual vector Res = r — Pz of the system should
be made less than delta in weighted Iy norm, ie., /Y,(Res; - ewt;)? <
delta. To obtain the N_Vector ewt, call IDAGetErrWeights (see §4.5.10.2).

user_data is a pointer to user data, the same as the user_data parameter passed to
the function IDASetUserData.

Return value The value to be returned by the preconditioner solve function is a flag indicating whether
it was successful. This value should be 0 if successful, positive for a recoverable error
(in which case the step will be retried), negative for an unrecoverable error (in which
case the integration is halted).

Notes The previous function type IDASpilsPrecSolveFn is identical to IDALsPrecSolveFn,
and may still be used for backward-compatibility. However, this will be deprecated in
future releases, so we recommend that users transition to the new function type name
soon.

4.6.9 Preconditioner setup (iterative linear solvers)

If the user’s preconditioner requires that any Jacobian-related data be evaluated or preprocessed, then
this needs to be done in a user-supplied function of type IDALsPrecSetupFn, defined as follows:

IDALsPrecSetupFn

Definition typedef int (*IDALsPrecSetupFn) (realtype tt, N_Vector yy,
N_Vector yp, N_Vector rr,
realtype cj, void *user_data);

Purpose This function evaluates and/or preprocesses Jacobian-related data needed by the pre-
conditioner.
Arguments  tt is the current value of the independent variable.
vy is the current value of the dependent variable vector, y(t).
yp is the current value of y(t).
rr is the current value of the residual vector F'(¢,y, 7).
cj is the scalar in the system Jacobian, proportional to the inverse of the step

size (a in Eq. (2.6) ).
user_data is a pointer to user data, the same as the user_data parameter passed to
the function IDASetUserData.
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Return value The value returned by the preconditioner setup function is a flag indicating whether it

Notes

was successful. This value should be 0 if successful, positive for a recoverable error (in
which case the step will be retried), negative for an unrecoverable error (in which case
the integration is halted).

The operations performed by this function might include forming a crude approximate
Jacobian, and performing an LU factorization on the resulting approximation.

With the default nonlinear solver (the native SUNDIALS Netwon method), each call to
the preconditioner setup function is preceded by a call to the IDAResFn user function
with the same (tt, yy, yp) arguments. Thus the preconditioner setup function can
use any auxiliary data that is computed and saved during the evaluation of the DAE
residual. In the case of a user-supplied or external nonlinear solver, this is also true if
the residual function is evaluated prior to calling the linear solver setup function (see
§12.1.4 for more information).

This function is not called in advance of every call to the preconditioner solve function,
but rather is called only as often as needed to achieve convergence in the nonlinear
solver.

If the user’s IDALsPrecSetupFn function uses difference quotient approximations, it
may need to access quantities not in the call list. These include the current stepsize,
the error weights, etc. To obtain these, the user will need to add a pointer to ida_mem to
user_data and then use the IDAGet* functions described in §4.5.10.2. The unit roundoff
can be accessed as UNIT_ROUNDOFF defined in sundials_types.h.

The previous function type IDASpilsPrecSetupFn is identical to IDALsPrecSetupFn,
and may still be used for backward-compatibility. However, this will be deprecated in
future releases, so we recommend that users transition to the new function type name
soon.

4.7 Integration of pure quadrature equations

IDAS allows the DAE system to include pure quadratures. In this case, it is more efficient to treat
the quadratures separately by excluding them from the nonlinear solution stage. To do this, begin
by excluding the quadrature variables from the vectors yy and yp and the quadrature equations from
within res. Thus a separate vector yQ of quadrature variables is to satisfy (d/dt)yQ = fo(t,y,9). The
following is an overview of the sequence of calls in a user’s main program in this situation. Steps that
are unchanged from the skeleton program presented in §4.4 are grayed out.

1. Initialize parallel or multi-threaded environment, if appropriate

2. Set problem dimensions, etc.

This generally includes N, the problem size N (excluding quadrature variables), Nq, the number
of quadrature variables, and may include the local vector length Nlocal (excluding quadrature
variables), and local number of quadrature variables Nqlocal.

3. Set vectors of initial values

4. Create IDAS object

5. Initialize IDAS solver

6. Specify integration tolerances

7. Create matrix object

8. Create linear solver object
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Set linear solver optional inputs
Attach linear solver module

Set optional inputs

Create nonlinear solver object
Attach nonlinear solver module

Set nonlinear solver optional inputs
Correct initial values

Set vector of initial values for quadrature variables

Typically, the quadrature variables should be initialized to O.

Initialize quadrature integration

Call IDAQuadInit to specify the quadrature equation right-hand side function and to allocate
internal memory related to quadrature integration. See §4.7.1 for details.

Set optional inputs for quadrature integration

Call IDASetQuadErrCon to indicate whether or not quadrature variables should be used in the
step size control mechanism. If so, one of the IDAQuad*tolerances functions must be called to
specify the integration tolerances for quadrature variables. See §4.7.4 for details.

Advance solution in time

Extract quadrature variables

Call IDAGetQuad or IDAGetQuadDky to obtain the values of the quadrature variables or their
derivatives at the current time. See §4.7.3 for details.

Get optional outputs

Get quadrature optional outputs

Call IDAGetQuad* functions to obtain optional output related to the integration of quadratures.
See §4.7.5 for details.

Deallocate memory for solution vectors and for the vector of quadrature variables
Free solver memory

Free nonlinear solver memory

Free linear solver and matrix memory

Finalize MPI, if used

IDAQuadInit can be called and quadrature-related optional inputs (step 18 above) can be set, any-
where between steps 4 and 19.

4.7.1 Quadrature initialization and deallocation functions

The function IDAQuadInit activates integration of quadrature equations and allocates internal mem-
ory related to these calculations. The form of the call to this function is as follows:
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IDAQuadInit

Call flag = IDAQuadInit(ida mem, rhsQ, yQO);

Description The function IDAQuadInit provides required problem specifications, allocates internal
memory, and initializes quadrature integration.

Arguments idamem (void *) pointer to the IDAS memory block returned by IDACreate.

rhsQ (IDAQuadRhsFn) is the C function which computes fg, the right-hand side of
the quadrature equations. This function has the form £Q(t, yy, yp, rhsQ,
user_data) (for full details see §4.7.6).

yQo (N_Vector) is the initial value of yg.
Return value The return value flag (of type int) will be one of the following:

IDA_SUCCESS The call to IDAQuadInit was successful.
IDA_MEM_NULL The IDAS memory was not initialized by a prior call to IDACreate.
IDA_MEM FAIL A memory allocation request failed.

Notes If an error occurred, IDAQuadInit also sends an error message to the error handler
function.

F2003 Name FIDAQuadInit

In terms of the number of quadrature variables N, and maximum method order maxord, the size of
the real workspace is increased as follows:

e Base value: lenrw = lenrw + (maxord+5)N,

e If IDAQuadSVtolerances is called: lenrw = lenrw +N,
and the size of the integer workspace is increased as follows:

e Base value: leniw = leniw + (maxord+5)N,

e If IDAQuadSVtolerances is called: leniw = leniw 41N,

The function IDAQuadReInit, useful during the solution of a sequence of problems of same size,
reinitializes the quadrature-related internal memory and must follow a call to IDAQuadInit (and
maybe a call to IDAReInit). The number Nq of quadratures is assumed to be unchanged from the
prior call to IDAQuadInit. The call to the IDAQuadReInit function has the following form:

IDAQuadReInit‘

Call flag = IDAQuadRelInit(idamem, yQO);

Description The function IDAQuadReInit provides required problem specifications and reinitializes
the quadrature integration.

Arguments idamem (void *) pointer to the IDAS memory block.
yQo (N_Vector) is the initial value of yg.

Return value The return value flag (of type int) will be one of the following;:
IDA_SUCCESS The call to IDAReInit was successful.

IDA MEM NULL The IDAS memory was not initialized by a prior call to IDACreate.

IDA_NO_QUAD Memory space for the quadrature integration was not allocated by a prior
call to IDAQuadInit.

Notes If an error occurred, IDAQuadReInit also sends an error message to the error handler
function.

F2003 Name FIDAQuadReInit
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IDAQuadFree

Call IDAQuadFree(ida_mem) ;

Description The function IDAQuadFree frees the memory allocated for quadrature integration.
Arguments  The argument is the pointer to the IDAS memory block (of type void *).

Return value The function IDAQuadFree has no return value.

Notes In general, IDAQuadFree need not be called by the user as it is invoked automatically
by IDAFree.

F2003 Name FIDAQuadFree

4.7.2 IDAS solver function

Even if quadrature integration was enabled, the call to the main solver function IDASolve is exactly the
same as in §4.5.7. However, in this case the return value flag can also be one of the following:

IDA_QRHS_FAIL The quadrature right-hand side function failed in an unrecoverable man-
ner.

IDA_FIRST_QRHS_ERR The quadrature right-hand side function failed at the first call.

IDA_REP_QRHS_ERR Convergence test failures occurred too many times due to repeated recov-

erable errors in the quadrature right-hand side function. This value will
also be returned if the quadrature right-hand side function had repeated
recoverable errors during the estimation of an initial step size (assuming
the quadrature variables are included in the error tests).

4.7.3 Quadrature extraction functions

If quadrature integration has been initialized by a call to IDAQuadInit, or reinitialized by a call to
IDAQuadReInit, then IDAS computes both a solution and quadratures at time t. However, IDASolve
will still return only the solution y in y. Solution quadratures can be obtained using the following
function:

IDAGetQuad

Call flag = IDAGetQuad(ida mem, &tret, yQ);

Description The function IDAGetQuad returns the quadrature solution vector after a successful return
from IDASolve.

Arguments idamem (void *) pointer to the memory previously allocated by IDAInit.
tret (realtype) the time reached by the solver (output).

yQ (N_Vector) the computed quadrature vector.
Return value The return value flag of IDAGetQuad is one of:
IDA_SUCCESS IDAGetQuad was successful.
IDA_MEM_NULL ida-mem was NULL.
IDA_NO_QUAD Quadrature integration was not initialized.
IDA_BAD_DKY yQ is NULL.
F2003 Name FIDAGetQuad

The function IDAGetQuadDky computes the k-th derivatives of the interpolating polynomials for the
quadrature variables at time t. This function is called by IDAGetQuad with k = 0 and with the current
time at which IDASolve has returned, but may also be called directly by the user.
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IDAGetQuadDky

Call flag = IDAGetQuadDky(idamem, t, k, dkyQ);

Description  The function IDAGetQuadDky returns derivatives of the quadrature solution vector after
a successful return from IDASolve.

Arguments idamem (void *) pointer to the memory previously allocated by IDAInit.

Return value

F2003 Name

t (realtype) the time at which quadrature information is requested. The time
t must fall within the interval defined by the last successful step taken by IDAS.

k (int) order of the requested derivative. This must be < klast.

dkyQ (N_Vector) the vector containing the derivative. This vector must be allocated
by the user.

The return value flag of IDAGetQuadDky is one of:

IDA_SUCCESS IDAGetQuadDky succeeded.

IDA_MEM NULL The pointer to ida_mem was NULL.
IDA_NO_QUAD Quadrature integration was not initialized.
IDA BAD DKY The vector dkyQ is NULL.

IDA_BAD K k is not in the range 0,1, ..., klast.

IDA BAD.T The time t is not in the allowed range.

FIDAGetQuadDky

4.7.4 Optional inputs for quadrature integration

IDAS provides the following optional input functions to control the integration of quadrature equa-

tions.

| IDASetQuadErrCon

Call flag = IDASetQuadErrCon(ida_mem, errconQ);

Description  The function IDASetQuadErrCon specifies whether or not the quadrature variables are
to be used in the step size control mechanism within IDAS. If they are, the user must
call either IDAQuadSStolerances or IDAQuadSVtolerances to specify the integration
tolerances for the quadrature variables.

Arguments idamem (void *) pointer to the IDAS memory block.

Return value

Notes

F2003 Name

errconQ (booleantype) specifies whether quadrature variables are included (SUNTRUE)
or not (SUNFALSE) in the error control mechanism.

The return value flag (of type int) is one of:

IDA_SUCCESS The optional value has been successfully set.
IDA_MEM_NULL The ida_mem pointer is NULL
IDA NO_QUAD Quadrature integration has not been initialized.

By default, errconq is set to SUNFALSE.
It is illegal to call IDASetQuadErrCon before a call to IDAQuadInit.

FIDASetQuadErrCon

If the quadrature variables are part of the step size control mechanism, one of the following
functions must be called to specify the integration tolerances for quadrature variables.
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IDAQuadSStolerances‘

Call
Description

Arguments

Return value

F2003 Name

flag = IDAQuadSVtolerances(ida_mem, reltolQ, abstolQ);

The function IDAQuadSStolerances specifies scalar relative and absolute tolerances.
idamem (void *) pointer to the IDAS memory block.

reltolQ (realtype) is the scalar relative error tolerance.

abstolQ (realtype) is the scalar absolute error tolerance.

The return value flag (of type int) is one of:

IDA_SUCCESS The optional value has been successfully set.

IDANO_QUAD Quadrature integration was not initialized.

IDA_MEM NULL The ida_mem pointer is NULL.

IDA_ILL_INPUT One of the input tolerances was negative.

FIDAQuadSStolerances

IDAQuadSVtolerances

Call
Description

Arguments

Return value

F2003 Name

flag = IDAQuadSVtolerances(ida_mem, reltolQ, abstolQ);

The function IDAQuadSVtolerances specifies scalar relative and vector absolute toler-
ances.

idamem (void *) pointer to the IDAS memory block.
reltolQ (realtype) is the scalar relative error tolerance.
abstolQ (N_Vector) is the vector absolute error tolerance.
The return value flag (of type int) is one of:

IDA_SUCCESS  The optional value has been successfully set.
IDANO_QUAD  Quadrature integration was not initialized.
IDA MEM NULL The ida_mem pointer is NULL.
IDA_ILL_INPUT One of the input tolerances was negative.

FIDAQuadSVtolerances

4.7.5 Optional outputs for quadrature integration

IDAS provides the following functions that can be used to obtain solver performance information
related to quadrature integration.

IDAGetQuadNumRhsEvals

Call flag = IDAGetQuadNumRhsEvals(ida_mem, &nrhsQevals);

Description  The function IDAGetQuadNumRhsEvals returns the number of calls made to the user’s
quadrature right-hand side function.

Arguments idamem (void *) pointer to the IDAS memory block.

Return value

F2003 Name

nrhsQevals (long int) number of calls made to the user’s rhsQ function.
The return value flag (of type int) is one of:

IDA_SUCCESS The optional output value has been successfully set.
IDA MEM NULL The ida_mem pointer is NULL.
IDA_ NO_QUAD Quadrature integration has not been initialized.

FIDAGetQuadNumRhsEvals
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IDAGetQuadNumErrTestFails

Call flag = IDAGetQuadNumErrTestFails(ida mem, &nQetfails);

Description  The function IDAGetQuadNumErrTestFails returns the number of local error test fail-
ures due to quadrature variables.

Arguments idamem (void *) pointer to the IDAS memory block.
nQetfails (long int) number of error test failures due to quadrature variables.

Return value The return value flag (of type int) is one of:

IDA_SUCCESS The optional output value has been successfully set.
IDA MEM NULL The ida_mem pointer is NULL.
IDA_NO_QUAD Quadrature integration has not been initialized.

F2003 Name FIDAGetQuadNumErrTestFails

IDAGetQuadErrWeights‘

Call flag = IDAGetQuadErrWeights(ida mem, eQweight);

Description  The function IDAGetQuadErrWeights returns the quadrature error weights at the cur-
rent time.

Arguments idamem (void *) pointer to the IDAS memory block.
eQweight (N_Vector) quadrature error weights at the current time.
Return value The return value flag (of type int) is one of:

IDA_SUCCESS The optional output value has been successfully set.
IDA MEM NULL The ida_mem pointer is NULL.
IDA_NO_QUAD Quadrature integration has not been initialized.
Notes The user must allocate memory for eQuweight.
If quadratures were not included in the error control mechanism (through a call to

IDASetQuadErrCon with errcon = SUNTRUE), IDAGetQuadErrWeights does not set
the eQweight vector.

F2003 Name FIDAGetQuadErrWeights

IDAGetQuadStats‘

Call flag = IDAGetQuadStats(ida_mem, &nrhsQevals, &nQetfails);
Description The function IDAGetQuadStats returns the IDAS integrator statistics as a group.
Arguments idamem (void *) pointer to the IDAS memory block.
nrhsQevals (long int) number of calls to the user’s rhsQ function.
nQetfails (long int) number of error test failures due to quadrature variables.
Return value The return value flag (of type int) is one of
IDA_SUCCESS the optional output values have been successfully set.
IDA MEM NULL the ida_mem pointer is NULL.
IDA_NO_QUAD Quadrature integration has not been initialized.
F2003 Name FIDAGetQuadStats

4.7.6 User-supplied function for quadrature integration

For integration of quadrature equations, the user must provide a function that defines the right-hand
side of the quadrature equations (in other words, the integrand function of the integral that must be
evaluated). This function must be of type IDAQuadRhsFn defined as follows:
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IDAQuadRhsFn

Definition =~ typedef int (*IDAQuadRhsFn) (realtype t, N_Vector yy, N_Vector yp,
N_Vector rhsQ, void *user_data);

Purpose This function computes the quadrature equation right-hand side for a given value of the
independent variable ¢t and state vectors y and .

Arguments t is the current value of the independent variable.
vy is the current value of the dependent variable vector, y(t).
yp is the current value of the dependent variable derivative vector, g(t).
rhsQ is the output vector fo(t,y,y).

user_data is the user_data pointer passed to IDASetUserData.

Return value A IDAQuadRhsFn should return 0 if successful, a positive value if a recoverable error
occurred (in which case IDAS will attempt to correct), or a negative value if it failed
unrecoverably (in which case the integration is halted and IDA_QRHS_FAIL is returned).

Notes Allocation of memory for rhsQ is automatically handled within IDAS.

Both y and rhsQ are of type N_Vector, but they typically have different internal repre-
sentations. It is the user’s responsibility to access the vector data consistently (including
the use of the correct accessor macros from each NVECTOR implementation). For the
sake of computational efficiency, the vector functions in the two NVECTOR implementa-
tions provided with IDAS do not perform any consistency checks with respect to their
N_Vector arguments (see §9.3 and §9.4).

There is one situation in which recovery is not possible even if IDAQuadRhsFn function
returns a recoverable error flag. This is when this occurs at the very first call to the
IDAQuadRhsFn (in which case IDAS returns IDA_FIRST _QRHS_ERR).

4.8 A parallel band-block-diagonal preconditioner module

A principal reason for using a parallel DAE solver such as IDAS lies in the solution of partial differential
equations (PDEs). Moreover, the use of a Krylov iterative method for the solution of many such
problems is motivated by the nature of the underlying linear system of equations (2.5) that must be
solved at each time step. The linear algebraic system is large, sparse, and structured. However, if a
Krylov iterative method is to be effective in this setting, then a nontrivial preconditioner needs to be
used. Otherwise, the rate of convergence of the Krylov iterative method is usually unacceptably slow.
Unfortunately, an effective preconditioner tends to be problem-specific.

However, we have developed one type of preconditioner that treats a rather broad class of PDE-
based problems. It has been successfully used for several realistic, large-scale problems [41] and is
included in a software module within the IDAS package. This module works with the parallel vector
module NVECTOR_PARALLEL and generates a preconditioner that is a block-diagonal matrix with each
block being a band matrix. The blocks need not have the same number of super- and sub-diagonals,
and these numbers may vary from block to block. This Band-Block-Diagonal Preconditioner module
is called IDABBDPRE.

One way to envision these preconditioners is to think of the domain of the computational PDE
problem as being subdivided into M non-overlapping sub-domains. Each of these sub-domains is then
assigned to one of the M processors to be used to solve the DAE system. The basic idea is to isolate the
preconditioning so that it is local to each processor, and also to use a (possibly cheaper) approximate
residual function. This requires the definition of a new function G(¢,y,y) which approximates the
function F(t,y,y) in the definition of the DAE system (2.1). However, the user may set G = F.
Corresponding to the domain decomposition, there is a decomposition of the solution vectors y and y
into M disjoint blocks v,,, and 4,,,, and a decomposition of G into blocks G,,. The block G,, depends
on Y, and ¥,,, and also on components of y,,, and g, associated with neighboring sub-domains
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(so-called ghost-cell data). Let ¥, and ¥, denote y,, and ¢, (respectively) augmented with those
other components on which G,,, depends. Then we have

G(t,y,9) = [G1(t, 51, 91), Go(t, Y2, 92), - - .. Gar (8, Ynr, 4ar)] " (4.1)

and each of the blocks G, (¢, §m, ¥m) is uncoupled from the others.
The preconditioner associated with this decomposition has the form

P:diag[Pl,Pg,...,PM} (42)

where
P, = 0G| Oym + a0G o/ OUm, (4.3)

This matrix is taken to be banded, with upper and lower half-bandwidths mudq and m1dq defined as
the number of non-zero diagonals above and below the main diagonal, respectively. The difference
quotient approximation is computed using mudq + mldq +2 evaluations of G,,, but only a matrix of
bandwidth mukeep + mlkeep +1 is retained.

Neither pair of parameters need be the true half-bandwidths of the Jacobians of the local block of
G, if smaller values provide a more efficient preconditioner. Such an efficiency gain may occur if the
couplings in the DAE system outside a certain bandwidth are considerably weaker than those within
the band. Reducing mukeep and mlkeep while keeping mudq and mldq at their true values, discards
the elements outside the narrower band. Reducing both pairs has the additional effect of lumping the
outer Jacobian elements into the computed elements within the band, and requires more caution and
experimentation.

The solution of the complete linear system

Px=1b (4.4)

reduces to solving each of the equations
Pt = by (4.5)

and this is done by banded LU factorization of P,, followed by a banded backsolve.

Similar block-diagonal preconditioners could be considered with different treatment of the blocks
P,,. For example, incomplete LU factorization or an iterative method could be used instead of banded
LU factorization.

The IDABBDPRE module calls two user-provided functions to construct P: a required function
Gres (of type IDABBDLocalFn) which approximates the residual function G(¢,y,y) = F(t,y,y) and
which is computed locally, and an optional function Gcomm (of type IDABBDCommFn) which performs
all inter-process communication necessary to evaluate the approximate residual G. These are in
addition to the user-supplied residual function res. Both functions take as input the same pointer
user_data as passed by the user to IDASetUserData and passed to the user’s function res. The user
is responsible for providing space (presumably within user_data) for components of yy and yp that
are communicated by Gcomm from the other processors, and that are then used by Gres, which should
not do any communication.

IDABBDLocalFn

Definition =~ typedef int (*IDABBDLocalFn) (sunindextype Nlocal, realtype tt,
N_Vector yy, N_Vector yp, N_Vector gval,
void *user_data);

Purpose This Gres function computes G(t,y,y). It loads the vector gval as a function of tt,
yy, and yp.

Arguments Nlocal is the local vector length.
tt is the value of the independent variable.
vy is the dependent variable.

yp is the derivative of the dependent variable.
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gval is the output vector.

user_data is a pointer to user data, the same as the user_data parameter passed to
IDASetUserData.

Return value An IDABBDLocalFn function type should return 0 to indicate success, 1 for a recoverable
error, or -1 for a non-recoverable error.

Notes This function must assume that all inter-processor communication of data needed to
calculate gval has already been done, and this data is accessible within user_data.

The case where G is mathematically identical to F' is allowed.

IDABBDCommFn

Definition typedef int (*IDABBDCommFn) (sunindextype Nlocal, realtype tt,
N_Vector yy, N_Vector yp, void *user_data);

Purpose This Gcomm function performs all inter-processor communications necessary for the ex-
ecution of the Gres function above, using the input vectors yy and yp.
Arguments Nlocal is the local vector length.
tt is the value of the independent variable.
vy is the dependent variable.
yp is the derivative of the dependent variable.

user_data is a pointer to user data, the same as the user_data parameter passed to
IDASetUserData.

Return value An IDABBDCommFn function type should return 0 to indicate success, 1 for a recoverable
error, or -1 for a non-recoverable error.

Notes The Gcomm function is expected to save communicated data in space defined within the
structure user_data.

Each call to the Gcomm function is preceded by a call to the residual function res with
the same (tt, yy, yp) arguments. Thus Gcomm can omit any communications done by
res if relevant to the evaluation of Gres. If all necessary communication was done in
res, then Gcomm = NULL can be passed in the call to IDABBDPrecInit (see below).

Besides the header files required for the integration of the DAE problem (see §4.3), to use the
IDABBDPRE module, the main program must include the header file idas_bbdpre.h which declares
the needed function prototypes.

The following is a summary of the usage of this module and describes the sequence of calls in
the user main program. Steps that are unchanged from the user main program presented in §4.4 are
grayed-out.

1. Initialize MPI

2. Set problem dimensions etc.
3. Set vectors of initial values

4. Create IDAS object

5. Initialize 1DAS solver

6. Specify integration tolerances

7. Create linear solver object

When creating the iterative linear solver object, specify the use of left preconditioning (PREC_LEFT)
as IDAS only supports left preconditioning.

8. Set linear solver optional inputs
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10.

11.

12.
13.
14.
15.
16.
17.
18.

19.
20.
21.
22.
23.

. Attach linear solver module

Set optional inputs

Note that the user should not overwrite the preconditioner setup function or solve function through
calls to idIDASetPreconditioner optional input function.

Initialize the IDABBDPRE preconditioner module
Specify the upper and lower bandwidths mudq, mldq and mukeep, mlkeep and call

flag = IDABBDPrecInit(ida_mem, Nlocal, mudq, mldq,
mukeep, mlkeep, dg.rel_yy, Gres, Gcomm);

to allocate memory and initialize the internal preconditioner data. The last two arguments of
IDABBDPrecInit are the two user-supplied functions described above.

Create nonlinear solver object
Attach nonlinear solver module

Set nonlinear solver optional inputs
Correct initial values

Specify rootfinding problem
Advance solution in time

Get optional outputs

Additional optional outputs associated with IDABBDPRE are available by way of two routines
described below, IDABBDPrecGetWorkSpace and IDABBDPrecGetNumGfnEvals.

Deallocate memory for solution vectors
Free solver memory
Free nonlinear solver memory

Free linear solver memory

Finalize MPI

The user-callable functions that initialize (step 11 above) or re-initialize the IDABBDPRE preconditioner
module are described next.

| IDABBDPrecInit |

Call flag = IDABBDPrecInit(ida_mem, Nlocal, mudq, mldq,

mukeep, mlkeep, dq.-rel_yy, Gres, Gcomm);

Description  The function IDABBDPrecInit initializes and allocates (internal) memory for the ID-

ABBDPRE preconditioner.

Arguments idamem (void *) pointer to the IDAS memory block.

Nlocal  (sunindextype) local vector dimension.

mudq (sunindextype) upper half-bandwidth to be used in the difference-quotient
Jacobian approximation.

mldq (sunindextype) lower half-bandwidth to be used in the difference-quotient
Jacobian approximation.

mukeep (sunindextype) upper half-bandwidth of the retained banded approximate
Jacobian block.
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mlkeep  (sunindextype) lower half-bandwidth of the retained banded approximate
Jacobian block.

dg-rel_yy (realtype) the relative increment in components of y used in the difference
quotient approximations. The default is dg_rel_yy= v/unit roundoff, which
can be specified by passing dq_rel_yy= 0.0.

Gres (IDABBDLocalFn) the C function which computes the local residual approx-
imation G(t,y,9).

Gcomm (IDABBDCommFn) the optional C function which performs all inter-process
communication required for the computation of G(¢,y,9).

Return value The return value flag (of type int) is one of

IDALS_SUCCESS  The call to IDABBDPrecInit was successful.
IDALS MEM NULL The ida_mem pointer was NULL.

IDALS MEM _FAIL A memory allocation request has failed.
IDALS_LMEM NULL An IDALS linear solver memory was not attached.

IDALS_ILL_INPUT The supplied vector implementation was not compatible with the
block band preconditioner.

Notes If one of the half-bandwidths mudq or mldq to be used in the difference-quotient cal-
culation of the approximate Jacobian is negative or exceeds the value Nlocal—1, it is
replaced by 0 or Nlocal—1 accordingly.

The half-bandwidths mudq and mldq need not be the true half-bandwidths of the Jaco-
bian of the local block of G, when smaller values may provide a greater efficiency.

Also, the half-bandwidths mukeep and mlkeep of the retained banded approximate
Jacobian block may be even smaller, to reduce storage and computation costs further.

For all four half-bandwidths, the values need not be the same on every processor.
F2003 Name FIDABBDPrecInit

The IDABBDPRE module also provides a reinitialization function to allow for a sequence of prob-
lems of the same size, with the same linear solver choice, provided there is no change in local N,
mukeep, or mlkeep. After solving one problem, and after calling IDAReInit to re-initialize IDAS for
a subsequent problem, a call to IDABBDPrecReInit can be made to change any of the following: the
half-bandwidths mudq and m1dq used in the difference-quotient Jacobian approximations, the relative
increment dq._rel_yy, or one of the user-supplied functions Gres and Gcomm. If there is a change in
any of the linear solver inputs, an additional call to the “Set” routines provided by the SUNLINSOL
module, and/or one or more of the corresponding IDASet#*** functions, must also be made (in the
proper order).

| IDABBDPrecRelnit |
Call flag = IDABBDPrecReInit(ida_mem, mudq, mldq, dg-rel_yy);

Description The function IDABBDPrecReInit reinitializes the IDABBDPRE preconditioner.

Arguments idamem (void *) pointer to the IDAS memory block.

mudq (sunindextype) upper half-bandwidth to be used in the difference-quotient
Jacobian approximation.

mldq (sunindextype) lower half-bandwidth to be used in the difference-quotient
Jacobian approximation.

dg-rel_yy (realtype) the relative increment in components of y used in the difference
quotient approximations. The default is dq_rel_yy = v unit roundoff, which
can be specified by passing dq_-rel_yy = 0.0.

Return value The return value flag (of type int) is one of

IDALS_SUCCESS The call to IDABBDPrecReInit was successful.



4.8 A parallel band-block-diagonal preconditioner module 99

IDALS MEM NULL The ida_mem pointer was NULL.
IDALS_LMEM NULL An IDALS linear solver memory was not attached.
IDALS_PMEM NULL The function IDABBDPrecInit was not previously called.

Notes If one of the half-bandwidths mudq or mldq is negative or exceeds the value Nlocal—1,
it is replaced by 0 or Nlocal—1, accordingly.

F2003 Name FIDABBDPrecReInit

The following two optional output functions are available for use with the IDABBDPRE module:

IDABBDPrecGetWorkSpace

Call flag = IDABBDPrecGetWorkSpace(ida mem, &lenrwBBDP, &leniwBBDP) ;
Description  The function IDABBDPrecGetWorkSpace returns the local sizes of the IDABBDPRE real
and integer workspaces.
Arguments idamem  (void *) pointer to the IDAS memory block.
lenrwBBDP (long int) local number of real values in the IDABBDPRE workspace.
leniwBBDP (long int) local number of integer values in the IDABBDPRE workspace.
Return value The return value flag (of type int) is one of
IDALS_SUCCESS The optional output value has been successfully set.
IDALS MEM_NULL The ida_mem pointer was NULL.
IDALS_PMEM NULL The IDABBDPRE preconditioner has not been initialized.
Notes The workspace requirements reported by this routine correspond only to memory allo-

cated within the IDABBDPRE module (the banded matrix approximation, banded SUN-
LINSOL object, temporary vectors). These values are local to each process.

The workspaces referred to here exist in addition to those given by the corresponding
function IDAGetLinWorkSpace.

F2003 Name FIDABBDPrecGetWorkSpace

| IDABBDPrecGetNumGfnEvals |
Call flag = IDABBDPrecGetNumGfnEvals(ida_mem, &ngevalsBBDP);

Description The function IDABBDPrecGetNumGfnEvals returns the cumulative number of calls to
the user Gres function due to the finite difference approximation of the Jacobian blocks
used within IDABBDPRE’s preconditioner setup function.

Arguments ida_mem (void #) pointer to the IDAS memory block.
ngevalsBBDP (long int) the cumulative number of calls to the user Gres function.

Return value The return value flag (of type int) is one of
IDALS_SUCCESS The optional output value has been successfully set.

IDALS MEM_NULL The ida_mem pointer was NULL.
IDALS_PMEM NULL The IDABBDPRE preconditioner has not been initialized.

F2003 Name FIDABBDPrecGetNumGfnEvals

In addition to the ngevalsBBDP Gres evaluations, the costs associated with IDABBDPRE also include
nlinsetups LU factorizations, nlinsetups calls to Gcomm, npsolves banded backsolve calls, and
nrevalsLs residual function evaluations, where nlinsetups is an optional IDAS output (see §4.5.10.2),
and npsolves and nrevalsLS are linear solver optional outputs (see §4.5.10.5).






Chapter 5

Using IDAS for Forward Sensitivity
Analysis

This chapter describes the use of IDAS to compute solution sensitivities using forward sensitivity anal-
ysis. One of our main guiding principles was to design the IDAS user interface for forward sensitivity
analysis as an extension of that for IVP integration. Assuming a user main program and user-defined
support routines for IVP integration have already been defined, in order to perform forward sensitivity
analysis the user only has to insert a few more calls into the main program and (optionally) define
an additional routine which computes the residuals for sensitivity systems (2.12). The only departure
from this philosophy is due to the IDAResFn type definition (§4.6.1). Without changing the definition
of this type, the only way to pass values of the problem parameters to the DAE residual function is
to require the user data structure user_data to contain a pointer to the array of real parameters p.

IDAS uses various constants for both input and output. These are defined as needed in this chapter,
but for convenience are also listed separately in Appendix B.

We begin with a brief overview, in the form of a skeleton user program. Following that are detailed
descriptions of the interface to the various user-callable routines and of the user-supplied routines that
were not already described in Chapter 4.

5.1 A skeleton of the user’s main program

The following is a skeleton of the user’s main program (or calling program) as an application of IDAS.
The user program is to have these steps in the order indicated, unless otherwise noted. For the sake
of brevity, we defer many of the details to the later sections. As in §4.4, most steps are independent
of the NVECTOR, SUNMATRIX, SUNLINSOL, and SUNNONLINSOL implementations used. For the steps
that are not, refer to Chapter 9, 10, 11, and 12 for the specific name of the function to be called or
macro to be referenced.

Differences between the user main program in §4.4 and the one below start only at step (16). Steps
that are unchanged from the skeleton program presented in §4.4 are grayed out.

First, note that no additional header files need be included for forward sensitivity analysis beyond
those for IVP solution (§4.4).

1. Initialize parallel or multi-threaded environment, if appropriate
2. Set problem dimensions etc.

3. Set vectors of initial values

4. Create IDAS object

5. Initialize IDAS solver
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10.

11.

12.

13.

14.

15.

16.

Specify integration tolerances

Create matrix object

Create linear solver object

Set linear solver optional inputs

Attach linear solver module

Set optional inputs

Create nonlinear solver object

Attach nonlinear solver module

Set nonlinear solver optional inputs

Initialize quadrature problem, if not sensitivity-dependent

Define the sensitivity problem

eNumber of sensitivities (required)

Set Ns = N, the number of parameters with respect to which sensitivities are to be computed.

eProblem parameters (optional)

If IDAS is to evaluate the residuals of the sensitivity systems, set p, an array of Np real
parameters upon which the IVP depends. Only parameters with respect to which sensitivities
are (potentially) desired need to be included. Attach p to the user data structure user_data.
For example, user_data->p = p;

If the user provides a function to evaluate the sensitivity residuals, p need not be specified.

eParameter list (optional)
If IDAS is to evaluate the sensitivity residuals, set plist, an array of Ns integers to specify the
parameters p with respect to which solution sensitivities are to be computed. If sensitivities
with respect to the j-th parameter p[j] (0 < j < Np) are desired, set plist;, = j, for some
1=0,...,Ns— 1.
If plist is not specified, IDAS will compute sensitivities with respect to the first Ns parame-
ters; i.e., plist, =4 (i=0,...,Ns; —1).
If the user provides a function to evaluate the sensitivity residuals, plist need not be spec-
ified.

eParameter scaling factors (optional)

If 1DAS is to estimate tolerances for the sensitivity solution vectors (based on tolerances for
the state solution vector) or if IDAS is to evaluate the residuals of the sensitivity systems
using the internal difference-quotient function, the results will be more accurate if order of
magnitude information is provided.

Set pbar, an array of Ns positive scaling factors. Typically, if p; # 0, the value p; = |ppiist, |
can be used.

If pbar is not specified, IDAS will use p; = 1.0.

If the user provides a function to evaluate the sensitivity residual and specifies tolerances for
the sensitivity variables, pbar need not be specified.

Note that the names for p, pbar, plist, as well as the field p of user_data are arbitrary, but they
must agree with the arguments passed to IDASetSensParams below.
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17.

18.

19.

20.

21.

22.

23.

Set sensitivity initial conditions

Set the Ns vectors ySO[i] and ypSO[i] of initial values for sensitivities (for i = 0,..., Ns —1),
using the appropriate functions defined by the particular NVECTOR implementation chosen.

First, create an array of Ns vectors by making the appropriate call

ySO = N_VCloneVectorArray_x**(Ns, yO0);
or
ySO = N_VCloneVectorArrayEmpty_#**(Ns, y0);

Here the argument yO0 serves only to provide the N_Vector type for cloning.
Then, for each ¢ =0,... ,Ns —1, load initial values for the ¢-th sensitivity vector ySO[i].

Set the initial conditions for the Ns sensitivity derivative vectors ypSO of ¢ similarly.

Activate sensitivity calculations

Call flag = IDASensInit(...); to activate forward sensitivity computations and allocate inter-
nal memory for IDAS related to sensitivity calculations (see §5.2.1).

Set sensitivity tolerances

Call IDASensSStolerances, IDASensSVtolerances, or IDASensEEtolerances. See §5.2.2.

Set sensitivity analysis optional inputs

Call IDASetSens* routines to change from their default values any optional inputs that control
the behavior of IDAS in computing forward sensitivities. See §5.2.7.

Create sensitivity nonlinear solver object (optional)

If using a non-default nonlinear solver (see §5.2.3), then create the desired nonlinear solver object
by calling the appropriate constructor function defined by the particular SUNNONLINSOL imple-
mentation e.g.,

NLSSens = SUNNonlinSol_x**Sens(...);

where *** is the name of the nonlinear solver and ... are constructor specific arguments (see
Chapter 12 for details).

Attach the sensitvity nonlinear solver module (optional)

If using a non-default nonlinear solver, then initialize the nonlinear solver interface by attaching
the nonlinear solver object by calling

ier = IDASetNonlinearSolverSensSim(ida_mem, NLSSens);
when using the IDA_SIMULTANEQUS corrector method or
ier = IDASetNonlinearSolverSensStg(ida_mem, NLSSens);

when using the IDA_STAGGERED corrector method (see §5.2.3 for details).

Set sensitivity nonlinear solver optional inputs (optional)

Call the appropriate set functions for the selected nonlinear solver module to change optional
inputs specific to that nonlinear solver. These must be called after IDASensInit if using the
default nonlinear solver or after attaching a new nonlinear solver to IDAS, otherwise the optional
inputs will be overridden by IDAS defaults. See Chapter 12 for more information on optional
inputs.
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24. Correct initial values
25. Specify rootfinding problem
26. Advance solution in time

27. Extract sensitivity solution

After each successful return from IDASolve, the solution of the original IVP is available in the y
argument of IDASolve, while the sensitivity solution can be extracted into yS and ypS (which can
be the same as ySO and ypS0, respectively) by calling one of the following routines: IDAGetSens,
IDAGetSens1, IDAGetSensDky or IDAGetSensDkyl (see §5.2.6).

28. Get optional outputs
29. Deallocate memory for solution vector

30. Deallocate memory for sensitivity vectors
Upon completion of the integration, deallocate memory for the vectors contained in yS0O and ypSO0:
N_VDestroyVectorArray_**x*(ySO, Ns);

If yS was created from realtype arrays yS_i, it is the user’s responsibility to also free the space
for the arrays yS_i, and likewise for ypS.

31. Free user data structure

32. Free solver memory

33. Free nonlinear solver memory

34. Free vector specification memory

35. Free linear solver and matrix memory

36. Finalize MPI, if used

5.2 User-callable routines for forward sensitivity analysis

This section describes the IDAS functions, in addition to those presented in §4.5, that are called by
the user to set up and solve a forward sensitivity problem.

5.2.1 Forward sensitivity initialization and deallocation functions

Activation of forward sensitivity computation is done by calling IDASensInit. The form of the call
to this routine is as follows:

IDASensInit

Call flag = IDASensInit(ida_mem, Ns, ism, resS, ySO, ypSO0);

Description  The routine IDASensInit activates forward sensitivity computations and allocates in-
ternal memory related to sensitivity calculations.

Arguments idamem (void *) pointer to the IDAS memory block returned by IDACreate.
Ns (int) the number of sensitivities to be computed.

ism (int) a flag used to select the sensitivity solution method. Its value can be
either IDA_SIMULTANEQUS or IDA_STAGGERED:
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e In the IDA_SIMULTANEQUS approach, the state and sensitivity variables are
corrected at the same time. If the default Newton nonlinear solver is used,
this amounts to performing a modified Newton iteration on the combined
nonlinear system;

e In the IDA_STAGGERED approach, the correction step for the sensitivity
variables takes place at the same time for all sensitivity equations, but
only after the correction of the state variables has converged and the state
variables have passed the local error test;

resS (IDASensResFn) is the C function which computes the residual of the sensitiv-
ity DAE. For full details see §5.3.
yS0 (N_Vector *) a pointer to an array of Ns vectors containing the initial values

of the sensitivities of y.
ypSO (N_Vector *) a pointer to an array of Ns vectors containing the initial values
of the sensitivities of g.
Return value The return value flag (of type int) will be one of the following;:
IDA_SUCCESS  The call to IDASensInit was successful.

IDA MEM NULL The IDAS memory block was not initialized through a previous call to
IDACreate.

IDA_MEM FAIL A memory allocation request has failed.
IDA_TLL_INPUT An input argument to IDASensInit has an illegal value.

Notes Passing resS=NULL indicates using the default internal difference quotient sensitivity
residual routine.

If an error occurred, IDASensInit also prints an error message to the file specified by
the optional input errfp.

F2003 Name FIDASensInit

In terms of the problem size N, number of sensitivity vectors V4, and maximum method order maxord,
the size of the real workspace is increased as follows:

e Base value: lenrw = lenrw + (maxord+5)N N

e With IDASensSVtolerances: lenrw = lenrw + N, N
the size of the integer workspace is increased as follows:

e Base value: leniw = leniw + (maxord+5)N N;

e With IDASensSVtolerances: leniw = leniw +N,N;,

where N; is the number of integer words in one N_Vector.

The routine IDASensReInit, useful during the solution of a sequence of problems of same size,
reinitializes the sensitivity-related internal memory and must follow a call to IDASensInit (and maybe
a call to IDAReInit). The number Ns of sensitivities is assumed to be unchanged since the call to
IDASensInit. The call to the IDASensReInit function has the form:

’IDASensReInit‘
Call flag = IDASensReInit(idamem, ism, ySO, ypSO);

Description  The routine IDASensReInit reinitializes forward sensitivity computations.

Arguments idamem (void *) pointer to the IDAS memory block returned by IDACreate.

ism (int) a flag used to select the sensitivity solution method. Its value can be
either IDA_SIMULTANEQUS or IDA_STAGGERED.
yS0 (N_Vector *) a pointer to an array of Ns variables of type N_Vector containing

the initial values of the sensitivities of .
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Return value

Notes

F2003 Name

ypSO (N_Vector *) a pointer to an array of Ns variables of type N_Vector containing
the initial values of the sensitivities of g.

The return value flag (of type int) will be one of the following:

IDA_SUCCESS The call to IDAReInit was successful.

IDA_MEM_NULL The IDAS memory block was not initialized through a previous call to
IDACreate.

IDA_NO_SENS Memory space for sensitivity integration was not allocated through a
previous call to IDASensInit.

IDA_ILL_INPUT An input argument to IDASensReInit has an illegal value.
IDA_MEM FAIL A memory allocation request has failed.
All arguments of IDASensReInit are the same as those of IDASensInit.

If an error occurred, IDASensReInit also prints an error message to the file specified
by the optional input errfp.

FIDASensRelnit

To deallocate all forward sensitivity-related memory (allocated in a prior call to IDASensInit), the

user must call

IDASensFree

Call

Description

Arguments
Return value
Notes

F2003 Name

IDASensFree(ida_mem) ;

The function IDASensFree frees the memory allocated for forward sensitivity compu-
tations by a previous call to IDASensInit.

The argument is the pointer to the IDAS memory block (of type void *).
The function IDASensFree has no return value.

In general, IDASensFree need not be called by the user as it is invoked automatically
by IDAFree.

After a call to IDASensFree, forward sensitivity computations can be reactivated only
by calling IDASensInit again.

FIDASensFree

To activate and deactivate forward sensitivity calculations for successive IDAS runs, without having
to allocate and deallocate memory, the following function is provided:

IDASensToggleOff

Call IDASensToggleOff (ida_mem) ;

Description  The function IDASensToggleOff deactivates forward sensitivity calculations. It does
not deallocate sensitivity-related memory.

Arguments idamem (void *) pointer to the memory previously allocated by IDAInit.

Return value

Notes

F2003 Name

The return value flag of IDASensToggle is one of:
IDA_SUCCESS IDASensToggleOff was successful.
IDA_MEM_NULL ida_mem was NULL.

Since sensitivity-related memory is not deallocated, sensitivities can be reactivated at
a later time (using IDASensReInit).

FIDASensToggleOff

5.2.2 Forward sensitivity tolerance specification functions

One of the following three functions must be called to specify the integration tolerances for sensitivities.
Note that this call must be made after the call to IDASensInit.



5.2 User-callable routines for forward sensitivity analysis 107

’IDASensSStolerances

Call
Description

Arguments

Return value

F2003 Name

flag = IDASensSStolerances(ida_mem, reltolS, abstolS);

The function IDASensSStolerances specifies scalar relative and absolute tolerances.
idamem (void *) pointer to the IDAS memory block returned by IDACreate.
reltolS (realtype) is the scalar relative error tolerance.

abstolS (realtype*) is a pointer to an array of length Ns containing the scalar absolute
error tolerances.

The return flag flag (of type int) will be one of the following:

IDA_SUCCESS The call to IDASStolerances was successful.

IDA MEM NULL The IDAS memory block was not initialized through a previous call to
IDACreate.

IDA_NO_SENS  The sensitivity allocation function IDASensInit has not been called.
IDA_ILL_INPUT One of the input tolerances was negative.

FIDASensSStolerances

| IDASensSVtolerances]|

Call

Description

Arguments

Return value

Notes

F2003 Name

flag = IDASensSVtolerances(idamem, reltolS, abstolS);

The function IDASensSVtolerances specifies scalar relative tolerance and vector abso-

lute tolerances.

idamem (void *) pointer to the IDAS memory block returned by IDACreate.

reltolS (realtype) is the scalar relative error tolerance.

abstolS (N_Vector*) is an array of Ns variables of type N_Vector. The N_Vector from
abstolS[is] specifies the vector tolerances for is-th sensitivity.

The return flag flag (of type int) will be one of the following:

IDA_SUCCESS The call to IDASVtolerances was successful.

IDA_MEM NULL The IDAS memory block was not initialized through a previous call to
IDACreate.

IDANO_SENS  The sensitivity allocation function IDASensInit has not been called.
IDA_ILL_INPUT The relative error tolerance was negative or one of the absolute tolerance
vectors had a negative component.

This choice of tolerances is important when the absolute error tolerance needs to be
different for each component of any vector yS[i].

FIDASensSVtolerances

\IDASensEEtolerances\

Call

Description

Arguments

Return value

F2003 Name

flag = IDASensEEtolerances(ida mem) ;

When IDASensEEtolerances is called, IDAS will estimate tolerances for sensitivity vari-
ables based on the tolerances supplied for states variables and the scaling factors p.

ida mem (void *) pointer to the IDAS memory block returned by IDACreate.
The return flag flag (of type int) will be one of the following:

IDA_SUCCESS The call to IDASensEEtolerances was successful.

IDA MEM NULL The IDAS memory block was not initialized through a previous call to
IDACreate.

IDA_NO_SENS  The sensitivity allocation function IDASensInit has not been called.
FIDASensEEtolerances
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5.2.3 Forward sensitivity nonlinear solver interface functions

As in the pure DAE case, when computing solution sensitivities using forward sensitivitiy analysis IDAS
uses the SUNNONLINSOL implementation of Newton’s method defined by the SUNNONLINSOL_NEWTON
module (see §12.3) by default. To specify a different nonlinear solver in IDAS, the user’s program
must create a SUNNONLINSOL object by calling the appropriate constructor routine. The user must
then attach the SUNNONLINSOL object to IDAS by calling either IDASetNonlinearSolverSensSim
when using the IDA_SIMULTANEQUS corrector option, or IDASetNonlinearSolver (see §4.5.4) and
IDASetNonlinearSolverSensStg when using the IDA_STAGGERED corrector option, as documented
below.

When changing the nonlinear solver in IDAS, IDASetNonlinearSolver must be called after IDAInit;
similarly IDASetNonlinearSolverSensSim and IDASetNonlinearSolverStg must be called after
IDASensInit. If any calls to IDASolve have been made, then IDAS will need to be reinitialized
by calling IDAReInit to ensure that the nonlinear solver is initialized correctly before any subsequent
calls to IDASolve.

The first argument passed to the routines IDASetNonlinearSolverSensSim and
IDASetNonlinearSolverSensStg is the IDAS memory pointer returned by IDACreate and the second
argument is the SUNNONLINSOL object to use for solving the nonlinear system 2.4. A call to this
function attaches the nonlinear solver to the main IDAS integrator. We note that at present, the
SUNNONLINSOL object must be of type SUNNONLINEARSOLVER_ROOTFIND.

| IDASetNonlinearSolverSensSim|

Call flag = IDASetNonlinearSolverSensSim(ida_mem, NLS);

Description  The function IDASetNonLinearSolverSensSim attaches a SUNNONLINSOL object (NLS)
to IDAS when using the IDA_SIMULTANEQUS approach to correct the state and sensitivity
variables at the same time.

Arguments idamem (void *) pointer to the IDAS memory block.

NLS (SUNNonlinearSolver) SUNNONLINSOL object to use for solving nonlinear sys-
tems.

Return value The return value flag (of type int) is one of

IDA_SUCCESS The nonlinear solver was successfully attached.

IDA MEM NULL The ida mem pointer is NULL.

IDA_ILL_INPUT The SUNNONLINSOL object is NULL, does not implement the required
nonlinear solver operations, is not of the correct type, or the residual
function, convergence test function, or maximum number of nonlinear
iterations could not be set.

F2003 Name FIDASetNonlinearSolverSensSim

IDASetNonlinearSolverSensStg

Call flag = IDASetNonlinearSolverSensStg(ida_mem, NLS);

Description  The function IDASetNonLinearSolverSensStg attaches a SUNNONLINSOL object (NLS)
to IDAS when using the IDA_STAGGERED approach to correct the sensitivity variables
after the correction of the state variables.

Arguments idamem (void *) pointer to the IDAS memory block.

NLS (SUNNonlinearSolver) SUNNONLINSOL object to use for solving nonlinear sys-
tems.

Return value The return value flag (of type int) is one of

IDA_SUCCESS The nonlinear solver was successfully attached.
IDA MEM NULL The ida_mem pointer is NULL.
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IDA_ILL_INPUT The SUNNONLINSOL object is NULL, does not implement the required
nonlinear solver operations, is not of the correct type, or the residual
function, convergence test function, or maximum number of nonlinear
iterations could not be set.

Notes This function only attaches the SUNNONLINSOL object for correcting the sensitivity
variables. To attach a SUNNONLINSOL object for the state variable correction use
IDASetNonlinearSolver (see §4.5.4).

F2003 Name FIDASetNonlinearSolverSensStg

5.2.4 Forward sensitivity initial condition calculation function

IDACalcIC also calculates corrected initial conditions for sensitivity variables of a DAE system. When
used for initial conditions calculation of the forward sensitivities, IDACalcIC must be preceded by
successful calls to IDASensInit (or IDASensReInit) and should precede the call(s) to IDASolve. For
restrictions that apply for initial conditions calculation of the state variables, see §4.5.5.

Calling IDACalcIC is optional. It is only necessary when the initial conditions do not satisfy the
sensitivity systems. Even if forward sensitivity analysis was enabled, the call to the initial conditions
calculation function IDACalcIC is exactly the same as for state variables.

flag = IDACalcIC(ida_mem, icopt, toutl);

See §4.5.5 for a list of possible return values.

5.2.5 IDAS solver function

Even if forward sensitivity analysis was enabled, the call to the main solver function IDASolve is
exactly the same as in §4.5.7. However, in this case the return value flag can also be one of the
following:

IDA_SRES_FAIL The sensitivity residual function failed in an unrecoverable manner.

IDA REP_SRES_ERR The user’s residual function repeatedly returned a recoverable error flag, but the
solver was unable to recover.

5.2.6 Forward sensitivity extraction functions

If forward sensitivity computations have been initialized by a call to IDASensInit, or reinitialized by
a call to IDASensRelInit, then IDAS computes both a solution and sensitivities at time t. However,
IDASolve will still return only the solutions y and g in yret and ypret, respectively. Solution
sensitivities can be obtained through one of the following functions:

IDAGetSens

Call flag = IDAGetSens(ida mem, &tret, yS);
Description  The function IDAGetSens returns the sensitivity solution vectors after a successful return
from IDASolve.
Arguments idamem (void *) pointer to the memory previously allocated by IDAInit.
tret (realtype) the time reached by the solver (output).
yS (N_Vector x) the array of Ns computed forward sensitivity vectors.
Return value The return value flag of IDAGetSens is one of:
IDA_SUCCESS IDAGetSens was successful.
IDA_MEM_NULL ida-mem was NULL.
IDA_NO_SENS Forward sensitivity analysis was not initialized.
IDA_BAD DKY yS is NULL.
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Notes Note that the argument tret is an output for this function. Its value will be the same
as that returned at the last IDASolve call.

F2003 Name FIDAGetSens

The function IDAGetSensDky computes the k-th derivatives of the interpolating polynomials for the
sensitivity variables at time t. This function is called by IDAGetSens with k = 0, but may also be
called directly by the user.

IDAGetSensDky

Call flag = IDAGetSensDky(idamem, t, k, dkyS);

Description  The function IDAGetSensDky returns derivatives of the sensitivity solution vectors after
a successful return from IDASolve.

Arguments idamem (void *) pointer to the memory previously allocated by IDAInit.
t (realtype) specifies the time at which sensitivity information is requested.
The time t must fall within the interval defined by the last successful step
taken by IDAS.

k (int) order of derivatives. k must be in the range 0,1, ..., klast where klast is
the method order of the last successful step.
dkyS (N_Vector *) array of Ns vectors containing the derivatives on output. The

space for dkyS must be allocated by the user.
Return value The return value flag of IDAGetSensDky is one of:
IDA_SUCCESS IDAGetSensDky succeeded.
IDA_MEM_NULL ida-mem was NULL.
IDA_NO_SENS Forward sensitivity analysis was not initialized.
IDA_BAD DKY dkyS or one of the vectors dkyS[i] is NULL.
IDA_BAD K k is not in the range 0, 1, ..., klast.
IDA BAD.T The time t is not in the allowed range.
F2003 Name FIDAGetSensDky

Forward sensitivity solution vectors can also be extracted separately for each parameter in turn
through the functions IDAGetSens1 and IDAGetSensDky1, defined as follows:

IDAGetSens1

Call flag = IDAGetSensl(ida_mem, &tret, is, yS);

Description  The function IDAGetSens1 returns the is-th sensitivity solution vector after a successful
return from IDASolve.
Arguments idamem (void *) pointer to the memory previously allocated by IDAInit.
tret (realtype *) the time reached by the solver (output).
is (int) specifies which sensitivity vector is to be returned (0 <is< Nj).
yS (N_Vector) the computed forward sensitivity vector.
Return value The return value flag of IDAGetSens1 is one of:
IDA_SUCCESS IDAGetSensi1 was successful.
IDA_MEM_NULL ida_mem was NULL.
IDA_NO_SENS Forward sensitivity analysis was not initialized.
IDA BAD_IS The index is is not in the allowed range.
IDA_BAD DKY yS is NULL.
IDA BADT The time t is not in the allowed range.

Notes Note that the argument tret is an output for this function. Its value will be the same
as that returned at the last IDASolve call.

F2003 Name FIDAGetSensi



5.2 User-callable routines for forward sensitivity analysis 111

IDAGetSensDkyl

Call flag = IDAGetSensDkyl(idamem, t, k, is, dkyS);

Description  The function IDAGetSensDky1 returns the k-th derivative of the is-th sensitivity solu-
tion vector after a successful return from IDASolve.

Arguments ida mem (void *) pointer to the memory previously allocated by IDAInit.
t (realtype) specifies the time at which sensitivity information is requested.

The time t must fall within the interval defined by the last successful step
taken by IDAS.

k (int) order of derivative. k must be in the range 0, 1, ..., klast where klast is
the method order of the last successful step.
is (int) specifies the sensitivity derivative vector to be returned (0 <is< Nj).
dkyS (N_Vector) the vector containing the derivative on output. The space for dkyS
must be allocated by the user.
Return value The return value flag of IDAGetSensDky1 is one of:

IDA_SUCCESS IDAGetQuadDky1l succeeded.

IDA_MEM_NULL ida_mem was NULL.

IDA_NO_SENS Forward sensitivity analysis was not initialized.
IDA_BAD_DKY dkyS is NULL.

IDA BAD IS The index is is not in the allowed range.
IDA_BAD K k is not in the range 0,1, ..., klast.

IDA BAD.T The time t is not in the allowed range.
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5.2.7 Optional inputs for forward sensitivity analysis

Optional input variables that control the computation of sensitivities can be changed from their default
values through calls to IDASetSens* functions. Table 5.1 lists all forward sensitivity optional input
functions in IDAS which are described in detail in the remainder of this section.

We note that, on an error return, all of the optional input functions send an error message to the
error handler function. All error return values are negative, so the test flag < 0 will catch all errors.
Finally, a call to a IDASetSens*** function can be made from the user’s calling program at any time
and, if successful, takes effect immediately.

’IDASetSensParams

Call flag = IDASetSensParams(idamem, p, pbar, plist);

Description  The function IDASetSensParams specifies problem parameter information for sensitivity
calculations.

Arguments idamem (void *) pointer to the IDAS memory block.

P (realtype *) a pointer to the array of real problem parameters used to evalu-
ate F'(t,y,7y,p). If non-NULL, p must point to a field in the user’s data structure
user_data passed to the user’s residual function. (See §5.1).

Table 5.1: Forward sensitivity optional inputs

Optional input Routine name Default
Sensitivity scaling factors IDASetSensParams NULL

DQ approximation method IDASetSensDQMethod centered,0.0
Error control strategy IDASetSensErrCon SUNFALSE
Maximum no. of nonlinear iterations | IDASetSensMaxNonlinIters | 4
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Return value

pbar (realtype *) an array of Ns positive scaling factors. If non-NULL, pbar must
have all its components > 0.0. (See §5.1).

plist (int *) an array of Ns non-negative indices to specify which components of p
to use in estimating the sensitivity equations. If non-NULL, plist must have
all components > 0. (See §5.1).

The return value flag (of type int) is one of:

IDA_SUCCESS The optional value has been successfully set.
IDA_MEM NULL The ida_mem pointer is NULL.

IDA NO_SENS  Forward sensitivity analysis was not initialized.
IDA_ILL_INPUT An argument has an illegal value.

Notes This function must be preceded by a call to IDASensInit.

F2003 Name FIDASetSensParams

| IDASetSensDQMethod

Call flag = IDASetSensD(QMethod(ida_mem, DQtype, DQrhomax) ;

Description The function IDASetSensDQMethod specifies the difference quotient strategy in the case
in which the residual of the sensitivity equations are to be computed by IDAS.

Arguments idamem (void *) pointer to the IDAS memory block.

Return value

DQtype (int) specifies the difference quotient type and can be either IDA_CENTERED or
IDA_FORWARD.

DQrhomax (realtype) positive value of the selection parameter used in deciding switch-
ing between a simultaneous or separate approximation of the two terms in the
sensitivity residual.

The return value flag (of type int) is one of:

IDA_SUCCESS The optional value has been successfully set.
IDA MEM NULL The ida_mem pointer is NULL.
IDA_ILL_INPUT An argument has an illegal value.

Notes If DQrhomax = 0.0, then no switching is performed. The approximation is done simul-
taneously using either centered or forward finite differences, depending on the value of
DQtype. For values of DQrhomax > 1.0, the simultaneous approximation is used when-
ever the estimated finite difference perturbations for states and parameters are within
a factor of DQrhomax, and the separate approximation is used otherwise. Note that a
value DQrhomax < 1.0 will effectively disable switching. See §2.5 for more details.
The default value are DQtype=IDA_CENTERED and DQrhomax= 0.0.

F2003 Name FIDASetSensDQMethod

’IDASetSensErrCon‘

Call flag = IDASetSensErrCon(ida_mem, errconS);

Description  The function IDASetSensErrCon specifies the error control strategy for sensitivity vari-
ables.

Arguments idamem (void *) pointer to the IDAS memory block.

Return value

errconS (booleantype) specifies whether sensitivity variables are included (SUNTRUE)
or not (SUNFALSE) in the error control mechanism.

The return value flag (of type int) is one of:

IDA_SUCCESS The optional value has been successfully set.
IDA MEM NULL The ida_mem pointer is NULL.
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Notes

F2003 Name

By default, errconsS is set to SUNFALSE. If errconS=SUNTRUE then both state variables
and sensitivity variables are included in the error tests. If errconS=SUNFALSE then
the sensitivity variables are excluded from the error tests. Note that, in any event, all
variables are considered in the convergence tests.

FIDASetSensErrCon

’IDASetSensMaxNonlinIters

Call

Description

Arguments

Return value

Notes
F2003 Name

flag = IDASetSensMaxNonlinIters(ida_mem, maxcorS);

The function IDASetSensMaxNonlinIters specifies the maximum number of nonlinear
solver iterations for sensitivity variables per step.

idamem (void *) pointer to the IDAS memory block.
maxcorS (int) maximum number of nonlinear solver iterations allowed per step (> 0).

The return value flag (of type int) is one of:

IDA_SUCCESS The optional value has been successfully set.
IDA MEM NULL The ida_mem pointer is NULL.
IDA_MEM_FAIL The ida_mem SUNNONLINSOL module is NULL.

The default value is 4.
FIDASetSensMaxNonlinIters

5.2.8 Optional outputs for forward sensitivity analysis

5.2.8.1 Main solver optional output functions

Optional output functions that return statistics and solver performance information related to forward
sensitivity computations are listed in Table 5.2 and described in detail in the remainder of this section.

’IDAGetSensNumResEvals‘

Call

Description

Arguments

Return value

flag = IDAGetSensNumResEvals(ida_mem, &nfSevals);

The function IDAGetSensNumResEvals returns the number of calls to the sensitivity
residual function.

idamem (void *) pointer to the IDAS memory block.
nfSevals (long int) number of calls to the sensitivity residual function.

The return value flag (of type int) is one of:

IDA_SUCCESS The optional output value has been successfully set.

Table 5.2: Forward sensitivity optional outputs

Optional output Routine name

No. of calls to sensitivity residual function IDAGetSensNumResEvals

No. of calls to residual function for sensitivity | IDAGetNumResEvalsSens

No. of sensitivity local error test failures IDAGetSensNumErrTestFails

No. of calls to lin. solv. setup routine for sens. | IDAGetSensNumLinSolvSetups
Sensitivity-related statistics as a group IDAGetSensStats

Error weight vector for sensitivity variables IDAGetSensErrWeights

No. of sens. nonlinear solver iterations IDAGetSensNumNonlinSolvIters

No. of sens. convergence failures IDAGetSensNumNonlinSolvConvFails
Sens. nonlinear solver statistics as a group IDAGetSensNonlinSolvStats
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IDA MEM NULL The ida_mem pointer is NULL.
IDA_NO_SENS Forward sensitivity analysis was not initialized.
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| IDAGetNumResEvalsSens |

Call flag = IDAGetNumResEvalsSens(ida_mem, &nfevalsS);

Description  The function IDAGetNumResEvalsSEns returns the number of calls to the user’s residual
function due to the internal finite difference approximation of the sensitivity residuals.

Arguments idamem (void *) pointer to the IDAS memory block.

Return value

Notes

F2003 Name

nfevalsS (long int) number of calls to the user residual function for sensitivity resid-
uals.

The return value flag (of type int) is one of:

IDA_SUCCESS The optional output value has been successfully set.
IDA MEM NULL The ida_mem pointer is NULL.
IDA NO_SENS Forward sensitivity analysis was not initialized.

This counter is incremented only if the internal finite difference approximation routines
are used for the evaluation of the sensitivity residuals.

FIDAGetNumResEvalsSens

’IDAGetSensNumErrTestFails

Call

Description

Arguments

Return value

Notes

F2003 Name

flag = IDAGetSensNumErrTestFails(ida mem, &nSetfails);

The function IDAGetSensNumErrTestFails returns the number of local error test fail-
ures for the sensitivity variables that have occurred.

idamem (void *) pointer to the IDAS memory block.

nSetfails (long int) number of error test failures.

The return value flag (of type int) is one of:

IDA_SUCCESS The optional output value has been successfully set.
IDA MEM NULL The ida_mem pointer is NULL.

IDA_NO_SENS Forward sensitivity analysis was not initialized.

This counter is incremented only if the sensitivity variables have been included in the
error test (see IDASetSensErrCon in §5.2.7). Even in that case, this counter is not
incremented if the ism=IDA_SIMULTANEQUS sensitivity solution method has been used.

FIDAGetSensNumErrTestFails

IDAGetSensNumLinSolvSetups

Call

Description

Arguments

Return value

flag = IDAGetSensNumLinSolvSetups(ida_mem, &nlinsetupsS);

The function IDAGetSensNumLinSolvSetups returns the number of calls to the linear
solver setup function due to forward sensitivity calculations.

idamem (void *) pointer to the IDAS memory block.

nlinsetupsS (long int) number of calls to the linear solver setup function.
The return value flag (of type int) is one of:

IDA_SUCCESS The optional output value has been successfully set.

IDA_MEM NULL The ida mem pointer is NULL.

IDA_NO_SENS Forward sensitivity analysis was not initialized.
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Notes This counter is incremented only if a nonlinear solver requiring linear solves has been
used and staggered sensitivity solution method (ism=IDA_STAGGERED) was specified in
the call to IDASensInit (see §5.2.1).

F2003 Name FIDAGetSensNumLinSolvSetups

’IDAGetSensStats‘

Call flag = IDAGetSensStats(ida_mem, &nfSevals, &nfevalsS, &nSetfails,
&nlinsetupsS);

Description The function IDAGetSensStats returns all of the above sensitivity-related solver statis-
tics as a group.

Arguments idamem (void *) pointer to the IDAS memory block.
nfSevals (long int) number of calls to the sensitivity residual function.
nfevalsS (long int) number of calls to the user-supplied residual function.
nSetfails (long int) number of error test failures.
nlinsetupsS (long int) number of calls to the linear solver setup function.

Return value The return value flag (of type int) is one of:

IDA_SUCCESS The optional output values have been successfully set.
IDA MEM NULL The ida_mem pointer is NULL.
IDA_NO_SENS Forward sensitivity analysis was not initialized.
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IDAGetSensErrWeights

Call flag = IDAGetSensErrWeights(ida mem, eSweight);

Description  The function IDAGetSensErrWeights returns the sensitivity error weight vectors at the
current time. These are the reciprocals of the W; of (2.7) for the sensitivity variables.

Arguments idamem (void *) pointer to the IDAS memory block.

eSweight (N_Vector_S) pointer to the array of error weight vectors.
Return value The return value flag (of type int) is one of:

IDA_SUCCESS The optional output value has been successfully set.
IDA_MEM_NULL The ida_mem pointer is NULL.

IDA_NO_SENS Forward sensitivity analysis was not initialized.
Notes The user must allocate memory for eweightsS.

F2003 Name FIDAGetSensErrWeights

’IDAGetSensNumNonlinSoleters‘

Call flag = IDAGetSensNumNonlinSolvIters(ida.mem, &nSniters);

Description The function IDAGetSensNumNonlinSolvIters returns the number of nonlinear itera-
tions performed for sensitivity calculations.

Arguments idamem (void *) pointer to the IDAS memory block.
nSniters (long int) number of nonlinear iterations performed.
Return value The return value flag (of type int) is one of:

IDA_SUCCESS The optional output value has been successfully set.
IDA MEM NULL The ida mem pointer is NULL.

IDA_NO_SENS Forward sensitivity analysis was not initialized.
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IDA_MEM_FAIL The SUNNONLINSOL module is NULL.

Notes This counter is incremented only if ism was IDA_STAGGERED in the call to IDASensInit
(see §5.2.1).

F2003 Name FIDAGetSensNumNonlinSolvIters

’IDAGetSensNumNonlinSovaonvFails

Call flag = IDAGetSensNumNonlinSolvConvFails(idamem, &nSncfails);

Description The function IDAGetSensNumNonlinSolvConvFails returns the number of nonlinear
convergence failures that have occurred for sensitivity calculations.

Arguments idamem (void *) pointer to the IDAS memory block.

nSncfails (long int) number of nonlinear convergence failures.
Return value The return value flag (of type int) is one of:

IDA_SUCCESS The optional output value has been successfully set.
IDA MEM NULL The ida_mem pointer is NULL.
IDA_NO_SENS Forward sensitivity analysis was not initialized.

Notes This counter is incremented only if ism was IDA_STAGGERED in the call to IDASensInit
(see §5.2.1).

F2003 Name FIDAGetSensNumNonlinSolvConvFails

’IDAGetSenSNonlinSoletats‘

Call flag = IDAGetSensNonlinSolvStats(ida_mem, &nSniters, &nSncfails);

Description The function IDAGetSensNonlinSolvStats returns the sensitivity-related nonlinear
solver statistics as a group.

Arguments idamem (void *) pointer to the IDAS memory block.
nSniters (long int) number of nonlinear iterations performed.
nSncfails (long int) number of nonlinear convergence failures.

Return value The return value flag (of type int) is one of:

IDA_SUCCESS The optional output values have been successfully set.
IDA MEM NULL The ida_mem pointer is NULL.

IDA NO_SENS Forward sensitivity analysis was not initialized.
IDA_MEM_FAIL The SUNNONLINSOL module is NULL.

F2003 Name FIDAGetSensNonlinSolvStats

5.2.8.2 Initial condition calculation optional output functions

The sensitivity consistent initial conditions found by IDAS (after a successful call to IDACalcIC) can
be obtained by calling the following function:

’IDAGetSensConsistentIC‘

Call flag = IDAGetSensConsistentIC(idamem, yySO._mod, ypSO_mod);

Description The function IDAGetSensConsistentIC returns the corrected initial conditions calcu-
lated by IDACalcIC for sensitivities variables.
Arguments idamem (void *) pointer to the IDAS memory block.

yySOmod (N_Vector *) a pointer to an array of Ns vectors containing consistent sensi-
tivity vectors.
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ypSO_mod (N_Vector *) a pointer to an array of Ns vectors containing consistent sensi-
tivity derivative vectors.

Return value The return value flag (of type int) is one of

IDA_SUCCESS IDAGetSensConsistentIC succeeded.

IDA_MEM NULL The ida_mem pointer is NULL.

IDANO_SENS  The function IDASensInit has not been previously called.
IDA_ILL_INPUT IDASolve has been already called.

Notes If the consistent sensitivity vectors or consistent derivative vectors are not desired, pass
NULL for the corresponding argument.

The user must allocate space for yyS0_mod and ypSO_mod (if not NULL).
F2003 Name FIDAGetSensConsistentIC

5.3 User-supplied routines for forward sensitivity analysis

In addition to the required and optional user-supplied routines described in §4.6, when using IDAS for
forward sensitivity analysis, the user has the option of providing a routine that calculates the residual
of the sensitivity equations (2.12).

By default, IDAS uses difference quotient approximation routines for the residual of the sensitivity
equations. However, IDAS allows the option for user-defined sensitivity residual routines (which also
provides a mechanism for interfacing IDAS to routines generated by automatic differentiation).

The user may provide the residuals of the sensitivity equations (2.12), for all sensitivity parameters
at once, through a function of type IDASensResFn defined by:

IDASensResFn

Definition =~ typedef int (*IDASensResFn) (int Ns, realtype t,
N_Vector yy, N_Vector yp, N_Vector resval,
N_Vector *yS, N_Vector *ypS,
N_Vector *resvalS, void *user_data,
N_Vector tmpl, N_Vector tmp2, N_Vector tmp3);

Purpose This function computes the sensitivity residual for all sensitivity equations. It must com-

pute the vectors (OF/0y)s;(t)+ (0F/0y)s:(t)+ (OF/0p;) and store them in resvalS[i].
Arguments Ns is the number of sensitivities.

t is the current value of the independent variable.

vy is the current value of the state vector, y(t).

yp is the current value of ¢(t).

resval contains the current value F' of the original DAE residual.

yS contains the current values of the sensitivities s;.

ypS contains the current values of the sensitivity derivatives s;.

resvalS contains the output sensitivity residual vectors. Memory allocation for
resval$S is handled within IDAS.

user_data is a pointer to user data.

tmpl

tmp2

tmp3 are N_Vectors of length N which can be used as temporary storage.
Return value An IDASensResFn should return 0 if successful, a positive value if a recoverable error

occurred (in which case IDAS will attempt to correct), or a negative value if it failed

unrecoverably (in which case the integration is halted and IDA_SRES_FAIL is returned).
Notes There is one situation in which recovery is not possible even if IDASensResFn function

returns a recoverable error flag. That is when this occurs at the very first call to the

IDASensResFn, in which case IDAS returns IDA_FIRST_RES_FAIL.
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5.4 Integration of quadrature equations depending on forward
sensitivities

IDAS provides support for integration of quadrature equations that depends not only on the state
variables but also on forward sensitivities.

The following is an overview of the sequence of calls in a user’s main program in this situation.
Steps that are unchanged from the skeleton program presented in §5.1 are grayed out. See also §4.7.

1. Initialize parallel or multi-threaded environment
2. Set problem dimensions, etc.

3. Set vectors of initial values

4. Create IDAS object

5. Initialize 1DAS solver

Specify integration tolerances

Create matrix object

Create linear solver object

© » N >

Set linear solver optional inputs

10. Attach linear solver module

11. Set optional inputs

12. Create nonlinear solver object

13. Attach nonlinear solver module

14. Set nonlinear solver optional inputs

15. Initialize sensitivity-independent quadrature problem
16. Define the sensitivity problem

17. Set sensitivity initial conditions

18. Activate sensitivity calculations

19. Set sensitivity tolerances

20. Set sensitivity analysis optional inputs

21. Create sensitivity nonlinear solver object

22. Attach the sensitvity nonlinear solver module
23. Set sensitivity nonlinear solver optional inputs

24. Set vector of initial values for quadrature variables

Typically, the quadrature variables should be initialized to O.

25. Initialize sensitivity-dependent quadrature integration

Call IDAQuadSensInit to specify the quadrature equation right-hand side function and to allocate
internal memory related to quadrature integration. See §5.4.1 for details.
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26. Set optional inputs for sensitivity-dependent quadrature integration

Call IDASetQuadSensErrCon to indicate whether or not quadrature variables should be used in
the step size control mechanism. If so, one of the IDAQuadSens*tolerances functions must be
called to specify the integration tolerances for quadrature variables. See §5.4.4 for details.

27. Advance solution in time

28. Extract sensitivity-dependent quadrature variables

Call IDAGetQuadSens, IDAGetQuadSens1, IDAGetQuadSensDky or IDAGetQuadSensDky1 to obtain
the values of the quadrature variables or their derivatives at the current time. See §5.4.3 for details.

29. Get optional outputs
30. Extract sensitivity solution

31. Get sensitivity-dependent quadrature optional outputs

Call IDAGetQuadSens* functions to obtain optional output related to the integration of sensitivity-
dependent quadratures. See §5.4.5 for details.

32. Deallocate memory for solutions vector

33. Deallocate memory for sensitivity vectors

34. Deallocate memory for sensitivity-dependent quadrature variables
35. Free solver memory

36. Free nonlinear solver memory

37. Free vector specification memory

38. Free linear solver and matrix memory

39. Finalize MPI, if used

Note: IDAQuadSensInit (step 25 above) can be called and quadrature-related optional inputs (step
26 above) can be set, anywhere between steps 16 and 27.

5.4.1 Sensitivity-dependent quadrature initialization and deallocation

The function IDAQuadSensInit activates integration of quadrature equations depending on sensitiv-
ities and allocates internal memory related to these calculations. If rhsQS is input as NULL, then
IDAS uses an internal function that computes difference quotient approximations to the functions
gi = (0q/0y)s; + (0q/09)$; + Oq/Op;, in the notation of (2.10). The form of the call to this function
is as follows:

’IDAQuadSensInit‘

Call flag = IDAQuadSensInit(ida_mem, rhsQS, yQS0);

Description The function IDAQuadSensInit provides required problem specifications, allocates in-
ternal memory, and initializes quadrature integration.
Arguments idamem (void *) pointer to the IDAS memory block returned by IDACreate.

rhsQS  (IDAQuadSensRhsFn) is the C function which computes fgs, the right-hand
side of the sensitivity-dependent quadrature equations (for full details see
§5.4.6).

yQso (N_Vector x) contains the initial values of sensitivity-dependent quadratures.
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Return value The return value flag (of type int) will be one of the following;:

IDA_SUCCESS The call to IDAQuadSensInit was successful.

IDA MEM NULL The IDAS memory was not initialized by a prior call to IDACreate.
IDA_MEM FAIL A memory allocation request failed.

IDA_NO_SENS  The sensitivities were not initialized by a prior call to IDASensInit.
IDA_ILL_INPUT The parameter yQSO is NULL.

Notes Before calling IDAQuadSensInit, the user must enable the sensitivites by calling
IDASensInit.

If an error occurred, IDAQuadSensInit also sends an error message to the error handler
function.

F2003 Name FIDAQuadSensInit

In terms of the number of quadrature variables /N, and maximum method order maxord, the size of
the real workspace is increased as follows:

e Base value: lenrw = lenrw + (maxord+5)N,

o If IDAQuadSensSVtolerances is called: lenrw = lenrw +NN;N,
and the size of the integer workspace is increased as follows:

e Base value: leniw = leniw + (maxord+5)N,

o If IDAQuadSensSVtolerances is called: leniw = leniw +NN;N;

The function IDAQuadSensReInit, useful during the solution of a sequence of problems of same
size, reinitializes the quadrature related internal memory and must follow a call to IDAQuadSensInit.

The number Nq of quadratures as well as the number Ns of sensitivities are assumed to be unchanged
from the prior call to IDAQuadSensInit. The call to the IDAQuadSensReInit function has the form:

]IDAQuadSensReInit\

Call flag = IDAQuadSensReInit(ida_mem, yQSO);

Description The function IDAQuadSensRelInit provides required problem specifications and reini-
tializes the sensitivity-dependent quadrature integration.
Arguments idamem (void *) pointer to the IDAS memory block.

yQso (N_Vector *) contains the initial values of sensitivity-dependent quadratures.
Return value The return value flag (of type int) will be one of the following;:

IDA_SUCCESS The call to IDAQuadSensReInit was successful.
IDA_MEM_NULL The IDAS memory was not initialized by a prior call to IDACreate.

IDA_NO_SENS Memory space for the sensitivity calculation was not allocated by a
prior call to IDASensInit.

IDA_NO_QUADSENS Memory space for the sensitivity quadratures integration was not
allocated by a prior call to IDAQuadSensInit.

IDA_ILL_INPUT  The parameter yQSO is NULL.

Notes If an error occurred, IDAQuadSensReInit also sends an error message to the error
handler function.

F2003 Name FIDAQuadSensRelnit
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IDAQuadSensFree

Call IDAQuadSensFree(ida_mem) ;

Description The function IDAQuadSensFree frees the memory allocated for sensitivity quadrature
integration.

Arguments  The argument is the pointer to the IDAS memory block (of type void *).
Return value The function IDAQuadSensFree has no return value.

Notes In general, IDAQuadSensFree need not be called by the user as it is called automatically
by IDAFree.

F2003 Name FIDAQuadSensFree

5.4.2 IDAS solver function

Even if quadrature integration was enabled, the call to the main solver function IDASolve is exactly the

same as in §4.5.7. However, in this case the return value flag can also be one of the following:

IDA_QSRHS_FAIL The sensitivity quadrature right-hand side function failed in an unrecoverable
manner.

IDA_FIRST_QSRHS_ERR The sensitivity quadrature right-hand side function failed at the first call.

IDA REP QSRHS_ERR  Convergence test failures occurred too many times due to repeated recover-
able errors in the quadrature right-hand side function. The IDA_REP_RES_ERR
will also be returned if the quadrature right-hand side function had repeated
recoverable errors during the estimation of an initial step size (assuming the
sensitivity quadrature variables are included in the error tests).

5.4.3 Sensitivity-dependent quadrature extraction functions

If sensitivity-dependent quadratures have been initialized by a call to IDAQuadSensInit, or reinitial-
ized by a call to IDAQuadSensReInit, then IDAS computes a solution, sensitivities, and quadratures
depending on sensitivities at time t. However, IDASolve will still return only the solutions y and .
Sensitivity-dependent quadratures can be obtained using one of the following functions:

IDAGetQuadSens

Call flag = IDAGetQuadSens(ida_mem, &tret, yQS);

Description  The function IDAGetQuadSens returns the quadrature sensitivity solution vectors after
a successful return from IDASolve.
Arguments idamem (void *) pointer to the memory previously allocated by IDAInit.
tret (realtype) the time reached by the solver (output).
yQs (N_Vector x) array of Ns computed sensitivity-dependent quadrature vectors.
This array of vectors must be allocated by the user.

Return value The return value flag of IDAGetQuadSens is one of:

IDA_SUCCESS IDAGetQuadSens was successful.

IDA_MEM_NULL ida_mem was NULL.

IDA_NO_SENS Sensitivities were not activated.

IDA_NO_QUADSENS Quadratures depending on the sensitivities were not activated.
IDA_BAD_DKY yQS or one of the yQS[i] is NULL.

F2003 Name FIDAGetQuadSens

The function IDAGetQuadSensDky computes the k-th derivatives of the interpolating polynomials for
the sensitivity-dependent quadrature variables at time t. This function is called by IDAGetQuadSens
with k¥ = 0, but may also be called directly by the user.
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IDAGetQuadSensDky

Call flag = IDAGetQuadSensDky(idamem, t, k, dkyQS);

Description The function IDAGetQuadSensDky returns derivatives of the quadrature sensitivities
solution vectors after a successful return from IDASolve.
Arguments idamem (void *) pointer to the memory previously allocated by IDAInit.

t (realtype) the time at which information is requested. The time t must fall
within the interval defined by the last successful step taken by IDAS.

k (int) order of the requested derivative. k must be in the range 0, 1, ..., klast
where klast is the method order of the last successful step.

dkyQS (N_Vector *) array of Ns vectors containing the derivatives. This vector array
must be allocated by the user.

Return value The return value flag of IDAGetQuadSensDky is one of:

IDA_SUCCESS IDAGetQuadSensDky succeeded.

IDA_MEM_NULL ida_mem was NULL.

IDA_NO_SENS Sensitivities were not activated.

IDA_NO_QUADSENS Quadratures depending on the sensitivities were not activated.
IDA_BAD_DKY dkyQS or one of the vectors dkyQS[i] is NULL.

IDA BAD K k is not in the range 0,1, ..., klast.

IDA BADT The time t is not in the allowed range.

F2003 Name FIDAGetQuadSensDky

Quadrature sensitivity solution vectors can also be extracted separately for each parameter in turn
through the functions IDAGetQuadSens1 and IDAGetQuadSensDkyl, defined as follows:

’IDAGetQuadSensl

Call flag = IDAGetQuadSensl(ida mem, &tret, is, yQS);

Description The function IDAGetQuadSensl returns the is-th sensitivity of quadratures after a
successful return from IDASolve.

Arguments idamem (void *) pointer to the memory previously allocated by IDAInit.

(
tret (realtype) the time reached by the solver (output).
is (int) specifies which sensitivity vector is to be returned (0 <is< Nj).
yQs (N_Vector) the computed sensitivity-dependent quadrature vector. This vector

must be allocated by the user.

Return value The return value flag of IDAGetQuadSens1 is one of:

IDA_SUCCESS IDAGetQuadSens1 was successful.

IDA_MEM_NULL ida_mem was NULL.

IDA_NO_SENS Forward sensitivity analysis was not initialized.
IDA_NO_QUADSENS Quadratures depending on the sensitivities were not activated.
IDA BAD_IS The index is is not in the allowed range.

IDA_BAD_DKY yQS is NULL.

F2003 Name FIDAGetQuadSensi

IDAGetQuadSensDky1l

Call flag = IDAGetQuadSensDkyl(idamem, t, k, is, dkyQS);

Description  The function IDAGetQuadSensDky1 returns the k-th derivative of the is-th sensitivity
solution vector after a successful return from IDASolve.
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Arguments idamem (void *) pointer to the memory previously allocated by IDAInit.

t (realtype) specifies the time at which sensitivity information is requested.
The time t must fall within the interval defined by the last successful step
taken by IDAS.

k (int) order of derivative. k must be in the range 0, 1, ..., klast where klast is
the method order of the last successful step.

is (int) specifies the sensitivity derivative vector to be returned (0 <is< Nj).
dkyQS (N_Vector) the vector containing the derivative. The space for dkyQS must be
allocated by the user.

Return value The return value flag of IDAGetQuadSensDky1 is one of:

IDA_SUCCESS IDAGetQuadDkyl succeeded.
IDA_MEM_NULL ida_mem was NULL.
IDA_NO_SENS Forward sensitivity analysis was not initialized.

IDA_NO_QUADSENS Quadratures depending on the sensitivities were not activated.

IDA_BAD_DKY dkyQS is NULL.

IDA BAD_IS The index is is not in the allowed range.
IDA_BAD K k is not in the range 0,1, ..., klast.

IDA BADT The time t is not in the allowed range.

F2003 Name FIDAGetQuadSensDky1

5.4.4 Optional inputs for sensitivity-dependent quadrature integration

IDAS provides the following optional input functions to control the integration of sensitivity-dependent
quadrature equations.

’IDASetQuadSensErrCon‘

Call flag = IDASetQuadSensErrCon(ida mem, errconQS)

Description  The function IDASetQuadSensErrCon specifies whether or not the quadrature variables
are to be used in the local error control mechanism. If they are, the user must specify
the error tolerances for the quadrature variables by calling IDAQuadSensSStolerances,
IDAQuadSensSVtolerances, or IDAQuadSensEEtolerances.

Arguments idamem (void *) pointer to the IDAS memory block.

errcon@S (booleantype) specifies whether sensitivity quadrature variables are included
(SUNTRUE) or not (SUNFALSE) in the error control mechanism.

Return value The return value flag (of type int) is one of:

IDA_SUCCESS The optional value has been successfully set.
IDA_MEM NULL The ida mem pointer is NULL.
IDA_NO_SENS Sensitivities were not activated.

IDA_NO_QUADSENS Quadratures depending on the sensitivities were not activated.
Notes By default, errconQs is set to SUNFALSE.

It is illegal to call IDASetQuadSensErrCon before a call to IDAQuadSensInit.
F2003 Name FIDASetQuadSensErrCon

If the quadrature variables are part of the step size control mechanism, one of the following
functions must be called to specify the integration tolerances for quadrature variables.
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IDAQuadSensSStolerances

Call

Description

Arguments

flag = IDAQuadSensSVtolerances(ida mem, reltolQS, abstolQS);

The function IDAQuadSensSStolerances specifies scalar relative and absolute toler-
ances.

idamem (void *) pointer to the IDAS memory block.

abstolQS (realtype*) is a pointer to an array containing the Ns scalar absolute error

(

reltolQS (realtype) is the scalar relative error tolerance.

(
tolerances.

Return value The return value flag (of type int) is one of:

F2003 Name

IDA_SUCCESS The optional value has been successfully set.
IDA_MEM NULL The ida_mem pointer is NULL.
IDA_NO_SENS Sensitivities were not activated.

IDA_NO_QUADSENS Quadratures depending on the sensitivities were not activated.
IDA_ILL_INPUT  One of the input tolerances was negative.

FIDAQuadSensSStolerances

’IDAQuadSensSVtolerances‘

Call

Description

Arguments

flag = IDAQuadSensSVtolerances(ida mem, reltolQS, abstolQS);

The function IDAQuadSensSVtolerances specifies scalar relative and vector absolute
tolerances.

idamem (void *) pointer to the IDAS memory block.

reltolQS (realtype) is the scalar relative error tolerance.

abstolQS (N_Vectorx) is an array of Ns variables of type N_Vector. The N_Vector from
abstolS[is] specifies the vector tolerances for is-th quadrature sensitivity.

Return value The return value flag (of type int) is one of:

F2003 Name

IDA_SUCCESS The optional value has been successfully set.
IDA_NO_QUAD Quadrature integration was not initialized.
IDA_MEM NULL The ida_mem pointer is NULL.

IDA_NO_SENS Sensitivities were not activated.

IDA_NO_QUADSENS Quadratures depending on the sensitivities were not activated.
IDA_ILL_INPUT  One of the input tolerances was negative.

FIDAQuadSensSVtolerances

IDAQuadSensEEtolerances

Call

Description

Arguments

Return value

flag = IDAQuadSensEEtolerances(ida_mem);

The function IDAQuadSensEEtolerances specifies that the tolerances for the sensitivity-
dependent quadratures should be estimated from those provided for the pure quadrature
variables.

idamem (void *) pointer to the IDAS memory block.
The return value flag (of type int) is one of:

IDA_SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida_mem pointer is NULL.

IDA NO_SENS Sensitivities were not activated.

IDA_NO_QUADSENS Quadratures depending on the sensitivities were not activated.
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Notes When IDAQuadSensEEtolerances is used, before calling IDASolve, integration of pure
quadratures must be initialized (see 4.7.1) and tolerances for pure quadratures must be
also specified (see 4.7.4).

F2003 Name FIDAQuadSensEEtolerances

5.4.5 Optional outputs for sensitivity-dependent quadrature integration

IDAS provides the following functions that can be used to obtain solver performance information
related to quadrature integration.

IDAGetQuadSensNumRhsEvals

Call flag = IDAGetQuadSensNumRhsEvals(ida-mem, &nrhsQSevals);

Description The function IDAGetQuadSensNumRhsEvals returns the number of calls made to the
user’s quadrature right-hand side function.

Arguments  ida mem (void *) pointer to the IDAS memory block.
nrhsQSevals (long int) number of calls made to the user’s rhsQS function.
Return value The return value flag (of type int) is one of:

IDA_SUCCESS The optional output value has been successfully set.
IDA_MEM_NULL The ida mem pointer is NULL.
IDA_NO_QUADSENS Sensitivity-dependent quadrature integration has not been initialized.

F2003 Name FIDAGetQuadSensNumRhsEvals

IDAGetQuadSensNumErrTestFails‘

Call flag = IDAGetQuadSensNumErrTestFails(ida_mem, &nQSetfails);

Description The function IDAGetQuadSensNumErrTestFails returns the number of local error test
failures due to quadrature variables.

Arguments ida_mem (void *) pointer to the IDAS memory block.

nQSetfails (long int) number of error test failures due to quadrature variables.
Return value The return value flag (of type int) is one of:

IDA_SUCCESS The optional output value has been successfully set.
IDA_MEM_NULL The ida_mem pointer is NULL.
IDA_NO_QUADSENS Sensitivity-dependent quadrature integration has not been initialized.

F2003 Name FIDAGetQuadSensNumErrTestFails

IDAGetQuadSensErrWeights

Call flag = IDAGetQuadSensErrWeights(ida_mem, eQSweight);

Description  The function IDAGetQuadSensErrWeights returns the quadrature error weights at the
current time.

Arguments idamem  (void *) pointer to the IDAS memory block.
eQSweight (N_Vector *) array of quadrature error weight vectors at the current time.
Return value The return value flag (of type int) is one of:

IDA_SUCCESS The optional output value has been successfully set.
IDA MEM NULL The ida_mem pointer is NULL.
IDA_NO_QUADSENS Sensitivity-dependent quadrature integration has not been initialized.
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Notes The user must allocate memory for eQSweight.

If quadratures were not included in the error control mechanism (through a call to
IDASetQuadSensErrCon with errconQS=SUNTRUE)7 IDAGetQuadSensErrWeights does
not set the eQSweight vector.

F2003 Name FIDAGetQuadSensErrWeights

IDAGetQuadSensStats‘

Call flag = IDAGetQuadSensStats(ida mem, &nrhsQSevals, &nQSetfails);
Description The function IDAGetQuadSensStats returns the IDAS integrator statistics as a group.
Arguments ida mem (void *) pointer to the IDAS memory block.

nrhsQSevals (long int) number of calls to the user’s rhsQS function.

nQSetfails (long int) number of error test failures due to quadrature variables.
Return value The return value flag (of type int) is one of

IDA_SUCCESS the optional output values have been successfully set.

IDA_MEM NULL the ida_mem pointer is NULL.

IDA_NO_QUADSENS Sensitivity-dependent quadrature integration has not been initialized.
F2003 Name FIDAGetQuadSensStats

5.4.6 User-supplied function for sensitivity-dependent quadrature integra-
tion

For the integration of sensitivity-dependent quadrature equations, the user must provide a function
that defines the right-hand side of the sensitivity quadrature equations. For sensitivities of quadratures
(2.10) with integrands ¢, the appropriate right-hand side functions are given by q; = (9¢/0y)s; +
(0q/09)s; + Oq/Op;. This user function must be of type IDAQuadSensRhsFn, defined as follows:

’IDAQuadSensRhan‘

Definition ~ typedef int (*IDAQuadSensRhsFn) (int Ns, realtype t, N_Vector yy,
N_Vector yp, N_Vector *yyS, N_Vector *ypS,
N_Vector rrQ, N_Vector *rhsvalQsS,
void *user_data, N_Vector tmpl,
N_Vector tmp2, N_Vector tmp3)

Purpose This function computes the sensitivity quadrature equation right-hand side for a given
value of the independent variable ¢ and state vector y.
Arguments Ns is the number of sensitivity vectors.
t is the current value of the independent variable.
vy is the current value of the dependent variable vector, y(t).
yp is the current value of the dependent variable vector, §(t).
yyS is an array of Ns variables of type N_Vector containing the dependent sen-

sitivity vectors s;.

ypS is an array of Ns variables of type N_Vector containing the dependent sen-
sitivity derivatives $;.

rrQ is the current value of the quadrature right-hand side gq.

rhsvalQS contains the Ns output vectors.

user_data is the user_data pointer passed to IDASetUserData.

tmpl

tmp2
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tmp3 are N_Vectors which can be used as temporary storage.

Return value An IDAQuadSensRhsFn should return O if successful, a positive value if a recoverable
error occurred (in which case IDAS will attempt to correct), or a negative value if it failed
unrecoverably (in which case the integration is halted and IDA_QRHS_FAIL is returned).

Notes Allocation of memory for rhsvalQS is automatically handled within IDAS.

Both yy and yp are of type N_Vector and both yyS and ypS are pointers to an array
containing Ns vectors of type N_Vector. It is the user’s responsibility to access the vector
data consistently (including the use of the correct accessor macros from each NVECTOR
implementation). For the sake of computational efficiency, the vector functions in the
two NVECTOR implementations provided with IDAS do not perform any consistency
checks with respect to their N_Vector arguments (see §9.3 and §9.4).

There is one situation in which recovery is not possible even if IDAQuadSensRhsFn
function returns a recoverable error flag. That is when this occurs at the very first call
to the IDAQuadSensRhsFn, in which case IDAS returns IDA_FIRST_QSRHS_ERR).

5.5 Note on using partial error control

For some problems, when sensitivities are excluded from the error control test, the behavior of IDAS
may appear at first glance to be erroneous. One would expect that, in such cases, the sensitivity
variables would not influence in any way the step size selection.

The short explanation of this behavior is that the step size selection implemented by the error
control mechanism in IDAS is based on the magnitude of the correction calculated by the nonlinear
solver. As mentioned in §5.2.1, even with partial error control selected in the call to IDASensInit,
the sensitivity variables are included in the convergence tests of the nonlinear solver.

When using the simultaneous corrector method (§2.5), the nonlinear system that is solved at each
step involves both the state and sensitivity equations. In this case, it is easy to see how the sensitivity
variables may affect the convergence rate of the nonlinear solver and therefore the step size selection.
The case of the staggered corrector approach is more subtle. The sensitivity variables at a given
step are computed only once the solver for the nonlinear state equations has converged. However, if
the nonlinear system corresponding to the sensitivity equations has convergence problems, IDAS will
attempt to improve the initial guess by reducing the step size in order to provide a better prediction
of the sensitivity variables. Moreover, even if there are no convergence failures in the solution of the
sensitivity system, IDAS may trigger a call to the linear solver’s setup routine which typically involves
reevaluation of Jacobian information (Jacobian approximation in the case of IDADENSE and IDABAND,
or preconditioner data in the case of the Krylov solvers). The new Jacobian information will be used
by subsequent calls to the nonlinear solver for the state equations and, in this way, potentially affect
the step size selection.

When using the simultaneous corrector method it is not possible to decide whether nonlinear solver
convergence failures or calls to the linear solver setup routine have been triggered by convergence
problems due to the state or the sensitivity equations. When using one of the staggered corrector
methods, however, these situations can be identified by carefully monitoring the diagnostic information
provided through optional outputs. If there are no convergence failures in the sensitivity nonlinear
solver, and none of the calls to the linear solver setup routine were made by the sensitivity nonlinear
solver, then the step size selection is not affected by the sensitivity variables.

Finally, the user must be warned that the effect of appending sensitivity equations to a given system
of DAEs on the step size selection (through the mechanisms described above) is problem-dependent
and can therefore lead to either an increase or decrease of the total number of steps that IDAS takes to
complete the simulation. At first glance, one would expect that the impact of the sensitivity variables,
if any, would be in the direction of increasing the step size and therefore reducing the total number
of steps. The argument for this is that the presence of the sensitivity variables in the convergence
test of the nonlinear solver can only lead to additional iterations (and therefore a smaller iteration
error), or to additional calls to the linear solver setup routine (and therefore more up-to-date Jacobian



128 Using IDAS for Forward Sensitivity Analysis

information), both of which will lead to larger steps being taken by 1DAS. However, this is true only
locally. Overall, a larger integration step taken at a given time may lead to step size reductions at
later times, due to either nonlinear solver convergence failures or error test failures.



Chapter 6

Using IDAS for Adjoint Sensitivity
Analysis

This chapter describes the use of IDAS to compute sensitivities of derived functions using adjoint sensi-
tivity analysis. As mentioned before, the adjoint sensitivity module of IDAS provides the infrastructure
for integrating backward in time any system of DAEs that depends on the solution of the original IVP,
by providing various interfaces to the main IDAS integrator, as well as several supporting user-callable
functions. For this reason, in the following sections we refer to the backward problem and not to the
adjoint problem when discussing details relevant to the DAEs that are integrated backward in time.
The backward problem can be the adjoint problem (2.20) or (2.25), and can be augmented with some
quadrature differential equations.

IDAS uses various constants for both input and output. These are defined as needed in this chapter,
but for convenience are also listed separately in Appendix B.

We begin with a brief overview, in the form of a skeleton user program. Following that are detailed
descriptions of the interface to the various user-callable functions and of the user-supplied functions
that were not already described in Chapter 4.

6.1 A skeleton of the user’s main program

The following is a skeleton of the user’s main program as an application of IDAS. The user program
is to have these steps in the order indicated, unless otherwise noted. For the sake of brevity, we defer
many of the details to the later sections. As in §4.4, most steps are independent of the NVECTOR,
SUNMATRIX, SUNLINSOL, and SUNNONLINSOL implementations used. For the steps that are not, refer
to Chapters 9, 10, 11, and 12 for the specific name of the function to be called or macro to be
referenced.

Steps that are unchanged from the skeleton programs presented in §4.4, §5.1, and §5.4, are grayed
out.

1. Include necessary header files

The idas.h header file also defines additional types, constants, and function prototypes for the
adjoint sensitivity module user-callable functions. In addition, the main program should include an
NVECTOR implementation header file (for the particular implementation used) and, if a nonlinear
solver requiring a linear solver (e.g., the default Newton iteration) will be used, the header file of
the desired linear solver module.

2. Initialize parallel or multi-threaded environment

Forward problem

3. Set problem dimensions etc. for the forward problem
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10.
11.
12.
13.
14.
15.

16.

17.
18.
19.

20.

21.

22.

23.

. Set initial conditions for the forward problem

. Create IDAS object for the forward problem

. Initialize 1DAS solver for the forward problem

. Specify integration tolerances for forward problem
. Set optional inputs for the forward problem

. Create matrix object for the forward problem

Create linear solver object for the forward problem

Set linear solver optional inputs for the forward problem
Attach linear solver module for the forward problem

Create nonlinear solver module for the forward problem
Attach nonlinear solver module for the forward problem

Set nonlinear solver optional inputs for the forward problem

Initialize quadrature problem or problems for forward problems, using IDAQuadInit
and/or IDAQuadSensInit.

Initialize forward sensitivity problem
Specify rootfinding

Allocate space for the adjoint computation

Call IDAAdjInit() to allocate memory for the combined forward-backward problem (see §6.2.1
for details). This call requires Nd, the number of steps between two consecutive checkpoints.
IDAAdjInit also specifies the type of interpolation used (see §2.6.3).

Integrate forward problem

Call IDASolveF, a wrapper for the IDAS main integration function IDASolve, either in IDA_NORMAL
mode to the time tout or in IDA_ONE_STEP mode inside a loop (if intermediate solutions of the
forward problem are desired (see §6.2.3)). The final value of tret is then the maximum allowable
value for the endpoint T" of the backward problem.

Backward problem(s)

Set problem dimensions etc. for the backward problem

This generally includes NB, the number of variables in the backward problem and possibly the
local vector length NBlocal.

Set initial values for the backward problem

Set the endpoint time tBO = 7', and set the corresponding vectors yBO and ypBO at which the
backward problem starts.

Create the backward problem

Call IDACreateB, a wrapper for IDACreate, to create the IDAS memory block for the new backward
problem. Unlike IDACreate, the function IDACreateB does not return a pointer to the newly
created memory block (see §6.2.4). Instead, this pointer is attached to the internal adjoint memory
block (created by IDAAdjInit) and returns an identifier called which that the user must later
specify in any actions on the newly created backward problem.
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24.

25.

26.

27.

28.

29.

30.

31.

32.

Allocate memory for the backward problem

Call IDAInitB (or IDAInitBS, when the backward problem depends on the forward sensitivi-
ties). The two functions are actually wrappers for IDAInit and allocate internal memory, specify
problem data, and initialize IDAS at tBO for the backward problem (see §6.2.4).

Specify integration tolerances for backward problem

Call IDASStolerancesB(...) or IDASVtolerancesB(...) to specify a scalar relative tolerance
and scalar absolute tolerance, or a scalar relative tolerance and a vector of absolute tolerances,
respectively. The functions are wrappers for IDASStolerances(...) and IDASVtolerances(...)
but they require an extra argument which, the identifier of the backward problem returned by
IDACreateB. See §6.2.5 for more information.

Set optional inputs for the backward problem

Call IDASet*B functions to change from their default values any optional inputs that control the
behavior of IDAS. Unlike their counterparts for the forward problem, these functions take an extra
argument which, the identifier of the backward problem returned by IDACreateB (see §6.2.10).

Create matrix object for the backward problem

If a nonlinear solver requiring a linear solve will be used (e.g., the the default Newton iteration) and
the linear solver will be a direct linear solver, then a template Jacobian matrix must be created by
calling the appropriate constructor function defined by the particular SUNMATRIX implementation.

NOTE: The dense, banded, and sparse matrix objects are usable only in a serial or threaded
environment.

Note also that it is not required to use the same matrix type for both the forward and the backward
problems.
Create linear solver object for the backward problem

If a nonlinear solver requiring a linear solver is chosen (e.g., the default Newton iteration), then the
desired linear solver object for the backward problem must be created by calling the appropriate
constructor function defined by the particular SUNLINSOL implementation.

Note that it is not required to use the same linear solver module for both the forward and the
backward problems; for example, the forward problem could be solved with the SUNLINSOL_DENSE
linear solver module and the backward problem with SUNLINSOL_SPGMR linear solver module.
Set linear solver interface optional inputs for the backward problem

Call IDASet*B functions to change optional inputs specific to the linear solver interface. See
§6.2.10 for details.

Attach linear solver module for the backward problem

If a nonlinear solver requiring a linear solver is chosen for the backward problem (e.g., the default
Newton iteration), then initialize the IDALS linear solver interface by attaching the linear solver
object (and matrix object, if applicable) with the following call (for details see §4.5.3):

ier = IDASetLinearSolverB(...);

Create nonlinear solver object for the backward problem (optional)

If using a non-default nonlinear solver for the backward problem, then create the desired nonlinear
solver object by calling the appropriate constructor function defined by the particular SUNNON-
LINSOL implementation e.g., NLSB = SUNNonlinSol *#**(...); where **x is the name of the
nonlinear solver (see Chapter 12 for details).

Attach nonlinear solver module for the backward problem (optional)
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If using a non-default nonlinear solver for the backward problem, then initialize the nonlinear
solver interface by attaching the nonlinear solver object by calling
ier = IDASetNonlinearSolverB(idaode mem, NLSB); (see §6.2.7 for details).

33. Initialize quadrature calculation

If additional quadrature equations must be evaluated, call IDAQuadInitB or IDAQuadInitBS (if
quadrature depends also on the forward sensitivities) as shown in §6.2.12.1. These functions are
wrappers around IDAQuadInit and can be used to initialize and allocate memory for quadrature
integration. Optionally, call IDASetQuad*B functions to change from their default values optional
inputs that control the integration of quadratures during the backward phase.

34. Integrate backward problem

Call IDASolveB, a second wrapper around the IDAS main integration function IDASolve, to inte-
grate the backward problem from tBO (see §6.2.9). This function can be called either in IDA_NORMAL
or IDA_ONE_STEP mode. Typically, IDASolveB will be called in IDA_NORMAL mode with an end time
equal to the initial time ¢y of the forward problem.

35. Extract quadrature variables

If applicable, call IDAGetQuadB, a wrapper around IDAGetQuad, to extract the values of the quadra-
ture variables at the time returned by the last call to IDASolveB. See §6.2.12.2.

36. Deallocate memory

Upon completion of the backward integration, call all necessary deallocation functions. These
include appropriate destructors for the vectors y and yB, a call to IDAFree to free the IDAS
memory block for the forward problem. If one or more additional adjoint sensitivity analyses are
to be done for this problem, a call to IDAAdjFree (see §6.2.1) may be made to free and deallocate
the memory allocated for the backward problems, followed by a call to IDAAdjInit.

37. Free the nonlinear solver memory for the forward and backward problems
38. Free linear solver and matrix memory for the forward and backward problems

39. Finalize MPI, if used

The above user interface to the adjoint sensitivity module in IDAS was motivated by the desire to
keep it as close as possible in look and feel to the one for DAE IVP integration. Note that if steps
(21)-(35) are not present, a program with the above structure will have the same functionality as one
described in §4.4 for integration of DAESs, albeit with some overhead due to the checkpointing scheme.

If there are multiple backward problems associated with the same forward problem, repeat steps
(21)-(35) above for each successive backward problem. In the process, each call to IDACreateB creates
a new value of the identifier which.

6.2 User-callable functions for adjoint sensitivity analysis

6.2.1 Adjoint sensitivity allocation and deallocation functions

After the setup phase for the forward problem, but before the call to IDASolveF, memory for the
combined forward-backward problem must be allocated by a call to the function IDAAdjInit. The
form of the call to this function is

IDAAdjInit

Call flag = IDAAdjInit(ida_mem, Nd, interpType);
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Description

Arguments

Return value

Notes

F2003 Name

The function IDAAdjInit updates IDAS memory block by allocating the internal memory
needed for backward integration. Space is allocated for the Nd = N, interpolation data
points, and a linked list of checkpoints is initialized.

ida_mem (void *) is the pointer to the IDAS memory block returned by a previous
call to IDACreate.

Nd (long int) is the number of integration steps between two consecutive
checkpoints.

interpType (int) specifies the type of interpolation used and can be IDA_POLYNOMIAL
or IDA_HERMITE, indicating variable-degree polynomial and cubic Hermite
interpolation, respectively (see §2.6.3).

The return value flag (of type int) is one of:
IDA_SUCCESS IDAAdjInit was successful.

IDA_MEM FAIL A memory allocation request has failed.
IDA_MEM NULL ida_mem was NULL.

IDA_ILL_INPUT One of the parameters was invalid: Nd was not positive or interpType
is not one of the IDA_POLYNOMIAL or IDA_HERMITE.

The user must set Nd so that all data needed for interpolation of the forward problem
solution between two checkpoints fits in memory. IDAAdjInit attempts to allocate
space for (2Nd+3) variables of type N_Vector.

If an error occurred, IDAAdjInit also sends a message to the error handler function.

FIDAAdjInit

IDAAdjRelInit

Call

Description

Arguments

Return value

Notes

F2003 Name

IDAAdjFree

Call

Description

flag = IDAAdjReInit(ida_mem);

The function IDAAdjReInit reinitializes the IDAS memory block for ASA, assuming
that the number of steps between check points and the type of interpolation remain
unchanged.

ida mem (void *) is the pointer to the IDAS memory block returned by a previous call
to IDACreate.

The return value flag (of type int) is one of:

IDA_SUCCESS IDAAdjReInit was successful.
IDA MEM NULL ida_mem was NULL.
IDANO_ADJ  The function IDAAdjInit was not previously called.

The list of check points (and associated memory) is deleted.

The list of backward problems is kept. However, new backward problems can be added
to this list by calling IDACreateB. If a new list of backward problems is also needed, then
free the adjoint memory (by calling IDAAdjFree) and reinitialize ASA with IDAAdjInit.

The 1IDAS memory for the forward and backward problems can be reinitialized separately
by calling IDAReInit and IDAReInitB, respectively.

FIDAAdjRelInit

IDAAdjFree(ida mem) ;

The function IDAAdjFree frees the memory related to backward integration allocated
by a previous call to IDAAdjInit.
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Arguments The only argument is the IDAS memory block pointer returned by a previous call to
IDACreate.

Return value The function IDAAdjFree has no return value.

Notes This function frees all memory allocated by IDAAdjInit. This includes workspace
memory, the linked list of checkpoints, memory for the interpolation data, as well as
the IDAS memory for the backward integration phase.

Unless one or more further calls to IDAAdjInit are to be made, IDAAdjFree should not
be called by the user, as it is invoked automatically by IDAFree.

F2003 Name FIDAAdjFree

6.2.2 Adjoint sensitivity optional input

At any time during the integration of the forward problem, the user can disable the checkpointing of
the forward sensitivities by calling the following function:

IDAAdjSetNoSensi

Call flag = IDAAdjSetNoSensi(ida mem);

Description  The function IDAAdjSetNoSensi instructs IDASolveF not to save checkpointing data
for forward sensitivities any more.

Arguments idamem (void *) pointer to the IDAS memory block.
Return value The return flag (of type int) is one of:

IDA_SUCCESS The call to IDACreateB was successful.
IDA_MEM_NULL The ida_mem was NULL.
IDANO_ADJ  The function IDAAdjInit has not been previously called.

F2003 Name FIDAAdjSetNoSensi

6.2.3 Forward integration function

The function IDASolveF is very similar to the IDAS function IDASolve (see §4.5.7) in that it integrates
the solution of the forward problem and returns the solution (y,¥). At the same time, however,
IDASolveF stores checkpoint data every Nd integration steps. IDASolveF can be called repeatedly
by the user. Note that IDASolveF is used only for the forward integration pass within an Adjoint
Sensitivity Analysis. It is not for use in Forward Sensitivity Analysis; for that, see Chapter 5. The
call to this function has the form

IDASolveF

Call flag = IDASolveF(ida_mem, tout, &tret, yret, ypret, itask, &ncheck);

Description  The function IDASolveF integrates the forward problem over an interval in ¢ and saves
checkpointing data.

Arguments idamem (void *) pointer to the IDAS memory block.

tout (realtype) the next time at which a computed solution is desired.
tret (realtype) the time reached by the solver (output).

yret (N_Vector) the computed solution vector y.

ypret  (N_Vector) the computed solution vector .

itask (int) a flag indicating the job of the solver for the next step. The IDA_NORMAL
task is to have the solver take internal steps until it has reached or just passed
the user-specified tout parameter. The solver then interpolates in order to
return an approximate value of y(tout) and y(tout). The IDA_ONE_STEP option
tells the solver to take just one internal step and return the solution at the
point reached by that step.
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Return value

Notes

F2003 Name

ncheck (int) the number of (internal) checkpoints stored so far.

On return, IDASolveF returns vectors yret, ypret and a corresponding independent
variable value ¢ = tret, such that yret is the computed value of y(t) and ypret the
value of ¢(t). Additionally, it returns in ncheck the number of internal checkpoints
saved; the total number of checkpoint intervals is ncheck+1. The return value flag (of
type int) will be one of the following. For more details see §4.5.7.

IDA_SUCCESS IDASolveF succeeded.

IDA_TSTOP_RETURN IDASolveF succeeded by reaching the optional stopping point.

IDA_ROOT_RETURN IDASolveF succeeded and found one or more roots. In this case,
tret is the location of the root. If nrtfn > 1, call IDAGetRootInfo
to see which g; were found to have a root.

IDA_NO_MALLOC The function IDAInit has not been previously called.

IDA_ILL_INPUT One of the inputs to IDASolveF is illegal.

IDA_TOO_MUCH_WORK The solver took mxstep internal steps but could not reach tout.

IDA_TOO_MUCH_ACC The solver could not satisfy the accuracy demanded by the user for
some internal step.

IDA_ERR_FAILURE Error test failures occurred too many times during one internal
time step or occurred with |h| = hpin.

IDA_CONV_FAILURE Convergence test failures occurred too many times during one in-
ternal time step or occurred with |h| = hpin.

IDA_LSETUP_FAIL The linear solver’s setup function failed in an unrecoverable man-
ner.

IDA_LSOLVE_FAIL The linear solver’s solve function failed in an unrecoverable manner.
IDA_NO_ADJ The function IDAAdjInit has not been previously called.

IDA MEM FAIL A memory allocation request has failed (in an attempt to allocate
space for a new checkpoint).

All failure return values are negative and therefore a test flag< 0 will trap all IDASolveF
failures.

At this time, IDASolveF stores checkpoint information in memory only. Future versions
will provide for a safeguard option of dumping checkpoint data into a temporary file as
needed. The data stored at each checkpoint is basically a snapshot of the IDAS internal
memory block and contains enough information to restart the integration from that
time and to proceed with the same step size and method order sequence as during the
forward integration.

In addition, IDASolveF also stores interpolation data between consecutive checkpoints
so that, at the end of this first forward integration phase, interpolation information is
already available from the last checkpoint forward. In particular, if no checkpoints were
necessary, there is no need for the second forward integration phase.

It is illegal to change the integration tolerances between consecutive calls to IDASolveF,
as this information is not captured in the checkpoint data.

FIDASolveF

6.2.4 Backward problem initialization functions

The functions IDACreateB and IDAInitB (or IDAInitBS) must be called in the order listed. They
instantiate an IDAS solver object, provide problem and solution specifications, and allocate internal
memory for the backward problem.



136 Using IDAS for Adjoint Sensitivity Analysis

IDACreateB

Call flag = IDACreateB(ida mem, &which);
Description  The function IDACreateB instantiates an IDAS solver object for the backward problem.

Arguments idamem (void *) pointer to the IDAS memory block returned by IDACreate.
which (int) contains the identifier assigned by IDAS for the newly created backward
problem. Any call to IDA*B functions requires such an identifier.
Return value The return flag (of type int) is one of:

IDA_SUCCESS The call to IDACreateB was successful.

IDA_MEM_NULL The ida_mem was NULL.

IDANO_ADJ  The function IDAAdjInit has not been previously called.
IDA_MEM_FAIL A memory allocation request has failed.

F2003 Name FIDACreateB

There are two initialization functions for the backward problem — one for the case when the
backward problem does not depend on the forward sensitivities, and one for the case when it does.
These two functions are described next.

The function IDAInitB initializes the backward problem when it does not depend on the for-
ward sensitivities. It is essentially wrapper for IDAInit with some particularization for backward
integration, as described below.

Call flag = IDAInitB(ida_mem, which, resB, tBO, yBO, ypBO);

Description  The function IDAInitB provides problem specification, allocates internal memory, and
initializes the backward problem.

Arguments idamem (void *) pointer to the IDAS memory block returned by IDACreate.
which (int) represents the identifier of the backward problem.
resB (IDAResFnB) is the C function which computes fB, the residual of the back-

ward DAE problem. This function has the form resB(t, y, yp, yB, ypB,
resvalB, user_dataB) (for full details see §6.3.1).

tBO (realtype) specifies the endpoint 7" where final conditions are provided for the
backward problem, normally equal to the endpoint of the forward integration.
yBO (N_Vector) is the initial value (at ¢ = tBO) of the backward solution.

ypBO (N_Vector) is the initial derivative value (at ¢ = tB0) of the backward solution.
Return value The return flag (of type int) will be one of the following:

IDA_SUCCESS The call to IDAInitB was successful.

IDA_NO_MALLOC The function IDAInit has not been previously called.
IDA_MEM NULL The ida_mem was NULL.

IDA_NO_ADJ The function IDAAdjInit has not been previously called.

IDA_BAD_-TBO The final time tBO was outside the interval over which the forward
problem was solved.

IDA_ILL_INPUT The parameter which represented an invalid identifier, or one of yBO,
ypBO, resB was NULL.

Notes The memory allocated by IDAInitB is deallocated by the function IDAAdjFree.
F2003 Name FIDAInitB

For the case when backward problem also depends on the forward sensitivities, user must call
IDAInitBS instead of IDAInitB. Only the third argument of each function differs between these
functions.
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IDAInitBS

Call flag = IDAInitBS(ida_mem, which, resBS, tBO, yBO, ypBO);

Description The function IDAInitBS provides problem specification, allocates internal memory, and
initializes the backward problem.

Arguments idamem (void *) pointer to the IDAS memory block returned by IDACreate.
which (int) represents the identifier of the backward problem.

resBS  (IDAResFnBS) is the C function which computes fB, the residual or the back-
ward DAE problem. This function has the form resBS(t, y, yp, yS, ypS,
yB, ypB, resvalB, user_dataB) (for full details see §6.3.2).

tBO (realtype) specifies the endpoint T' where final conditions are provided for
the backward problem.
yBO (N_Vector) is the initial value (at ¢ = tBO) of the backward solution.

ypBO (N_Vector) is the initial derivative value (at ¢ = tB0) of the backward solution.
Return value The return flag (of type int) will be one of the following:

IDA_SUCCESS  The call to IDAInitB was successful.

IDA_NO_MALLOC The function IDAInit has not been previously called.
IDA_MEM NULL The ida_mem was NULL.

IDA_NO_ADJ The function IDAAdjInit has not been previously called.

IDA_BAD_-TBO The final time tBO was outside the interval over which the forward
problem was solved.

IDA_TLL_INPUT The parameter which represented an invalid identifier, or one of yBO,
ypBO, resB was NULL, or sensitivities were not active during the forward
integration.

Notes The memory allocated by IDAInitBS is deallocated by the function IDAAdjFree.
F2003 Name FIDAInitBS

The function IDAReInitB reinitializes IDAS for the solution of a series of backward problems, each
identified by a value of the parameter which. IDAReInitB is essentially a wrapper for IDAReInit, and
so all details given for IDAReInit in §4.5.11 apply here. Also, IDAReInitB can be called to reinitialize
a backward problem even if it has been initialized with the sensitivity-dependent version IDAInitBS.
Before calling IDAReInitB for a new backward problem, call any desired solution extraction functions
IDAGet** associated with the previous backward problem. The call to the IDAReInitB function has
the form

IDAReInitB

Call flag = IDAReInitB(ida_mem, which, tBO, yBO, ypBO)
Description The function IDAReInitB reinitializes an IDAS backward problem.

Arguments idamem (void *) pointer to IDAS memory block returned by IDACreate.
which (int) represents the identifier of the backward problem.

tBO (realtype) specifies the endpoint T' where final conditions are provided for
the backward problem.
yBO (N_Vector) is the initial value (at ¢ = tBO) of the backward solution.

ypBO (N_Vector) is the initial derivative value (at ¢ = tB0) of the backward solution.
Return value The return value flag (of type int) will be one of the following;:

IDA_SUCCESS  The call to IDAReInitB was successful.

IDA_NO_MALLOC The function IDAInit has not been previously called.

IDAMEM NULL The ida_mem memory block pointer was NULL.

IDA_NO_ADJ The function IDAAdjInit has not been previously called.
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IDA_BAD_TBO  The final time tBO is outside the interval over which the forward problem
was solved.

IDA_TLL_INPUT The parameter which represented an invalid identifier, or one of yBO,
ypBO was NULL.

F2003 Name FIDAReInitB

6.2.5 Tolerance specification functions for backward problem

One of the following two functions must be called to specify the integration tolerances for the backward
problem. Note that this call must be made after the call to IDAInitB or IDAInitBS.

’IDASStolerancesB‘
Call flag = IDASStolerances(ida_mem, which, reltolB, abstolB);

Description The function IDASStolerancesB specifies scalar relative and absolute tolerances.

Arguments idamem (void *) pointer to the IDAS memory block returned by IDACreate.
which (int) represents the identifier of the backward problem.
reltolB (realtype) is the scalar relative error tolerance.
abstolB (realtype) is the scalar absolute error tolerance.

Return value The return flag (of type int) will be one of the following:

IDA_SUCCESS The call to IDASStolerancesB was successful.

IDA_MEM NULL The IDAS memory block was not initialized through a previous call to
IDACreate.

IDA_NO_MALLOC The allocation function IDAInit has not been called.
IDA_NO_ADJ The function IDAAdjInit has not been previously called.
IDA_ILL_INPUT One of the input tolerances was negative.

F2003 Name FIDASStolerancesB

’IDASVtolerancesB‘
Call flag = IDASVtolerancesB(ida mem, which, reltolB, abstolB);

Description The function IDASVtolerancesB specifies scalar relative tolerance and vector absolute
tolerances.
Arguments idamem (void *) pointer to the IDAS memory block returned by IDACreate.
which (int) represents the identifier of the backward problem.
reltol (realtype) is the scalar relative error tolerance.
abstol (N_Vector) is the vector of absolute error tolerances.

Return value The return flag (of type int) will be one of the following:

IDA_SUCCESS The call to IDASVtolerancesB was successful.

IDA MEM NULL The IDAS memory block was not initialized through a previous call to
IDACreate.

IDA_NO_MALLOC The allocation function IDAInit has not been called.
IDA_NO_ADJ The function IDAAdjInit has not been previously called.
IDA_ILL_INPUT The relative error tolerance was negative or the absolute tolerance had

a negative component.

Notes This choice of tolerances is important when the absolute error tolerance needs to be
different for each component of the DAE state vector .

F2003 Name FIDASVtolerancesB



6.2 User-callable functions for adjoint sensitivity analysis 139

6.2.6 Linear solver initialization functions for backward problem

All IDAS linear solver modules available for forward problems are available for the backward problem.
They should be created as for the forward problem then attached to the memory structure for the
backward problem using the following function.

’IDASetLinearSolverB‘
Call flag = IDASetLinearSolverB(idamem, which, LS, A);

Description The function IDASetLinearSolverB attaches a generic SUNLINSOL object LS and cor-
responding template Jacobian SUNMATRIX object A (if applicable) to IDAS, initializing
the IDALS linear solver interface for solution of the backward problem.

Arguments idamem (void *) pointer to the IDAS memory block.
which (int) represents the identifier of the backward problem returned by IDACreateB.
(

LS SUNLinearSolver) SUNLINSOL object to use for solving linear systems for the

backward problem.

A (SUNMatrix) SUNMATRIX object for used as a template for the Jacobian for
the backward problem (or NULL if not applicable).

Return value The return value flag (of type int) is one of

IDALS_SUCCESS The IDALS initialization was successful.
IDALS_MEM NULL The ida_mem pointer is NULL.

IDALS_ILL_INPUT The IDALS interface is not compatible with the LS or A input objects
or is incompatible with the current NVECTOR module.

IDALS_MEM FAIL A memory allocation request failed.
IDALS_NO_ADJ The function IDAAdjInit has not been previously called.
IDALS_ILL_INPUT The parameter which represented an invalid identifier.

Notes If LS is a matrix-based linear solver, then the template Jacobian matrix A will be used
in the solve process, so if additional storage is required within the SUNMATRIX object
(e.g. for factorization of a banded matrix), ensure that the input object is allocated
with sufficient size (see the documentation of the particular SUNMATRIX type in Chapter
10 for further information).

The previous routines IDAD1sSetLinearSolverB and IDASpilsSetLinearSolverB are
now wrappers for this routine, and may still be used for backward-compatibility. How-
ever, these will be deprecated in future releases, so we recommend that users transition
to the new routine name soon.

F2003 Name FIDASetLinearSolverB

6.2.7 Nonlinear solver initialization functions for backward problem

As with the forward problem IDAS uses the SUNNONLINSOL implementation of Newton’s method defined
by the SUNNONLINSOL_NEWTON module (see §12.3) by default.

To specify a different nonlinear solver in IDAS for the backward problem, the user’s program must
create a SUNNONLINSOL object by calling the appropriate constructor routine. The user must then
attach the SUNNONLINSOL object to IDAS by calling IDASetNonlinearSolverB, as documented below.

When changing the nonlinear solver in IDAS, IDASetNonlinearSolverB must be called after
IDAInitB. If any calls to IDASolveB have been made, then IDAS will need to be reinitialized by
calling IDAReInitB to ensure that the nonlinear solver is initialized correctly before any subsequent
calls to IDASolveB.
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’IDASetNonlinearSolverB

Call flag = IDASetNonlinearSolverB(idamem, which, NLS);

Description  The function IDASetNonLinearSolverB attaches a SUNNONLINSOL object (NLS) to IDAS
for the solution of the backward problem.
Arguments idamem (void *) pointer to the IDAS memory block.

which (int) represents the identifier of the backward problem returned by
IDACreateB.

NLS (SUNNonlinearSolver) SUNNONLINSOL object to use for solving nonlinear sys-
tems for the backward problem.

Return value The return value flag (of type int) is one of

IDA_SUCCESS The nonlinear solver was successfully attached.

IDA MEM NULL The ida_mem pointer is NULL.

IDALS_NO_ADJ The function CVAdjInit has not been previously called.

IDA_ILL_INPUT The parameter which represented an invalid identifier or the SUNNON-
LINSOL object is NULL, does not implement the required nonlinear solver
operations, is not of the correct type, or the residual function, conver-

gence test function, or maximum number of nonlinear iterations could
not be set.

F2003 Name FIDASetNonlinearSolverB

6.2.8 Initial condition calculation functions for backward problem

IDAS provides support for calculation of consistent initial conditions for certain backward index-one
problems of semi-implicit form through the functions IDACalcICB and IDACalcICBS. Calling them is
optional. It is only necessary when the initial conditions do not satisfy the adjoint system.

The above functions provide the same functionality for backward problems as IDACalcIC with
parameter icopt = IDA_YA_YDP_INIT provides for forward problems (see §4.5.5): compute the algebraic
components of yB and differential components of B, given the differential components of yB. They
require that the IDASetIdB was previously called to specify the differential and algebraic components.

Both functions require forward solutions at the final time tBO. IDACalcICBS also needs forward
sensitivities at the final time tBO.

IDACalcICB

Call flag = IDACalcICB(ida_mem, which, tBoutl, N_Vector yfin, N_Vector ypfin);
Description The function IDACalcICB corrects the initial values yBO and ypBO at time tBO for the

backward problem.
Arguments idamem (void *) pointer to the IDAS memory block.
which (int) is the identifier of the backward problem.

tBoutl (realtype) is the first value of ¢ at which a solution will be requested (from
IDASolveB). This value is needed here only to determine the direction of inte-
gration and rough scale in the independent variable ¢.

yfin (N_Vector) the forward solution at the final time tBO.
ypfin  (N_Vector) the forward solution derivative at the final time tBO.

Return value The return value flag (of type int) can be any that is returned by IDACalcIC (see
§4.5.5). However IDACalcICB can also return one of the following:

IDA_NO_ADJ IDAAdjInit has not been previously called.
IDA_ILL_INPUT Parameter which represented an invalid identifier.



6.2 User-callable functions for adjoint sensitivity analysis 141

Notes All failure return values are negative and therefore a test flag < 0 will trap all
IDACalcICB failures.

Note that IDACalcICB will correct the values of yB(tBy) and yB(tBy) which were
specified in the previous call to IDAInitB or IDAReInitB. To obtain the corrected values,
call IDAGetconsistentICB (see §6.2.11.2).

F2003 Name FIDACalcICB

In the case where the backward problem also depends on the forward sensitivities, user must call
the following function to correct the initial conditions:

IDACalcICBS

Call flag = IDACalcICBS(ida_mem, which, tBoutl, N_Vector yfin, N_Vector ypfin,
N_Vector ySfin, N_Vector ypSfin);

Description  The function IDACalcICBS corrects the initial values yBO and ypBO at time tBO for the
backward problem.

Arguments idamem (void *) pointer to the IDAS memory block.
which (int) is the identifier of the backward problem.

tBoutl (realtype) is the first value of ¢ at which a solution will be requested (from
IDASolveB).This value is needed here only to determine the direction of inte-
gration and rough scale in the independent variable ¢.

yfin (N_Vector) the forward solution at the final time tBO.
ypfin  (N_Vector) the forward solution derivative at the final time tBO.

ySfin (N_Vector *) a pointer to an array of Ns vectors containing the sensitivities
of the forward solution at the final time tBO.

ypSfin (N_Vector *) a pointer to an array of Ns vectors containing the derivatives of
the forward solution sensitivities at the final time tBO.

Return value The return value flag (of type int) can be any that is returned by IDACalcIC (see
§4.5.5). However IDACalcICBS can also return one of the following:

IDA_NO_ADJ IDAAdjInit has not been previously called.

IDA_ILL_INPUT Parameter which represented an invalid identifier, sensitivities were not
active during forward integration, or IDAInitBS (or IDAReInitBS) has
not been previously called.

Notes All failure return values are negative and therefore a test flag < 0 will trap all
IDACalcICBS failures.

Note that IDACalcICBS will correct the values of yB(tBy) and yB(tBy) which were
specified in the previous call to IDAInitBS or IDAReInitBS. To obtain the corrected
values, call IDAGetConsistentICB (see §6.2.11.2).

F2003 Name FIDACalcICBS

6.2.9 Backward integration function

The function IDASolveB performs the integration of the backward problem. It is essentially a wrapper
for the IDAS main integration function IDASolve and, in the case in which checkpoints were needed,
it evolves the solution of the backward problem through a sequence of forward-backward integration
pairs between consecutive checkpoints. In each pair, the first run integrates the original IVP forward
in time and stores interpolation data; the second run integrates the backward problem backward in
time and performs the required interpolation to provide the solution of the IVP to the backward
problem.

The function IDASolveB does not return the solution yB itself. To obtain that, call the function
IDAGetB, which is also described below.
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The IDASolveB function does not support rootfinding, unlike IDASoveF, which supports the finding
of roots of functions of (¢,y,¥y). If rootfinding was performed by IDASolveF, then for the sake of
efficiency, it should be disabled for IDASolveB by first calling IDARootInit with nrtfn = 0.

The call to IDASolveB has the form

IDASolveB

Call
Description

Arguments

Return value

Notes

F2003 Name

flag = IDASolveB(ida_mem, tBout, itaskB);
The function IDASolveB integrates the backward DAE problem.

idamem (void *) pointer to the IDAS memory returned by IDACreate.

tBout (realtype) the next time at which a computed solution is desired.

itaskB (int) a flag indicating the job of the solver for the next step. The IDA_NORMAL
task is to have the solver take internal steps until it has reached or just passed
the user-specified value tBout. The solver then interpolates in order to return
an approximate value of yB(tBout). The IDA_ONE_STEP option tells the solver
to take just one internal step in the direction of tBout and return.

The return value flag (of type int) will be one of the following. For more details see
§4.5.7.

IDA_SUCCESS IDASolveB succeeded.

IDA_MEM_NULL The ida_mem was NULL.

IDA_NO_ADJ The function IDAAdjInit has not been previously called.

IDA_NO_BCK No backward problem has been added to the list of backward prob-
lems by a call to IDACreateB

IDA_NO_FWD The function IDASolveF has not been previously called.

IDA_ILL_INPUT One of the inputs to IDASolveB is illegal.

IDA BAD_ITASK The itaskB argument has an illegal value.

IDA_TOO_MUCH_-WORK The solver took mxstep internal steps but could not reach tBout.

IDA_TOO_MUCH_ACC The solver could not satisfy the accuracy demanded by the user for
some internal step.

IDA_ERR FAILURE Error test failures occurred too many times during one internal
time step.

IDA_CONV_FAILURE Convergence test failures occurred too many times during one in-
ternal time step.

IDA_LSETUP_FAIL The linear solver’s setup function failed in an unrecoverable man-
ner.

IDA_SOLVE_FAIL The linear solver’s solve function failed in an unrecoverable manner.

IDA_BCKMEM NULL The IDAS memory for the backward problem was not created with
a call to IDACreateB.

IDA_BAD_TBOUT The desired output time tBout is outside the interval over which
the forward problem was solved.

IDA_REIFWD_FAIL Reinitialization of the forward problem failed at the first checkpoint
(corresponding to the initial time of the forward problem).

IDA_FWD_FAIL An error occurred during the integration of the forward problem.

All failure return values are negative and therefore a test flag< 0 will trap all IDASolveB

failures.

In the case of multiple checkpoints and multiple backward problems, a given call to

IDASolveB in IDA_ONE_STEP mode may not advance every problem one step, depending

on the relative locations of the current times reached. But repeated calls will eventually

advance all problems to tBout.

FIDASolveB

To obtain the solution yB to the backward problem, call the function IDAGetB as follows:
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Call flag = IDAGetB(ida_mem, which, &tret, yB, ypB);
Description  The function IDAGetB provides the solution yB of the backward DAE problem.

Arguments ida mem (void *) pointer to the IDAS memory returned by IDACreate.
which (int) the identifier of the backward problem.
tret (realtype) the time reached by the solver (output).
yB (N_Vector) the backward solution at time tret.

ypB (N_Vector) the backward solution derivative at time tret.
Return value The return value flag (of type int) will be one of the following.

IDA_SUCCESS  IDAGetB was successful.

IDA_MEM NULL ida_mem is NULL.

IDA_NO_ADJ The function IDAAdjInit has not been previously called.
IDA_ILL_INPUT The parameter which is an invalid identifier.

Notes The user must allocate space for yB and ypB.

To obtain the solution associated with a given backward problem at some other time
within the last integration step, first obtain a pointer to the proper IDAS memory struc-
ture by calling IDAGetAdjIDABmem and then use it to call IDAGetDky.

F2003 Name FIDAGetB

6.2.10 Optional input functions for the backward problem

As for the forward problem there are numerous optional input parameters that control the behavior
of the IDAS solver for the backward problem. IDAS provides functions that can be used to change
these optional input parameters from their default values which are then described in detail in the
remainder of this section, beginning with those for the main IDAS solver and continuing with those
for the linear solver interfaces. For the most casual use of IDAS, the reader can skip to §6.3.

We note that, on an error return, all of the optional input functions send an error message to the
error handler function. All error return values are negative, so the test f£lag < 0 will catch all errors.
Finally, a call to a IDASet***B function can be made from the user’s calling program at any time
and, if successful, takes effect immediately.

6.2.10.1 Main solver optional input functions

The adjoint module in IDAS provides wrappers for most of the optional input functions defined in
§4.5.8.1. The only difference is that the user must specify the identifier which of the backward
problem within the list managed by IDAS.

The optional input functions defined for the backward problem are:

flag = IDASetUserDataB(ida_mem, which, user_dataB);

flag = IDASetMax0OrdB(ida_mem, which, maxordB);

flag = IDASetMaxNumStepsB(ida_mem, which, mxstepsB);
flag = IDASetInitStepB(ida_mem, which, hinB)

flag = IDASetMaxStepB(ida_mem, which, hmaxB);

flag = IDASetSuppressAlgB(ida_mem, which, suppressalgB);
flag = IDASetIdB(ida_mem, which, idB);

flag = IDASetConstraintsB(ida_mem, which, constraintsB);

Their return value flag (of type int) can have any of the return values of their counterparts, but it
can also be IDA_NO_ADJ if IDAAdjInit has not been called, or IDA_ILL_INPUT if which was an invalid
identifier.
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6.2.10.2 Linear solver interface optional input functions

When using matrix-based linear solver modules for the backward problem, i.e., a non-NULL SUNMATRIX
object A was passed to IDASetLinearSolverB, the IDALS linear solver interface needs a function to
compute an approximation to the Jacobian matrix. This can be attached through a call to either
IDASetJacFnB or IDASetJacFnBS, with the second used when the backward problem depends on the
forward sensitivities.

IDASetJacFnB

Call flag = IDASetJacFnB(ida_mem, which, jacB);

Description  The function IDASetJacFnB specifies the Jacobian approximation function to be used
for the backward problem.
Arguments idamem (void *) pointer to the IDAS memory block.
which (int) represents the identifier of the backward problem.
jacB (IDALsJacFnB) user-defined Jacobian approximation function.
Return value The return value flag (of type int) is one of
IDALS_SUCCESS IDASetJacFnB succeeded.
IDALS MEM NULL The ida mem was NULL.
IDALS_NO_ADJ The function IDAAdjInit has not been previously called.

IDALS_LMEM_NULL The linear solver has not been initialized with a call to
IDASetLinearSolverB.

IDALS_ILL_INPUT The parameter which represented an invalid identifier.
Notes The function type IDALsJacFnB is described in §6.3.5.

The previous routine IDAD1sSetJacFnB is now a wrapper for this routine, and may still
be used for backward-compatibility. However, this will be deprecated in future releases,
so we recommend that users transition to the new routine name soon.

F2003 Name FIDASetJacFnB

| IDASetJacFnBs |
Call flag = IDASetJacFnBS(ida mem, which, jacBS);

Description The function IDASetJacFnBS specifies the Jacobian approximation function to be used
for the backward problem in the case where the backward problem depends on the
forward sensitivities.

Arguments idamem (void *) pointer to the IDAS memory block.
which (int) represents the identifier of the backward problem.
jacBS  (IDALJacFnBS) user-defined Jacobian approximation function.

Return value The return value flag (of type int) is one of
IDALS_SUCCESS IDASetJacFnBS succeeded.

IDALS MEM NULL The ida mem was NULL.
IDALS_NO_ADJ The function IDAAdjInit has not been previously called.

IDALS_LMEM_NULL The linear solver has not been initialized with a call to
IDASetLinearSolverBS.

IDALS_ILL_INPUT The parameter which represented an invalid identifier.
Notes The function type IDALsJacFnBS is described in §6.3.5.

The previous routine IDAD1sSetJacFnBS is now a wrapper for this routine, and may
still be used for backward-compatibility. However, this will be deprecated in future
releases, so we recommend that users transition to the new routine name soon.
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F2003 Name FIDASetJacFnBS

The function IDASetLinearSolutionScalingB can be used to enable or disable solution scaling when
using a matrix-based linear solver.

IDASetLinearSolutionScalingB

Call flag = IDASetLinearSolutionScaling(ida_mem, which, onoffB);

Description  The function SetLinearSolutionScalingB enables or disables scaling the linear system
solution to account for a change in « in the linear system in the backward problem. For
more details see §11.4.1.
Arguments idamem (void *) pointer to the IDAS memory block.
which (int) represents the identifier of the backward problem.
onoffB (booleantype) flag to enable (SUNTRUE) or disable (SUNFALSE) scaling
Return value The return value flag (of type int) is one of
IDALS_SUCCESS The flag value has been successfully set.
IDALS MEM NULL The ida_mem pointer is NULL.
IDALS_LMEM NULL The IDALS linear solver interface has not been initialized.
IDALS_ILL_INPUT The attached linear solver is not matrix-based.
Notes By default scaling is enabled with matrix-based linear solvers when using BDF methods.
F2003 Name FIDASetLinearSolutionScalingB

When using a matrix-free linear solver module for the backward problem, the IDALS linear solver
interface requires a function to compute an approximation to the product between the Jacobian matrix
J(t,y) and a vector v. This may be performed internally using a difference-quotient approximation,
or it may be supplied by the user by calling one of the following two functions:

| IDASetJacTimesB |

Call flag = IDASetJacTimesB(ida_mem, which, jsetupB, jtimesB);

Description  The function IDASetJacTimesB specifies the Jacobian-vector setup and product func-
tions to be used.

Arguments idamem (void *) pointer to the IDAS memory block.
which (int) the identifier of the backward problem.

jtsetupB (IDALsJacTimesSetupFnB) user-defined function to set up the Jacobian-vector
product. Pass NULL if no setup is necessary.

jtimesB (IDALsJacTimesVecFnB) user-defined Jacobian-vector product function.
Return value The return value flag (of type int) is one of:

IDALS_SUCCESS The optional value has been successfully set.

IDALS_MEM NULL The ida_mem memory block pointer was NULL.
IDALS_LMEM_NULL The IDALS linear solver has not been initialized.
IDALS_NO_ADJ The function IDAAdjInit has not been previously called.
IDALS_ILL_INPUT The parameter which represented an invalid identifier.

Notes The function types IDALsJacTimesVecFnB and IDALsJacTimesSetupFnB are described
in §6.3.6.

The previous routine IDASpilsSetJacTimesB is now a wrapper for this routine, and
may still be used for backward-compatibility. However, this will be deprecated in future
releases, so we recommend that users transition to the new routine name soon.

F2003 Name FIDASetJacTimesB
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’IDASetJacTimesBS

Call flag = IDASetJacTimesBS(ida mem, which, jsetupBS, jtimesBS);

Description The function IDASetJacTimesBS specifies the Jacobian-vector product setup and eval-
uation functions to be used, in the case where the backward problem depends on the
forward sensitivities.

Arguments idamem (void *) pointer to the IDAS memory block.

Return value

Notes

F2003 Name

which (int) the identifier of the backward problem.

jtsetupBS (IDALsJacTimesSetupFnBS) user-defined function to set up the Jacobian-
vector product. Pass NULL if no setup is necessary.

jtimesBS (IDALsJacTimesVecFnBS) user-defined Jacobian-vector product function.
The return value flag (of type int) is one of:

IDALS_SUCCESS The optional value has been successfully set.

IDALS_MEM_NULL The ida_-mem memory block pointer was NULL.

IDALS_LMEM_NULL The IDALS linear solver has not been initialized.

IDALS_NO_ADJ The function IDAAdjInit has not been previously called.
IDALS_ILL_INPUT The parameter which represented an invalid identifier.

The function types IDALsJacTimesVecFnBS and IDALsJacTimesSetupFnBS are described
in §6.3.6.

The previous routine IDASpilsSetJacTimesBS is now a wrapper for this routine, and
may still be used for backward-compatibility. However, this will be deprecated in future
releases, so we recommend that users transition to the new routine name soon.

FIDASetJacTimesBS

When using the default difference-quotient approximation to the Jacobian-vector product for the
backward problem, the user may specify the factor to use in setting increments for the finite-difference
approximation, via a call to IDASetIncrementFactorB.

’IDASetIncrementFactorB

Call

Description

Arguments

Return value

Notes

flag = IDASetIncrementFactorB(ida_mem, which, dqincfacB);

The function IDASetIncrementFactorB specifies the factor in the increments used in the
difference quotient approximations to matrix-vector products for the backward problem.

This routine can be used in both the cases where the backward problem does and does
not depend on the forward sensitvities.

ida_mem (void *) pointer to the IDAS memory block.

which (int) the identifier of the backward problem.

dgincfacB (realtype) difference quotient approximation factor.

The return value flag (of type int) is one of

IDALS_SUCCESS The optional value has been successfully set.
IDALS MEM NULL The ida mem pointer is NULL.

IDALS_LMEM_NULL The IDALS linear solver has not been initialized.
IDALS_NO_ADJ The function IDAAdjInit has not been previously called.
IDALS_ILL_INPUT The value of eplifacB is negative.

IDALS_ILL_INPUT The parameter which represented an invalid identifier.
The default value is 1.0.

The previous routine IDASpilsSetIncrementFactorB is now a wrapper for this routine,
and may still be used for backward-compatibility. However, this will be deprecated in
future releases, so we recommend that users transition to the new routine name soon.
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F2003 Name FIDASetIncrementFactorB

Additionally, When using the internal difference quotient for the backward problem, the user may also
optionally supply an alternative residual function for use in the Jacobian-vector product approximation
by calling IDASetJacTimesResFnB. The alternative residual side function should compute a suitable
(and differentiable) approximation to the residual function provided to IDAInitB or IDAInitBS. For
example, as done in [28] for the forward integration of an ODE in explicit form without sensitivity
analysis, the alternative function may use lagged values when evaluating a nonlinearity in the right-
hand side to avoid differencing a potentially non-differentiable factor.

’IDASetJacTimesReanB‘

Call flag = IDASetJacTimesResFnB(ida mem, which, jtimesResFn);

Description  The function IDASetJacTimesResFnB specifies an alternative DAE residual function for
use in the internal Jacobian-vector product difference quotient approximation for the
backward problem.

Arguments  ida mem (void *) pointer to the IDAS memory block.
which (int) the identifier of the backward problem.

jtimesResFn (IDAResFn) is the C function which computes the alternative DAE resid-
ual function to use in Jacobian-vector product difference quotient ap-
proximations. This function has the form res(t, yy, yp, resval,
user_data). For full details see §4.6.1.

Return value The return value flag (of type int) is one of

IDALS_SUCCESS The optional value has been successfully set.

IDALS MEM NULL The ida_mem pointer is NULL.

IDALS_LMEM NULL The IDALS linear solver has not been initialized.

IDALS_NO_ADJ The function IDAAdjInit has not been previously called.

IDALS_ILL_INPUT The parameter which represented an invalid identifier or the internal
difference quotient approximation is disabled.

Notes The default is to use the residual function provided to IDAInit in the internal difference
quotient. If the input resudual function is NULL, the default is used.

This function must be called after the IDALS linear solver interface has been initialized
through a call to IDASetLinearSolverB.

F2003 Name FIDASetJacTimesResFnB

When using an iterative linear solver for the backward problem, the user may supply a preconditioning
operator to aid in solution of the system, or she/he may adjust the convergence tolerance factor for
the iterative linear solver. These may be accomplished through calling the following functions:

’IDASetPreconditionerB‘

Call flag = IDASetPreconditionerB(ida mem, which, psetupB, psolveB);

Description The function IDASetPrecSolveFnB specifies the preconditioner setup and solve func-
tions for the backward integration.
Arguments idamem (void *) pointer to the IDAS memory block.
which  (int) the identifier of the backward problem.
psetupB (IDALsPrecSetupFnB) user-defined preconditioner setup function.
psolveB (IDALsPrecSolveFnB) user-defined preconditioner solve function.

Return value The return value flag (of type int) is one of:

IDALS_SUCCESS The optional value has been successfully set.
IDALS_ MEM NULL The ida_mem memory block pointer was NULL.
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Notes

F2003 Name

IDALS_LMEM NULL The IDALS linear solver has not been initialized.

IDALS_NO_ADJ The function IDAAdjInit has not been previously called.
IDALS_ILL_INPUT The parameter which represented an invalid identifier.

The function types IDALsPrecSolveFnB and IDALsPrecSetupFnB are described in §6.3.8

and §6.3.9, respectively. The psetupB argument may be NULL if no setup operation is
involved in the preconditioner.

The previous routine IDASpilsSetPreconditionerB is now a wrapper for this routine,
and may still be used for backward-compatibility. However, this will be deprecated in
future releases, so we recommend that users transition to the new routine name soon.

FIDASetPreconditionerB

’IDASetPreconditionerBS‘

Call

Description

Arguments

Return value

Notes

F2003 Name

flag = IDASetPreconditionerBS(ida.mem, which, psetupBS, psolveBS);

The function IDASetPrecSolveFnBS specifies the preconditioner setup and solve func-
tions for the backward integration, in the case where the backward problem depends on
the forward sensitivities.
idamem (void *) pointer to the IDAS memory block.
which (int) the identifier of the backward problem.
psetupBS (IDALsPrecSetupFnBS) user-defined preconditioner setup function.

(

psolveBS (IDALsPrecSolveFnBS) user-defined preconditioner solve function.

The return value flag (of type int) is one of:

IDALS_SUCCESS  The optional value has been successfully set.

IDALS_MEM NULL The ida_mem memory block pointer was NULL.

IDALS_LMEM NULL The IDALS linear solver has not been initialized.

IDALS_NO_ADJ The function IDAAdjInit has not been previously called.
IDALS_ILL_INPUT The parameter which represented an invalid identifier.

The function types IDALsPrecSolveFnBS and IDALsPrecSetupFnBS are described in

§6.3.8 and §6.3.9, respectively. The psetupBS argument may be NULL if no setup oper-
ation is involved in the preconditioner.

The previous routine IDASpilsSetPreconditionerBS is now a wrapper for this routine,
and may still be used for backward-compatibility. However, this will be deprecated in
future releases, so we recommend that users transition to the new routine name soon.

FIDASetPreconditionerBS

IDASetEpsLinB

Call

Description

Arguments

Return value

flag = IDASetEpsLinB(idamem, which, eplifacB);

The function IDASetEpsLinB specifies the factor by which the Krylov linear solver’s
convergence test constant is reduced from the nonlinear iteration test constant. (See
§2.1). This routine can be used in both the cases wherethe backward problem does and
does not depend on the forward sensitvities.

idamem (void *) pointer to the IDAS memory block.

which (int) the identifier of the backward problem.

eplifacB (realtype) linear convergence safety factor (>= 0.0).

The return value flag (of type int) is one of

IDALS_SUCCESS The optional value has been successfully set.
IDALS MEM NULL The ida_mem pointer is NULL.
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IDALS_LMEM NULL The IDALS linear solver has not been initialized.
IDALS_NO_ADJ The function IDAAdjInit has not been previously called.
IDALS_ILL_INPUT The value of eplifacB is negative.
IDALS_ILL_INPUT The parameter which represented an invalid identifier.
Notes The default value is 0.05.
Passing a value eplifacB= (.0 also indicates using the default value.
The previous routine IDASpilsSetEpsLinB is now a wrapper for this routine, and may

still be used for backward-compatibility. However, this will be deprecated in future
releases, so we recommend that users transition to the new routine name soon.

F2003 Name FIDASetEpsLinB

| IDASetLSNormFactorB|
Call flag = IDASetLSNormFactorB(idamem, which, nrmfac);

Description The function IDASetLSNormFactorB specifies the factor to use when converting from
the integrator tolerance (WRMS norm) to the linear solver tolerance (L2 norm) for
Newton linear system solves e.g., tol L2 = fac * tol_WRMS. This routine can be used
in both the cases wherethe backward problem does and does not depend on the forward
sensitvities.

Arguments ida mem (void *) pointer to the IDAS memory block.
which (int) the identifier of the backward problem.

nrmfac (realtype) the norm conversion factor. If nrmfac is:

> 0 then the provided value is used.

=0 then the conversion factor is computed using the vector length i.e., nrmfac
= N_VGetLength(y) (default).

< 0 then the conversion factor is computed using the vector dot product nrmfac
= N_VDotProd(v,v) where all the entries of v are one.

Return value The return value flag (of type int) is one of
IDALS_SUCCESS The optional value has been successfully set.
IDALS MEM NULL The ida_mem pointer is NULL.
IDALS_LMEM NULL The IDALS linear solver has not been initialized.
IDALS_NO_ADJ The function IDAAdjInit has not been previously called.
IDALS_ILL_INPUT The value of eplifacB is negative.
IDALS_ILL_INPUT The parameter which represented an invalid identifier.

Notes This function must be called after the IDALS linear solver interface has been initialized
through a call to IDASetLinearSolverB.

Prior to the introduction of N_VGetLength in SUNDIALS v5.0.0 (IDAS v4.0.0) the value
of nrmfac was computed using the vector dot product i.e., the nrmfac < 0 case.

F2003 Name FIDASetLSNormFactorB

6.2.11 Optional output functions for the backward problem
6.2.11.1 Main solver optional output functions

The user of the adjoint module in IDAS has access to any of the optional output functions described
in §4.5.10, both for the main solver and for the linear solver modules. The first argument of these
IDAGet* and IDA*Get* functions is the pointer to the IDAS memory block for the backward problem.
In order to call any of these functions, the user must first call the following function to obtain this
pointer:
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IDAGetAdjIDABmem

Call ida_memB = IDAGetAdjIDABmem(ida_mem, which);

Description The function IDAGetAdjIDABmem returns a pointer to the IDAS memory block for the
backward problem.

Arguments idamem (void *) pointer to the IDAS memory block created by IDACreate.
which (int) the identifier of the backward problem.

Return value The return value, ida_memB (of type void *), is a pointer to the IDAS memory for the
backward problem.

Notes The user should not modify ida_memB in any way.

Optional output calls should pass ida_memB as the first argument; thus, for example, to
get the number of integration steps: flag = IDAGetNumSteps(idas memB,&nsteps).

F2003 Name FIDAGetAdjIDABmem

To get values of the forward solution during a backward integration, use the following function.
The input value of t would typically be equal to that at which the backward solution has just been
obtained with IDAGetB. In any case, it must be within the last checkpoint interval used by IDASolveB.

IDAGetAdjY

Call flag = IDAGetAdjY(idamem, t, y, yp);

Description  The function IDAGetAdjY returns the interpolated value of the forward solution y and
its derivative during a backward integration.

Arguments idamem (void *) pointer to the IDAS memory block created by IDACreate.

t (realtype) value of the independent variable at which y is desired (input).
y (N_Vector) forward solution y(t).
yp (N_Vector) forward solution derivative y(¢).

Return value The return value flag (of type int) is one of:

IDA_SUCCESS  IDAGetAdjY was successful.

IDA_MEM_NULL ida_mem was NULL.

IDA_GETY_BADT The value of t was outside the current checkpoint interval.
Notes The user must allocate space for y and yp.
F2003 Name FIDAGetAdjY

| IDAGetAd jCheckPointsInfo

Call flag = IDAGetAdjCheckPointsInfo(ida_mem, IDAadjCheckPointRec *ckpnt);

Description The function IDAGetAdjCheckPointsInfo loads an array of ncheck+1 records of type
IDAadjCheckPointRec. The user must allocate space for the array ckpnt.

Arguments idamem (void *) pointer to the IDAS memory block created by IDACreate.

ckpnt  (IDAadjCheckPointRec *) array of ncheck+1 checkpoint records, each of type
IDAadjCheckPointRec.

Return value The return value is IDA_SUCCESS if successful, or IDA_MEM_NULL if ida mem is NULL, or
IDA_NO_ADJ if ASA was not initialized.

Notes The members of each record ckpnt [i] are:

e ckpnt[i] .my_addr (void *) address of current checkpoint in ida mem->ida_adj mem
e ckpnt[i] .next_addr (void *) address of next checkpoint

e ckpnt[i].t0 (realtype) start of checkpoint interval
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e ckpnt[i].t1 (realtype) end of checkpoint interval

e ckpnt[i] .nstep (long int) step counter at ckeckpoint t0
e ckpnt[i].order (int) method order at checkpoint t0

e ckpnt[i].step (realtype) step size at checkpoint t0

F2003 Name FIDAGetAdjCheckPointsInfo

6.2.11.2 Initial condition calculation optional output function

| IDAGetConsistentICB
Call flag = IDAGetConsistentICB(ida_mem, which, yBO_mod, ypBO_mod) ;

Description The function IDAGetConsistentICB returns the corrected initial conditions for back-
ward problem calculated by IDACalcICB.
Arguments idamem (void *) pointer to the IDAS memory block.
which is the identifier of the backward problem.
yBOmod (N_Vector) consistent initial vector.
ypBOmod (N_Vector) consistent initial derivative vector.

Return value The return value flag (of type int) is one of

IDA_SUCCESS The optional output value has been successfully set.

IDA MEM NULL The ida_mem pointer is NULL.

IDA_NO_ADJ IDAAdjInit has not been previously called.

IDA_ILL_INPUT Parameter which did not refer a valid backward problem identifier.

Notes If the consistent solution vector or consistent derivative vector is not desired, pass NULL
for the corresponding argument.

The user must allocate space for yB0mod and ypBO_mod (if not NULL).
F2003 Name FIDAGetConsistentICB

6.2.12 Backward integration of quadrature equations

Not only the backward problem but also the backward quadrature equations may or may not depend on
the forward sensitivities. Accordingly, one of the IDAQuadInitB or IDAQuadInitBS should be used to
allocate internal memory and to initialize backward quadratures. For any other operation (extraction,
optional input/output, reinitialization, deallocation), the same function is called regardless of whether
or not the quadratures are sensitivity-dependent.

6.2.12.1 Backward quadrature initialization functions

The function IDAQuadInitB initializes and allocates memory for the backward integration of quadra-
ture equations that do not depende on forward sensititvities. It has the following form:

IDAQuadInitB

Call flag = IDAQuadInitB(ida_mem, which, rhsQB, yQBO);

Description  The function IDAQuadInitB provides required problem specifications, allocates internal
memory, and initializes backward quadrature integration.

Arguments idamem (void *) pointer to the IDAS memory block.
which (int) the identifier of the backward problem.
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thsQB  (IDAQuadRhsFnB) is the C function which computes fQB, the residual of the
backward quadrature equations. This function has the form rhsQB(t, y, yp,
yB, ypB, rhsvalBQ, user_dataB) (see §6.3.3).

yQBO (N_Vector) is the value of the quadrature variables at tBO.
Return value The return value flag (of type int) will be one of the following:
IDA_SUCCESS The call to IDAQuadInitB was successful.
IDA_MEM_NULL ida_mem was NULL.
IDA_NO_ADJ The function IDAAdjInit has not been previously called.
IDA_MEM FAIL A memory allocation request has failed.
IDA_ILL_INPUT The parameter which is an invalid identifier.
F2003 Name FIDAQuadInitB

The function IDAQuadInitBS initializes and allocates memory for the backward integration of
quadrature equations that depend on the forward sensitivities.

IDAQuadInitBS

Call flag = IDAQuadInitBS(idamem, which, rhsQBS, yQBSO);

Description  The function IDAQuadInitBS provides required problem specifications, allocates internal
memory, and initializes backward quadrature integration.
Arguments idamem (void *) pointer to the IDAS memory block.
which (int) the identifier of the backward problem.
rhsQBS (IDAQuadRhsFnBS) is the C function which computes fQBS, the residual of
the backward quadrature equations. This function has the form rhsQBS(t,
¥, yP, ¥S, ypS, yB, ypB, rhsvalBQS, user_dataB) (see §6.3.4).
yQBSO  (N_Vector) is the value of the sensitivity-dependent quadrature variables at
tBO.
Return value The return value flag (of type int) will be one of the following;:

IDA_SUCCESS The call to IDAQuadInitBS was successful.

IDA_MEM_NULL ida_mem was NULL.

IDA_NO_ADJ The function IDAAdjInit has not been previously called.
IDA_MEM FAIL A memory allocation request has failed.

IDA_ILL_INPUT The parameter which is an invalid identifier.

F2003 Name FIDAQuadInitBS

The integration of quadrature equations during the backward phase can be re-initialized by calling
the following function. Before calling IDAQuadReInitB for a new backward problem, call any desired
solution extraction functions IDAGet** associated with the previous backward problem.

IDAQuadReInitB‘

Call flag = IDAQuadReInitB(ida_mem, which, yQBO);
Description The function IDAQuadReInitB re-initializes the backward quadrature integration.
Arguments idamem (void *) pointer to the IDAS memory block.
which (int) the identifier of the backward problem.
yQBO (N_Vector) is the value of the quadrature variables at tBO.
Return value The return value flag (of type int) will be one of the following:
IDA_SUCCESS The call to IDAQuadReInitB was successful.
IDA_MEM_NULL ida-mem was NULL.
IDA_NO_ADJ The function IDAAdjInit has not been previously called.
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IDA_MEM FAIL A memory allocation request has failed.

IDANO_QUAD Quadrature integration was not activated through a previous call to
IDAQuadInitB.

IDA_ILL_INPUT The parameter which is an invalid identifier.
Notes IDAQuadReInitB can be used after a call to either IDAQuadInitB or IDAQuadInitBS.
F2003 Name FIDAQuadReInitB

6.2.12.2 Backward quadrature extraction function

To extract the values of the quadrature variables at the last return time of IDASolveB, IDAS provides
a wrapper for the function IDAGetQuad (see §4.7.3). The call to this function has the form

IDAGetQuadB

Call flag = IDAGetQuadB(ida_mem, which, &tret, yQB);

Description The function IDAGetQuadB returns the quadrature solution vector after a successful
return from IDASolveB.

Arguments idamem (void *) pointer to the IDAS memory.
tret (realtype) the time reached by the solver (output).
yQB (N_Vector) the computed quadrature vector.

Return value The return value flag of IDAGetQuadB is one of:

IDA_SUCCESS IDAGetQuadB was successful.

IDA_MEM NULL ida-mem is NULL.

IDA_NO_ADJ The function IDAAdjInit has not been previously called.
IDANO_QUAD  Quadrature integration was not initialized.

IDA_BAD_DKY yQB was NULL.

IDA_ILL_INPUT The parameter which is an invalid identifier.

Notes The user must allocate space for yQB.

To obtain the quadratures associated with a given backward problem at some other
time within the last integration step, first obtain a pointer to the proper IDAS memory
structure by calling IDAGetAdjIDABmem and then use it to call IDAGetQuadDky.

F2003 Name FIDAGetQuadB

6.2.12.3 Optional input/output functions for backward quadrature integration

Optional values controlling the backward integration of quadrature equations can be changed from
their default values through calls to one of the following functions which are wrappers for the corre-
sponding optional input functions defined in §4.7.4. The user must specify the identifier which of the
backward problem for which the optional values are specified.

flag IDASetQuadErrConB(ida_mem, which, errconQ);
flag = IDAQuadSStolerancesB(ida_mem, which, reltolQ, abstolQ);
flag = IDAQuadSVtolerancesB(ida_mem, which, reltolQ, abstolQ);

Their return value flag (of type int) can have any of the return values of its counterparts, but it
can also be IDA_NO_ADJ if the function IDAAdjInit has not been previously called or IDA_ILL_INPUT
if the parameter which was an invalid identifier.

Access to optional outputs related to backward quadrature integration can be obtained by calling
the corresponding IDAGetQuad* functions (see §4.7.5). A pointer ida memB to the IDAS memory block
for the backward problem, required as the first argument of these functions, can be obtained through
a call to the functions IDAGetAdjIDABmen (see §6.2.11).
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6.3 User-supplied functions for adjoint sensitivity analysis

In addition to the required DAE residual function and any optional functions for the forward problem,
when using the adjoint sensitivity module in IDAS, the user must supply one function defining the
backward problem DAE and, optionally, functions to supply Jacobian-related information and one or
two functions that define the preconditioner (if applicable for the choice of SUNLINSOL object) for the
backward problem. Type definitions for all these user-supplied functions are given below.

6.3.1 DAE residual for the backward problem

The user must provide a resB function of type IDAResFnB defined as follows:

IDAResFnB

Definition

Purpose

Arguments

Return value

Notes

typedef int (*IDAResFnB) (realtype t, N_Vector y, N_Vector yp,
N_Vector yB, N_Vector ypB,
N_Vector resvalB, void *user_dataB);

This function evaluates the residual of the backward problem DAE system. This could
be (2.20) or (2.25).

t is the current value of the independent variable.

y is the current value of the forward solution vector.

yp is the current value of the forward solution derivative vector.

yB is the current value of the backward dependent variable vector.

ypB is the current value of the backward dependent derivative vector.
resvalB is the output vector containing the residual for the backward DAE problem.

user_dataB is a pointer to user data, same as passed to IDASetUserDataB.

An IDAResFnB should return 0 if successful, a positive value if a recoverable error oc-
curred (in which case IDAS will attempt to correct), or a negative value if an unre-
coverabl failure occurred (in which case the integration stops and IDASolveB returns
IDA_RESFUNC_FAIL).

Allocation of memory for resvalB is handled within IDAS.

The y, yp, yB, ypB, and resvalB arguments are all of type N_Vector, but yB, ypB, and
resvalB typically have different internal representations from y and yp. It is the user’s
responsibility to access the vector data consistently (including the use of the correct
accessor macros from each NVECTOR implementation). For the sake of computational
efficiency, the vector functions in the two NVECTOR implementations provided with IDAS
do not perform any consistency checks with respect to their N_Vector arguments (see
§9.3 and §9.4).

The user_dataB pointer is passed to the user’s resB function every time it is called and
can be the same as the user_data pointer used for the forward problem.

Before calling the user’s resB function, IDAS needs to evaluate (through interpolation)
the values of the states from the forward integration. If an error occurs in the inter-
polation, IDAS triggers an unrecoverable failure in the residual function which will halt
the integration and IDASolveB will return IDA_RESFUNC_FAIL.

6.3.2 DAE residual for the backward problem depending on the forward
sensitivities

The user must provide a resBS function of type IDAResFnBS defined as follows:
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IDAResFnBS

Definition  typedef int (*IDAResFnBS)(realtype t, N_Vector y, N_Vector yp,
N_Vector *yS, N_Vector *ypS,
N_Vector yB, N_Vector ypB,
N_Vector resvalB, void *user_dataB);

Purpose This function evaluates the residual of the backward problem DAE system. This could
be (2.20) or (2.25).
Arguments t is the current value of the independent variable.
y is the current value of the forward solution vector.
yp is the current value of the forward solution derivative vector.
yS a pointer to an array of Ns vectors containing the sensitivities of the forward
solution.
ypS a pointer to an array of Ns vectors containing the derivatives of the forward
sensitivities.
yB is the current value of the backward dependent variable vector.
ypB is the current value of the backward dependent derivative vector.
resvalB is the output vector containing the residual for the backward DAE problem.

user_dataB is a pointer to user data, same as passed to IDASetUserDataB.

Return value An IDAResFnBS should return 0 if successful, a positive value if a recoverable error
occurred (in which case IDAS will attempt to correct), or a negative value if an unre-
coverable error occurred (in which case the integration stops and IDASolveB returns
IDA,RESFUNC,FAIL) .

Notes Allocation of memory for resvalB is handled within IDAS.

The y, yp, yB, ypB, and resvalB arguments are all of type N_Vector, but yB, ypB,
and resvalB typically have different internal representations from y and yp. Likewise
for each yS[i] and ypS[i]. It is the user’s responsibility to access the vector data
consistently (including the use of the correct accessor macros from each NVECTOR im-
plementation). For the sake of computational efficiency, the vector functions in the two
NVECTOR implementations provided with IDAS do not perform any consistency checks
with respect to their N_Vector arguments (see §9.3 and §9.4).

The user_dataB pointer is passed to the user’s resBS function every time it is called
and can be the same as the user_data pointer used for the forward problem.

Before calling the user’s resBS function, IDAS needs to evaluate (through interpolation)
the values of the states from the forward integration. If an error occurs in the inter-
polation, IDAS triggers an unrecoverable failure in the residual function which will halt
the integration and IDASolveB will return IDA_RESFUNC_FAIL.

6.3.3 Quadrature right-hand side for the backward problem
The user must provide an £QB function of type IDAQuadRhsFnB defined by

] IDAQuadRhsFnB \

Definition typedef int (*IDAQuadRhsFnB) (realtype t, N_Vector y, N_Vector yp,
N_Vector yB, N_Vector ypB,
N_Vector rhsvalBQ, void *user_dataB);

Purpose This function computes the quadrature equation right-hand side for the backward prob-
lem.
Arguments t is the current value of the independent variable.

y is the current value of the forward solution vector.
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Return value

Notes

yp is the current value of the forward solution derivative vector.
yB is the current value of the backward dependent variable vector.
ypB is the current value of the backward dependent derivative vector.

rhsvalBQ is the output vector containing the residual for the backward quadrature
equations.

user_dataB is a pointer to user data, same as passed to IDASetUserDataB.

An IDAQuadRhsFnB should return 0 if successful, a positive value if a recoverable er-
ror occurred (in which case IDAS will attempt to correct), or a negative value if it
failed unrecoverably (in which case the integration is halted and IDASolveB returns
IDA_QRHSFUNC_FATL).

Allocation of memory for rhsvalBQ is handled within IDAS.

The y, yp, yB, ypB, and rhsvalBQ arguments are all of type N_Vector, but they typi-
cally all have different internal representations. It is the user’s responsibility to access
the vector data consistently (including the use of the correct accessor macros from each
NVECTOR implementation). For the sake of computational efficiency, the vector func-
tions in the two NVECTOR implementations provided with IDAS do not perform any
consistency checks with repsect to their N_Vector arguments (see §9.3 and §9.4).

The user_dataB pointer is passed to the user’s £QB function every time it is called and
can be the same as the user_data pointer used for the forward problem.

Before calling the user’s £QB function, IDAS needs to evaluate (through interpolation) the
values of the states from the forward integration. If an error occurs in the interpolation,
IDAS triggers an unrecoverable failure in the quadrature right-hand side function which
will halt the integration and IDASolveB will return IDA_QRHSFUNC _FAIL.

6.3.4 Sensitivity-dependent quadrature right-hand side for the backward
problem

The user must provide an £QBS function of type IDAQuadRhsFnBS defined by

‘IDAQuadRhanBS‘

Definition

Purpose

Arguments

typedef int (*IDAQuadRhsFnBS) (realtype t, N_Vector y, N_Vector yp,
N_Vector *yS, N_Vector *ypS,
N_Vector yB, N_Vector ypB,
N_Vector rhsvalBQS, void *user_dataB);

This function computes the quadrature equation residual for the backward problem.

t is the current value of the independent variable.

y is the current value of the forward solution vector.

yp is the current value of the forward solution derivative vector.

yS a pointer to an array of Ns vectors containing the sensitivities of the forward
solution.

ypS a pointer to an array of Ns vectors containing the derivatives of the forward
sensitivities.

yB is the current value of the backward dependent variable vector.

ypB is the current value of the backward dependent derivative vector.

rhsvalBQS is the output vector containing the residual for the backward quadrature
equations.

user_dataB is a pointer to user data, same as passed to IDASetUserDataB.
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Return value An IDAQuadRhsFnBS should return 0 if successful, a positive value if a recoverable er-

Notes

ror occurred (in which case IDAS will attempt to correct), or a negative value if it
failed unrecoverably (in which case the integration is halted and IDASolveB returns
IDA_QRHSFUNC_FAIL).

Allocation of memory for rhsvalBQS is handled within IDAS.

The y, yp, yB, ypB, and rhsvalBQS arguments are all of type N_Vector, but they typically
do not all have the same internal representations. Likewise for each yS[i] and ypS[i].
It is the user’s responsibility to access the vector data consistently (including the use
of the correct accessor macros from each NVECTOR implementation). For the sake
of computational efficiency, the vector functions in the two NVECTOR implementations
provided with IDAS do not perform any consistency checks with repsect to their N_Vector
arguments (see §9.3 and §9.4).

The user_dataB pointer is passed to the user’s £QBS function every time it is called and
can be the same as the user_data pointer used for the forward problem.

Before calling the user’s £QBS function, IDAS needs to evaluate (through interpolation)
the values of the states from the forward integration. If an error occurs in the interpo-
lation, IDAS triggers an unrecoverable failure in the quadrature right-hand side function
which will halt the integration and IDASolveB will return IDA_QRHSFUNC_FAIL.

6.3.5 Jacobian construction for the backward problem (matrix-based lin-
ear solvers)

If a matrix-based linear solver module is is used for the backward problem (i.e., IDASetLinearSolverB
is called with non-NULL SUNMATRIX argument in the step described in §6.1), the user may provide a
function of type IDALsJacFnB or IDALsJacFnBS (see §6.2.10), defined as follows:

IDALsJacFnB

Definition

Purpose

Arguments

typedef int (*IDALsJacFnB) (realtype tt, realtype cjB,
N_Vector yy, N_Vector yp,
N_Vector yB, N_Vector ypB,
N_Vector resvalB,
SUNMatrix JacB, void *user_dataB,
N_Vector tmplB, N_Vector tmp2B,
N_Vector tmp3B);

This function computes the Jacobian of the backward problem (or an approximation to
it).

tt is the current value of the independent variable.

cjB is the scalar in the system Jacobian, proportional to the inverse of the step
size (a in Eq. (2.6) ).

yy is the current value of the forward solution vector.

yp is the current value of the forward solution derivative vector.

yB is the current value of the backward dependent variable vector.

ypB is the current value of the backward dependent derivative vector.

resvalB is the current value of the residual for the backward problem.

JacB is the output approximate Jacobian matrix.

user_dataB is a pointer to user data — the parameter passed to IDASetUserDataB.

tmp1B

tmp2B

tmp3B are pointers to memory allocated for variables of type N_Vector which can
be used by the IDALsJacFnB function as temporary storage or work space.
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Return value An IDALsJacFnB should return 0 if successful, a positive value if a recoverable error

Notes

occurred (in which case IDAS will attempt to correct, while IDALS sets last_flag to
IDALS_JACFUNC_RECVR), or a negative value if it failed unrecoverably (in which case the
integration is halted, IDASolveB returns IDA_LSETUP_FAIL and IDALS sets last_flag to
IDALS_JACFUNC_UNRECVR).

A user-supplied Jacobian function must load the matrix JacB with an approximation
to the Jacobian matrix at the point (tt,yy,yB), where yy is the solution of the original
IVP at time tt, and yB is the solution of the backward problem at the same time.
Information regarding the structure of the specific SUNMATRIX structure (e.g. number
of rows, upper/lower bandwidth, sparsity type) may be obtained through using the
implementation-specific SUNMATRIX interface functions (see Chapter 10 for details).

With direct linear solvers (i.e., linear solvers with type SUNLINEARSOLVER DIRECT), the
Jacobian matrix J(¢,y) is zeroed out prior to calling the user-supplied Jacobian function
so only nonzero elements need to be loaded into JacB.

Before calling the user’s IDALsJacFnB, IDAS needs to evaluate (through interpolation)
the values of the states from the forward integration. If an error occurs in the in-
terpolation, IDAS triggers an unrecoverable failure in the Jacobian function which will
halt the integration (IDASolveB returns IDA_LSETUP_FAIL and IDALS sets last_flag to
IDALS_JACFUNC_UNRECVR).

The previous function type IDAD1sJacFnB is identical to IDALsJacFnB, and may still
be used for backward-compatibility. However, this will be deprecated in future releases,
so we recommend that users transition to the new function type name soon.

IDALsJacFnBS

Definition

Purpose

Arguments

typedef int (*IDALsJacFnBS) (realtype tt, realtype cjB,
N_Vector yy, N_Vector yp,
N_Vector *yS, N_Vector *ypS,
N_Vector yB, N_Vector ypB,
N_Vector resvalB,
SUNMatrix JacB, void *user_dataB,
N_Vector tmplB, N_Vector tmp2B,
N_Vector tmp3B);

This function computes the Jacobian of the backward problem (or an approximation to
it), in the case where the backward problem depends on the forward sensitivities.

tt is the current value of the independent variable.

cjB is the scalar in the system Jacobian, proportional to the inverse of the step
size (a in Eq. (2.6) ).

vy is the current value of the forward solution vector.

yp is the current value of the forward solution derivative vector.

yS a pointer to an array of Ns vectors containing the sensitivities of the forward
solution.

ypS a pointer to an array of Ns vectors containing the derivatives of the forward
solution sensitivities.

yB is the current value of the backward dependent variable vector.

ypB is the current value of the backward dependent derivative vector.

resvalB is the current value of the residual for the backward problem.

JacB is the output approximate Jacobian matrix.

user_dataB is a pointer to user data — the parameter passed to IDASetUserDataB.
tmp1B
tmp2B
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tmp3B are pointers to memory allocated for variables of type N_Vector which can
be used by IDALsJacFnBS as temporary storage or work space.

Return value An IDALsJacFnBS should return 0 if successful, a positive value if a recoverable error

Notes

occurred (in which case IDAS will attempt to correct, while IDALS sets last_flag to
IDALS_JACFUNC_RECVR), or a negative value if it failed unrecoverably (in which case the
integration is halted, IDASolveB returns IDA_LSETUP_FAIL and IDALS sets last_flag to
IDALS_JACFUNC_UNRECVR).

A user-supplied dense Jacobian function must load the matrix JacB with an approxi-
mation to the Jacobian matrix at the point (tt,yy,yS,yB), where yy is the solution of
the original IVP at time tt, yS is the array of forward sensitivities at time tt, and
yB is the solution of the backward problem at the same time. Information regarding
the structure of the specific SUNMATRIX structure (e.g. number of rows, upper/lower
bandwidth, sparsity type) may be obtained through using the implementation-specific
SUNMATRIX interface functions (see Chapter 10 for details).

With direct linear solvers (i.e., linear solvers with type SUNLINEARSOLVER DIRECT, the
Jacobian matrix J(¢,y) is zeroed out prior to calling the user-supplied Jacobian function
so only nonzero elements need to be loaded into JacB.

Before calling the user’s IDALsJacFnBS, IDAS needs to evaluate (through interpolation)
the values of the states from the forward integration. If an error occurs in the in-
terpolation, IDAS triggers an unrecoverable failure in the Jacobian function which will
halt the integration (IDASolveB returns IDA_LSETUP_FAIL and IDALS sets last_flag to
IDALS_JACFUNC_UNRECVR).

The previous function type IDAD1sJacFnBS is identical to IDALsJacFnBS, and may still
be used for backward-compatibility. However, this will be deprecated in future releases,
so we recommend that users transition to the new function type name soon.

6.3.6 Jacobian-vector product for the backward problem (matrix-free lin-
ear solvers)

If a matrix-free linear solver is selected for the backward problem (i.e., IDASetLinearSolverB is
called with NULL-valued SUNMATRIX argument in the steps described in §6.1), the user may provide a
function of type
IDALsJacTimesVecFnB or IDALsJacTimesVecFnBS in the following form, to compute matrix-vector
products Jv. If such a function is not supplied, the default is a difference quotient approximation to
these products.

’ IDALsJacTimesVecFnB ‘

Definition

Purpose

Arguments

typedef int (*IDALsJacTimesVecFnB) (realtype t,
N_Vector yy, N_Vector yp,
N_Vector yB, N_Vector ypB,
N_Vector resvalB,
N_Vector vB, N_Vector JvB,
realtype cjB, void *user_dataB,
N_Vector tmplB, N_Vector tmp2B);

This function computes the action of the backward problem Jacobian JB on a given
vector vB.

t is the current value of the independent variable.

vy is the current value of the forward solution vector.

yp is the current value of the forward solution derivative vector.
yB is the current value of the backward dependent variable vector.

ypB is the current value of the backward dependent derivative vector.
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Return value

resvalB is the current value of the residual for the backward problem.

vB is the vector by which the Jacobian must be multiplied.
JvB is the computed output vector, JB*vB.
cjB is the scalar in the system Jacobian, proportional to the inverse of the step

size (a in Eq. (2.6) ).

user_dataB is a pointer to user data — the same as the user_dataB parameter passed
to IDASetUserDataB.

tmp1B

tmp2B are pointers to memory allocated for variables of type N_Vector which can
be used by IDALsJacTimesVecFnB as temporary storage or work space.

The return value of a function of type IDALsJtimesVecFnB should be 0 if successful or
nonzero if an error was encountered, in which case the integration is halted.

Notes A user-supplied Jacobian-vector product function must load the vector JvB with the
product of the Jacobian of the backward problem at the point (t, y, yB) and the vector
vB. Here, y is the solution of the original IVP at time t and yB is the solution of the
backward problem at the same time. The rest of the arguments are equivalent to those
passed to a function of type IDALsJacTimesVecFn (see §4.6.6). If the backward problem
is the adjoint of ¢ = f(t,y), then this function is to compute —(9f/0y) vp.

The previous function type IDASpilsJacTimesVecFnB is identical to
IDALsJacTimesVecFnB, and may still be used for backward-compatibility. However,
this will be deprecated in future releases, so we recommend that users transition to the
new function type name soon.
IDALsJacTimesVecFnBS ‘
Definition typedef int (*IDALsJacTimesVecFnBS) (realtype t,
N_Vector yy, N_Vector yp,
N_Vector *yyS, N_Vector *ypS,
N_Vector yB, N_Vector ypB,
N_Vector resvalB,
N_Vector vB, N_Vector JvB,
realtype cjB, void *user_dataB,
N_Vector tmplB, N_Vector tmp2B);

Purpose This function computes the action of the backward problem Jacobian JB on a given
vector vB, in the case where the backward problem depends on the forward sensitivities.

Arguments t is the current value of the independent variable.
vy is the current value of the forward solution vector.
yp is the current value of the forward solution derivative vector.

AL a pointer to an array of Ns vectors containing the sensitivities of the forward
solution.

ypS a pointer to an array of Ns vectors containing the derivatives of the forward
sensitivities.

yB is the current value of the backward dependent variable vector.

ypB is the current value of the backward dependent derivative vector.

resvalB is the current value of the residual for the backward problem.

vB is the vector by which the Jacobian must be multiplied.

JvB is the computed output vector, JB*vB.

cjB is the scalar in the system Jacobian, proportional to the inverse of the step

size (o in Eq. (2.6) ).
user_dataB is a pointer to user data — the same as the user_dataB parameter passed
to IDASetUserDataB.
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Return value

Notes

tmp1B
tmp2B are pointers to memory allocated for variables of type N_Vector which can
be used by IDALsJacTimesVecFnBS as temporary storage or work space.

The return value of a function of type IDALsJtimesVecFnBS should be 0 if successful
or nonzero if an error was encountered, in which case the integration is halted.

A user-supplied Jacobian-vector product function must load the vector JvB with the
product of the Jacobian of the backward problem at the point (t, y, yB) and the vector
vB. Here, y is the solution of the original IVP at time t and yB is the solution of the
backward problem at the same time. The rest of the arguments are equivalent to those
passed to a function of type IDALsJacTimesVecFn (see §4.6.6).

The previous function type IDASpilsJacTimesVecFnBS is identical to
IDALsJacTimesVecFnBS, and may still be used for backward-compatibility. However,
this will be deprecated in future releases, so we recommend that users transition to the
new function type name soon.

6.3.7 Jacobian-vector product setup for the backward problem (matrix-
free linear solvers)

If the user’s Jacobian-times-vector requires that any Jacobian-related data be preprocessed or eval-
uated, then this needs to be done in a user-supplied function of type IDALsJacTimesSetupFnB or
IDALsJacTimesSetupFnBS, defined as follows:

IDALsJacTimesSetupFnB

Definition

Purpose

Arguments

Return value

Notes

typedef int (*IDALsJacTimesSetupFnB) (realtype tt,
N_Vector yy, N_Vector yp,
N_Vector yB, N_Vector ypB,
N_Vector resvalB,
realtype cjB, void *user_dataB);

This function preprocesses and/or evaluates Jacobian data needed by the Jacobian-
times-vector routine for the backward problem.

tt is the current value of the independent variable.

vy is the current value of the dependent variable vector, y(t).

yp is the current value of ¢(t).

yB is the current value of the backward dependent variable vector.
ypB is the current value of the backward dependent derivative vector.

resvalB is the current value of the residual for the backward problem.

cjB is the scalar in the system Jacobian, proportional to the inverse of the step
size (a in Eq. (2.6) ).

user_dataB is a pointer to user data — the same as the user_dataB parameter passed
to IDASetUserDataB.

The value returned by the Jacobian-vector setup function should be 0 if successful,
positive for a recoverable error (in which case the step will be retried), or negative for
an unrecoverable error (in which case the integration is halted).

Each call to the Jacobian-vector setup function is preceded by a call to the backward
problem residual user function with the same (t,y, yp, yB, ypB) arguments. Thus,
the setup function can use any auxiliary data that is computed and saved during the
evaluation of the DAE residual.

If the user’s IDALsJacTimesVecFnB function uses difference quotient approximations, it
may need to access quantities not in the call list. These include the current stepsize,
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the error weights, etc. To obtain these, the user will need to add a pointer to ida mem
to user_dataB and then use the IDAGet* functions described in §4.5.10.2. The unit
roundoff can be accessed as UNIT_ROUNDOFF defined in sundials_types.h.

The previous function type IDASpilsJacTimesSetupFnB is identical to
IDALsJacTimesSetupFnB, and may still be used for backward-compatibility. However,
this will be deprecated in future releases, so we recommend that users transition to the
new function type name soon.

IDALsJacTimesSetupFnBS

Definition

Purpose

Arguments

Return value

Notes

typedef int (*IDALsJacTimesSetupFnBS) (realtype tt,
N_Vector yy, N_Vector yp,
N_Vector *yyS, N_Vector *ypS,
N_Vector yB, N_Vector ypB,
N_Vector resvalB,
realtype cjB, void *user_dataB);

This function preprocesses and/or evaluates Jacobian data needed by the Jacobian-
times-vector routine for the backward problem, in the case that the backward problem
depends on the forward sensitivities.

tt is the current value of the independent variable.

vy is the current value of the dependent variable vector, y(t).

yp is the current value of y(t).

AL a pointer to an array of Ns vectors containing the sensitivities of the forward
solution.

ypS a pointer to an array of Ns vectors containing the derivatives of the forward
sensitivities.

yB is the current value of the backward dependent variable vector.

ypB is the current value of the backward dependent derivative vector.

resvalB is the current value of the residual for the backward problem.

cjB is the scalar in the system Jacobian, proportional to the inverse of the step
size (a in Eq. (2.6) ).

user_dataB is a pointer to user data — the same as the user_dataB parameter passed
to IDASetUserDataB.

The value returned by the Jacobian-vector setup function should be 0 if successful,
positive for a recoverable error (in which case the step will be retried), or negative for
an unrecoverable error (in which case the integration is halted).

Each call to the Jacobian-vector setup function is preceded by a call to the backward
problem residual user function with the same (t,y, yp, yyS, ypS, yB, ypB) argu-
ments. Thus, the setup function can use any auxiliary data that is computed and saved
during the evaluation of the DAE residual.

If the user’s IDALsJacTimesVecFnB function uses difference quotient approximations, it
may need to access quantities not in the call list. These include the current stepsize,
the error weights, etc. To obtain these, the user will need to add a pointer to ida mem
to user_dataB and then use the IDAGet* functions described in §4.5.10.2. The unit
roundoff can be accessed as UNIT_ROUNDOFF defined in sundials_types.h.

The previous function type IDASpilsJacTimesSetupFnBS is identical to
IDALsJacTimesSetupFnBS, and may still be used for backward-compatibility. However,
this will be deprecated in future releases, so we recommend that users transition to the
new function type name soon.
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6.3.8 Preconditioner solve for the backward problem (iterative linear solvers)

If preconditioning is used during integration of the backward problem, then the user must provide a
function to solve the linear system Pz = r, where P is a left preconditioner matrix. This function
must have one of the following two forms:

[ IDALsPrecSolveFnB|

Definition typedef int (*IDALsPrecSolveFnB) (realtype t,
N_Vector yy, N_Vector yp,
N_Vector yB, N_Vector ypB,
N_Vector resvalB,
N_Vector rvecB, N_Vector zvecB,
realtype cjB, realtype deltaB,
void *user_dataB);

Purpose This function solves the preconditioning system Pz = r for the backward problem.
Arguments t is the current value of the independent variable.
vy is the current value of the forward solution vector.
yp is the current value of the forward solution derivative vector.
yB is the current value of the backward dependent variable vector.
ypB is the current value of the backward dependent derivative vector.
resvalB is the current value of the residual for the backward problem.
rvecB is the right-hand side vector r of the linear system to be solved.
zvecB is the computed output vector.
cjB is the scalar in the system Jacobian, proportional to the inverse of the step
size (a in Eq. (2.6) ).
deltaB is an input tolerance to be used if an iterative method is employed in the
solution.

user_dataB is a pointer to user data — the same as the user_dataB parameter passed
to the function IDASetUserDataB.

Return value The return value of a preconditioner solve function for the backward problem should be
0 if successful, positive for a recoverable error (in which case the step will be retried),
or negative for an unrecoverable error (in which case the integration is halted).

Notes The previous function type IDASpilsPrecSolveFnB is identical to IDALsPrecSolveFnB,
and may still be used for backward-compatibility. However, this will be deprecated in
future releases, so we recommend that users transition to the new function type name
soon.

IDALsPrecSolveFnBS |

Definition ~ typedef int (*IDALsPrecSolveFnBS) (realtype t,
N_Vector yy, N_Vector yp,
N_Vector *yyS, N_Vector *ypS,
N_Vector yB, N_Vector ypB,
N_Vector resvalB,
N_Vector rvecB, N_Vector zvecB,
realtype cjB, realtype deltaB,
void *user_dataB);

Purpose This function solves the preconditioning system Pz = r for the backward problem, for
the case in which the backward problem depends on the forward sensitivities.

Arguments t is the current value of the independent variable.
vy is the current value of the forward solution vector.
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yp is the current value of the forward solution derivative vector.

yyS a pointer to an array of Ns vectors containing the sensitivities of the forward
solution.

ypS a pointer to an array of Ns vectors containing the derivatives of the forward
sensitivities.

yB is the current value of the backward dependent variable vector.

ypB is the current value of the backward dependent derivative vector.

resvalB is the current value of the residual for the backward problem.

rvecB is the right-hand side vector r of the linear system to be solved.

zvecB is the computed output vector.

cjB is the scalar in the system Jacobian, proportional to the inverse of the step
size (a in Eq. (2.6) ).

deltaB is an input tolerance to be used if an iterative method is employed in the
solution.

user_dataB is a pointer to user data — the same as the user_dataB parameter passed
to the function IDASetUserDataB.

Return value The return value of a preconditioner solve function for the backward problem should be
0 if successful, positive for a recoverable error (in which case the step will be retried),
or negative for an unrecoverable error (in which case the integration is halted).

Notes The previous function type IDASpilsPrecSolveFnBS is identical to IDALsPrecSolveFnBS,
and may still be used for backward-compatibility. However, this will be deprecated in
future releases, so we recommend that users transition to the new function type name
soon.

6.3.9 Preconditioner setup for the backward problem (iterative linear solvers)

If the user’s preconditioner requires that any Jacobian-related data be preprocessed or evaluated, then
this needs to be done in a user-supplied function of one of the following two types:

IDALsPrecSetupFnB

Definition typedef int (*IDALsPrecSetupFnB) (realtype t,
N_Vector yy, N_Vector yp,
N_Vector yB, N_Vector ypB,
N_Vector resvalB,
realtype cjB, void *user_dataB);

Purpose This function preprocesses and/or evaluates Jacobian-related data needed by the pre-
conditioner for the backward problem.

Arguments The arguments of an IDALsPrecSetupFnB are as follows:

t is the current value of the independent variable.

vy is the current value of the forward solution vector.

yp is the current value of the forward solution vector.

yB is the current value of the backward dependent variable vector.

ypB is the current value of the backward dependent derivative vector.
resvalB is the current value of the residual for the backward problem.

cjB is the scalar in the system Jacobian, proportional to the inverse of the step

size (a in Eq. (2.6) ).
user_dataB is a pointer to user data — the same as the user_dataB parameter passed
to the function IDASetUserDataB.
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Return value The return value of a preconditioner setup function for the backward problem should
be 0 if successful, positive for a recoverable error (in which case the step will be retried),
or negative for an unrecoverable error (in which case the integration is halted).

Notes The previous function type IDASpilsPrecSetupFnB is identical to IDALsPrecSetupFnB,
and may still be used for backward-compatibility. However, this will be deprecated in
future releases, so we recommend that users transition to the new function type name
soon.

IDALsPrecSetupFnBS

Definition typedef int (*IDALsPrecSetupFnBS) (realtype t,
N_Vector yy, N_Vector yp,
N_Vector *yyS, N_Vector *ypS,
N_Vector yB, N_Vector ypB,
N_Vector resvalB,
realtype cjB, void *user_dataB);

Purpose This function preprocesses and/or evaluates Jacobian-related data needed by the pre-
conditioner for the backward problem, in the case where the backward problem depends
on the forward sensitivities.

Arguments  The arguments of an IDALsPrecSetupFnBS are as follows:

t is the current value of the independent variable.

vy is the current value of the forward solution vector.

yp is the current value of the forward solution vector.

yyS a pointer to an array of Ns vectors containing the sensitivities of the forward
solution.

ypS a pointer to an array of Ns vectors containing the derivatives of the forward
sensitivities.

yB is the current value of the backward dependent variable vector.

ypB is the current value of the backward dependent derivative vector.

resvalB is the current value of the residual for the backward problem.

cjB is the scalar in the system Jacobian, proportional to the inverse of the step

size (a in Eq. (2.6) ).
user_dataB is a pointer to user data — the same as the user_dataB parameter passed
to the function IDASetUserDataB.

Return value The return value of a preconditioner setup function for the backward problem should
be 0 if successful, positive for a recoverable error (in which case the step will be retried),
or negative for an unrecoverable error (in which case the integration is halted).

Notes The previous function type IDASpilsPrecSetupFnBS is identical to IDALsPrecSetupFnBS,
and may still be used for backward-compatibility. However, this will be deprecated in
future releases, so we recommend that users transition to the new function type name
soon.

6.4 Using the band-block-diagonal preconditioner for back-
ward problems

As on the forward integration phase, the efficiency of Krylov iterative methods for the solution of
linear systems can be greatly enhanced through preconditioning. The band-block-diagonal precondi-
tioner module IDABBDPRE, provides interface functions through which it can be used on the backward
integration phase.



166 Using IDAS for Adjoint Sensitivity Analysis

The adjoint module in IDAS offers an interface to the band-block-diagonal preconditioner module
IDABBDPRE described in section §4.8. This generates a preconditioner that is a block-diagonal matrix
with each block being a band matrix and can be used with one of the Krylov linear solvers and with
the MPI-parallel vector module NVECTOR_PARALLEL.

In order to use the IDABBDPRE module in the solution of the backward problem, the user must
define one or two additional functions, described at the end of this section.

6.4.1 Usage of IDABBDPRE for the backward problem

The IDABBDPRE module is initialized by calling the following function, after an iterative linear solver
for the backward problem has been attached to IDAS by calling IDASetLinearSolverB (see §6.2.6).

| IDABBDPrecInitB

Call flag = IDABBDPrecInitB(ida_ mem, which, NlocalB, mudgB, mldgB,
mukeepB, mlkeepB, dqrelyB, GresB, GcommB);

Description  The function IDABBDPrecInitB initializes and allocates memory for the IDABBDPRE
preconditioner for the backward problem.

Arguments idamem (void *) pointer to the IDAS memory block.
which (int) the identifier of the backward problem.
NlocalB (sunindextype) local vector dimension for the backward problem.

mudgB  (sunindextype) upper half-bandwidth to be used in the difference-quotient
Jacobian approximation.

mldgB  (sunindextype) lower half-bandwidth to be used in the difference-quotient
Jacobian approximation.

mukeepB (sunindextype) upper half-bandwidth of the retained banded approximate
Jacobian block.

mlkeepB (sunindextype) lower half-bandwidth of the retained banded approximate
Jacobian block.

dgrelyB (realtype) the relative increment in components of yB used in the difference
quotient approximations. The default is dgrelyB= v/ unit roundoff, which can
be specified by passing dqrely= 0.0.

GresB  (IDABBDLocalFnB) the C function which computes Gg(t,y, ¥, yB, y5), the func-
tion approximating the residual of the backward problem.

GcommB (IDABBDCommFnB) the optional C function which performs all interprocess com-
munication required for the computation of Gp.

Return value If successful, IDABBDPrecInitB creates, allocates, and stores (internally in the IDAS
solver block) a pointer to the newly created IDABBDPRE memory block. The return
value flag (of type int) is one of:

IDALS_SUCCESS  The call to IDABBDPrecInitB was successful.
IDALS_MEM FAIL A memory allocation request has failed.
IDALS_MEM_NULL The ida mem argument was NULL.
IDALS_LMEM_NULL No linear solver has been attached.
IDALS_ILL_INPUT An invalid parameter has been passed.

F2003 Name FIDABBDPrecInitB

To reinitialize the IDABBDPRE preconditioner module for the backward problem, possibly with a change
in mudgB, m1dgB, or dqrelyB, call the following function:
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| IDABBDPrecRelInitB
Call flag = IDABBDPrecReInitB(ida_mem, which, mudqB, mldgB, dqrelyB);

Description The function IDABBDPrecReInitB reinitializes the IDABBDPRE preconditioner for the
backward problem.
Arguments idamem (void *) pointer to the IDAS memory block returned by IDACreate.
which (int) the identifier of the backward problem.
(

mudgB  (sunindextype) upper half-bandwidth to be used in the difference-quotient

Jacobian approximation.

mldgB  (sunindextype) lower half-bandwidth to be used in the difference-quotient
Jacobian approximation.

dgrelyB (realtype) the relative increment in components of yB used in the difference
quotient approximations.

Return value The return value flag (of type int) is one of:

IDALS_SUCCESS  The call to IDABBDPrecReInitB was successful.
IDALS_MEM_FAIL A memory allocation request has failed.
IDALS MEM NULL The ida_mem argument was NULL.

IDALS PMEM NULL The IDABBDPrecInitB has not been previously called.
IDALS_LMEM NULL No linear solver has been attached.

IDALS_ILL_INPUT An invalid parameter has been passed.

F2003 Name FIDABBDPrecRelInitB

For more details on IDABBDPRE see §4.8.

6.4.2 User-supplied functions for IDABBDPRE

To use the IDABBDPRE module, the user must supply one or two functions which the module calls
to construct the preconditioner: a required function GresB (of type IDABBDLocalFnB) which approxi-
mates the residual of the backward problem and which is computed locally, and an optional function
GcommB (of type IDABBDCommFnB) which performs all interprocess communication necessary to evaluate
this approximate residual (see §4.8). The prototypes for these two functions are described below.

| IDABBDLocalFnB |

Definition =~ typedef int (*IDABBDLocalFnB) (sunindextype NlocalB, realtype t,
N_Vector y, N_Vector yp,
N_Vector yB, N_Vector ypB,
N_Vector gB, void #*user_dataB);

Purpose This GresB function loads the vector gB, an approximation to the residual of the back-
ward problem, as a function of t, y, yp, and yB and ypB.

Arguments NlocalB is the local vector length for the backward problem.

t is the value of the independent variable.

y is the current value of the forward solution vector.

yp is the current value of the forward solution derivative vector.

yB is the current value of the backward dependent variable vector.
ypB is the current value of the backward dependent derivative vector.
gB is the output vector, Gg(t,y,9,y5,UB)-

user_dataB is a pointer to user data — the same as the user_dataB parameter passed
to IDASetUserDataB.
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Return value

Notes

An IDABBDLocalFnB should return 0 if successful, a positive value if a recoverable er-
ror occurred (in which case IDAS will attempt to correct), or a negative value if it
failed unrecoverably (in which case the integration is halted and IDASolveB returns
IDA_LSETUP_FAIL).

This routine must assume that all interprocess communication of data needed to calcu-
late gB has already been done, and this data is accessible within user_dataB.

Before calling the user’s IDABBDLocalFnB, IDAS needs to evaluate (through interpola-
tion) the values of the states from the forward integration. If an error occurs in the
interpolation, IDAS triggers an unrecoverable failure in the preconditioner setup function
which will halt the integration (IDASolveB returns IDA_LSETUP_FAIL).

| IDABBDCommFnB

Definition

Purpose

Arguments

Return value

Notes

typedef int (*IDABBDCommFnB) (sunindextype NlocalB, realtype t,
N_Vector y, N_Vector yp,
N_Vector yB, N_Vector ypB,
void *user_dataB);

This GcommB function performs all interprocess communications necessary for the exe-
cution of the GresB function above, using the input vectors y, yp, yB and ypB.

NlocalB is the local vector length.

t is the value of the independent variable.

y is the current value of the forward solution vector.

yp is the current value of the forward solution derivative vector.

yB is the current value of the backward dependent variable vector.
ypB is the current value of the backward dependent derivative vector.

user_dataB is a pointer to user data — the same as the user_dataB parameter passed
to IDASetUserDataB.

An IDABBDCommFnB should return 0 if successful, a positive value if a recoverable er-
ror occurred (in which case IDAS will attempt to correct), or a negative value if it
failed unrecoverably (in which case the integration is halted and IDASolveB returns
IDA_LSETUP_FATL).

The GcommB function is expected to save communicated data in space defined within
the structure user_dataB.

Each call to the GcommB function is preceded by a call to the function that evaluates the
residual of the backward problem with the same t, y, yp, yB and ypB arguments. If there
is no additional communication needed, then pass GcommB = NULL to IDABBDPrecInitB.



Chapter 7

Using IDAS for Fortran
Applications

A Fortran 2003 module (fidas mod) is provided to support the use of IDAS, for the solution of DAE
systems and performing forward sensitivity analysis or adjoint sensitivity analysis in a mixed For-
tran/C setting. While IDAS is written in C, it is assumed here that the user’s calling program and
user-supplied problem-defining routines are written in Fortran.

7.1 IDAS Fortran 2003 Interface Module

The fidas_mod Fortran module defines interfaces to most IDAS C functions using the intrinsic iso_c_binding
module which provides a standardized mechanism for interoperating with C. All interfaced functions
are named after the corresponding C function, but with a leading ‘F’. For example, the IDAS function
IDACreate is interfaced as FIDACreate. Thus, the steps to use IDAS and the function calls in Fortran
2003 are identical (ignoring language differences) to those in C. The C functions with Fortran 2003
interfaces indicate this in their description in Chapters 4, 5, and 6 . The Fortran 2003 IDAS inter-
face module can be accessed by the use statement, i.e. use fidas mod, and linking to the library
libsundials_fidas_mod.lib in addition to libsundials_idas.lib.

The Fortran 2003 interface modules were generated with SWIG Fortran, a fork of SWIG [42].
Users who are interested in the SWIG code used in the generation process should contact the SUNDIALS
development team.

7.1.1 SUNDIALS Fortran 2003 Interface Modules

All of the generic SUNDIALS modules provide Fortran 2003 interface modules. Many of the generic
module implementations provide Fortran 2003 interfaces (a complete list of modules with Fortran
2003 interfaces is given in Table 7.1). A module can be accessed with the use statement, e.g. use
fnvector_openmp mod, and linking to the Fortran 2003 library in addition to the C library, e.g.
libsundials_fnvecpenmp mod.lib and 1ibsundials_nvecopenmp.lib.

The Fortran 2003 interfaces leverage the iso_c_binding module and the bind(C) attribute to
closely follow the suNDIALS C API (ignoring language differences). The generic SUNDIALS structures,
e.g. N_Vector, are interfaced as Fortran derived types, and function signatures are matched but with
an F prepending the name, e.g. FN_VConst instead of N_VConst. Constants are named exactly as they
are in the C API. Accordingly, using SUNDIALS via the Fortran 2003 interfaces looks just like using
it in C. Some caveats stemming from the language differences are discussed in the section 7.1.3. A
discussion on the topic of equivalent data types in C and Fortran 2003 is presented in section 7.1.2.

Further information on the Fortran 2003 interfaces specific to modules is given in the NVECTOR,
SUNMATRIX, SUNLINSOL, and SUNNONLINSOL alongside the C documentation (chapters 9, 10, 11, and
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12 respectively). For details on where the Fortran 2003 module (.mod) files and libraries are installed

see Appendix A.

Table 7.1: Summary of Fortran 2003 interfaces for shared SUNDIALS modules.

Module

Fortran 2003 Module Name

NVECTOR
NVECTOR_SERIAL
NVECTOR_PARALLEL
NVECTOR_OPENMP
NVECTOR_PTHREADS
NVECTOR_PARHYP
NVECTOR_PETSC
NVECTOR_CUDA
NVECTOR_RAJA
NVECTOR_MANYVECTOR
NVECTOR_MPIMANYVECTOR
NVECTOR_MPIPLUSX
SUNMatrix
SUNMATRIX_BAND
SUNMATRIX_DENSE
SUNMATRIX_SPARSE
SUNLinearSolver
SUNLINSOL_BAND
SUNLINSOL_DENSE
SUNLINSOL_LAPACKBAND
SUNLINSOL_LAPACKDENSE
SUNLINSOL_KLU
SUNLINSOL_SUPERLUMT
SUNLINSOL_SUPERLUDIST
SUNLINSOL_SPGMR
SUNLINSOL_SPFGMR
SUNLINSOL_SPBCGS
SUNLINSOL_SPTFQMR
SUNLINSOL_PCG
SUNNonlinearSolver
SUNNONLINSOL_NEWTON
SUNNONLINSOL_FIXEDPOINT

fsundials_nvector_mod
fnvector_serial mod
fnvector_parallel_mod
fnvector_openmp_mod
fnvector_pthreads_mod

Not interfaced

Not interfaced

Not interfaced

Not interfaced

fnvector manyvector_mod
fnvector mpimanyvector_mod
fnvector mpiplusx_mod
fsundials matrix_mod
fsunmatrix_band mod
fsunmatrix_dense_mod
fsunmatrix_sparse_mod
fsundials_linearsolver_mod
fsunlinsol_band mod
fsunlinsol_dense_mod

Not interfaced

Not interfaced

fsunlinsol _klu_mod

Not interfaced

Not interfaced
fsunlinsol_spgmr_mod
fsunlinsol_spfgmr_mod
fsunlinsol_spbcgs_mod
fsunlinsol_sptfqmr_mod
fsunlinsol_pcg mod
fsundials_nonlinearsolver_mod
fsunnonlinsol newton_mod
fsunnonlinsol_fixedpoint_mod

7.1.2 Data Types

Generally, the Fortran 2003 type that is equivalent to the C type is what one would expect. Primitive
types map to the iso_c_binding type equivalent. SUNDIALS generic types map to a Fortran derived
type. However, the handling of pointer types is not always clear as they can depend on the parameter
direction. Table 7.2 presents a summary of the type equivalencies with the parameter direction in

mind.

Currently, the Fortran 2003 interfaces are only compatible with SUNDIALS builds where the realtype
is double precision and the sunindextype size is 64-bits.
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Table 7.2: C/Fortran 2003 Equivalent Types

C type Parameter Direction | Fortran 2003 type

double in, inout, out, return real (c_double)

int in, inout, out, return integer(c_int)

long in, inout, out, return integer(c_long)

booleantype in, inout, out, return integer(c_int)

realtype in, inout, out, return real (c_double)

sunindextype in, inout, out, return integer(c_long)

doublex* in, inout, out real(c_double), dimension(*)

doublex* return real(c_double), pointer, dimension(:)
int* in, inout, out integer(c_int), dimension(*)

int* return integer(c_int), pointer, dimension(:)
long* in, inout, out integer(c_long), dimension(*)

long* return integer(c_long), pointer, dimension(:)
realtype* in, inout, out real(c_double), dimension(*)
realtypex* return real(c_double), pointer, dimension(:)
sunindextypex* in, inout, out integer(c_long), dimension(x*)
sunindextype* return integer(c_long), pointer, dimension(:)
realtypel[] in, inout, out real(c_double), dimension(*)
sunindextype[] in, inout, out integer(c_long), dimension(*)
N_Vector in, inout, out type (N_Vector)

N_Vector return type(N_Vector), pointer

SUNMatrix in, inout, out type (SUNMatrix)

SUNMatrix return type (SUNMatrix), pointer
SUNLinearSolver in, inout, out type (SUNLinearSolver)

SUNLinearSolver return type (SUNLinearSolver), pointer
SUNNonlinearSolver | in, inout, out type (SUNNonlinearSolver)
SUNNonlinearSolver | return type (SUNNonlinearSolver), pointer
FILE* in, inout, out, return type (c_ptr)

voidx* in, inout, out, return type (c_ptr)

T*x in, inout, out, return type(c_ptr)

Tokokok in, inout, out, return type(c_ptr)

JEEE S in, inout, out, return type(c_ptr)

7.1.3 Notable Fortran/C usage differences

While the Fortran 2003 interface to SUNDIALS closely follows the C API, some differences are inevitable
due to the differences between Fortran and C. In this section, we note the most critical differences.
Additionally, section 7.1.2 discusses equivalencies of data types in the two languages.

7.1.3.1

Creating generic SUNDIALS objects

In the C API a generic SUNDIALS object, such as an N_Vector, is actually a pointer to an underlying
C struct. However, in the Fortran 2003 interface, the derived type is bound to the C struct, not the
pointer to the struct. E.g., type(N_Vector) is bound to the C struct _generic_N _Vector not the
N_Vector type. The consequence of this is that creating and declaring SUNDIALS objects in Fortran is
nuanced. This is illustrated in the code snippets below:

C code:

N_Vector x;
x = N_VNew_Serial (N);

Fortran code:
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type(N_Vector), pointer :: x
x => FN_VNew_Serial (N)

Note that in the Fortran declaration, the vector is a type(N_Vector), pointer, and that the
pointer assignment operator is then used.

7.1.3.2 Arrays and pointers

Unlike in the C API, in the Fortran 2003 interface, arrays and pointers are treated differently when
they are return values versus arguments to a function. Additionally, pointers which are meant to be
out parameters, not arrays, in the C API must still be declared as a rank-1 array in Fortran. The
reason for this is partially due to the Fortran 2003 standard for C bindings, and partially due to the
tool used to generate the interfaces. Regardless, the code snippets below illustrate the differences.

C code:

N_Vector x
realtype* xdata;
long int leniw, lenrw;

x = N_VNew_Serial(N);

/* capturing a returned array/pointer */
xdata = N_VGetArrayPointer (x)

/* passing array/pointer to a function */
N_VSetArrayPointer(xdata, x)

/* pointers that are out-parameters */
N_VSpace(x, &leniw, &lenrw);

Fortran code:

type(N_Vector), pointer :: x

real(c_double), pointer :: xdataptr(:)
real(c_double) :: xdata(N)
integer(c_long) :: leniw(1), lenrw(1)

x => FN_VNew_Serial (x)

! capturing a returned array/pointer
xdataptr => FN_VGetArrayPointer (x)

| passing array/pointer to a function
call FN_VSetArrayPointer(xdata, x)

! pointers that are out-parameters
call FN_VSpace(x, leniw, lenrw)

7.1.3.3 Passing procedure pointers and user data

Since functions/subroutines passed to SUNDIALS will be called from within C code, the Fortran proce-
dure must have the attribute bind (C). Additionally, when providing them as arguments to a Fortran
2003 interface routine, it is required to convert a procedure’s Fortran address to C with the Fortran
intrinsic c_funloc.

Typically when passing user data to a SUNDIALS function, a user may simply cast some custom
data structure as a void*. When using the Fortran 2003 interfaces, the same thing can be achieved.
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Note, the custom data structure does not have to be bind (C) since it is never accessed on the C side.

C code:

MyUserData* udata;
void *cvode_mem;

ierr = CVodeSetUserData(cvode_mem, udata);
Fortran code:

type (MyUserData) :: udata
type(c_ptr) :: cvode_mem

ierr = FCVodeSetUserData(cvode_mem, c_loc(udata))

On the other hand, Fortran users may instead choose to store problem-specific data, e.g. problem
parameters, within modules, and thus do not need the SUNDIALS-provided user_data pointers to
pass such data back to user-supplied functions. These users should supply the c_null_ptr input for
user_data arguments to the relevant SUNDIALS functions.

7.1.3.4 Passing NULL to optional parameters

In the suNDIALS C API some functions have optional parameters that a caller can pass NULL to. If the
optional parameter is of a type that is equivalent to a Fortran type (c_ptr) (see section 7.1.2), then a
Fortran user can pass the intrinsic c_null_ptr. However, if the optional parameter is of a type that is
not equivalent to type(c_ptr), then a caller must provide a Fortran pointer that is dissociated. This
is demonstrated in the code example below.

C code:

SUNLinearSolver LS;
N_Vector x, b;

! SUNLinSolSolve expects a SUNMatrix or NULL
! as the second parameter.
ierr = SUNLinSolSolve(LS, NULL, x, b);

Fortran code:

type (SUNLinearSolver), pointer :: LS
type (SUNMatrix), pointer :: A
type(N_Vector), pointer :: x, b

A => null()

I SUNLinSolSolve expects a type(SUNMatrix), pointer

! as the second parameter. Therefore, we cannot

! pass a c_null_ptr, rather we pass a disassociated A.
ierr = FSUNLinSolSolve(LS, A, x, b)

7.1.3.5 Working with N_Vector arrays

Arrays of N_Vector objects are interfaced to Fortran 2003 as opaque type(c_ptr). As such, it is
not possible to directly index an array of N_Vector objects returned by the N_Vector “VectorArray”
operations, or packages with sensitivity capablities. Instead, SUNDIALS provides a utility function
FN_VGetVecAtIndexVectorArray that can be called for accessing a vector in a vector array. The
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example below demonstrates this:

C code:

N_Vector x;
N_Vector* vecs;

vecs = N_VCloneVectorArray(count, x);
for (int i=0; i < count; ++i)
N_VConst (vecs[i]);

Fortran code:

type(N_Vector), pointer :: x, xi
type(c_ptr) 11 vecs

vecs = FN_VCloneVectorArray(count, x)

do index, count
xi => FN_VGetVecAtIndexVectorArray(vecs, index)
call FN_VConst (xi)

enddo

SUNDIALS also provides the functions FN_VSetVecAtIndexVectorArray and FN_VNewVectorArray
for working with N_Vector arrays. These functions are particularly useful for users of the Fortran
interface to the NVECTOR_MANYVECTOR or NVECTOR_MPIMANYVECTOR when creating the subvector
array. Both of these functions along with FN_VGetVecAtIndexVectorArray are further described in
Chapter 9.1.6.

7.1.3.6 Providing file pointers

Expert SUNDIALS users may notice that there are a few advanced functions in the suNDIALS C API
that take a FILE * argument. Since there is no portable way to convert between a Fortran file descrip-
tor and a C file pointer, SUNDIALS provides two utility functions for creating a FILE * and destroying
it. These functions are defined in the module fsundials_futils mod.

FSUNDIALSFileren‘
Call fp = FSUNDIALSFileOpen(filename, mode)

Description  The function allocates a FILE * by calling the C function fopen.

Arguments filename (character(kind=C_CHAR, len=+)) - the path to the file to open

mode (character (kind=C_CHAR, len=%)) - the mode string given to fopen It
should begin with one of the following characters:

(1385

1”7 - open text file for reading

“r+” - open text file for reading and writing

“w” - truncate text file to zero length or create it for writing

“w+" - open text file for reading or writing, create it if it does not exist

“a” - open for appending, see documentation of “fopen“ for your sys-

tem/compiler
“a+” - open for reading and appending, see documentation for “fopen*
for your system/compiler

Return value This returns a type (C_PTR) which is a FILE* in C. If it is NULL, then there was an error
opening the file.
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| FSUNDIALSFileClose
Call call FSUNDIALSFileClose(fp)

Description  The function deallocates a FILE* by calling the C function fclose.
Arguments fp (type(C_PTR)) - the file pointer (type FILE* in C)

Return value None

7.1.4 Important notes on portability

The sUNDIALS Fortran 2003 interface should be compatible with any compiler supporting the Fortran
2003 ISO standard. However, it has only been tested and confirmed to be working with GNU Fortran
4.9+ and Intel Fortran 18.0.1+.

Upon compilation of SUNDIALS, Fortran module (.mod) files are generated for each Fortran 2003
interface. These files are highly compiler specific, and thus it is almost always necessary to compile a
consuming application with the same compiler used to generate the modules.






Chapter 8

IDAS Features for GPU
Accelerated Computing

This chapter is concerned with using GPU-acceleration and 1DAS for the integration of DAEs, forward
sensitivity analysis, and adjoint sensitivity analysis.

8.1 SUNDIALS GPU Programming Model

In this section, we introduce the SUNDIALS GPU programming model and highlight sunpiALS GPU
features. The model leverages the fact that all of the SUNDIALS packages interact with simulation
data either through the shared vector, matrix, and solver APIs (see §9, §10, §11, and §12) or through
user-supplied callback functions. Thus, under the model, the overall structure of the user’s calling
program, and the way users interact with the SUNDIALS packages is similar to using SUNDIALS in
CPU-only environments.

Within the SUNDIALS GPU programming model, all control logic executes on the CPU, and all
simulation data resides wherever the vector or matrix object dictates as long as SUNDIALS is in control
of the program. That is, SUNDIALS will not migrate data (explicitly) from one memory space to
another. Except in the most advanced use cases, it is safe to assume that data is kept resident in
the GPU-device memory space. The consequence of this is that, when control is passed from the
user’s calling program to SUNDIALS, simulation data in vector or matrix objects must be up-to-date
in the device memory space. Similarly, when control is passed from SUNDIALS to the user’s calling
program, the user should assume that any simulation data in vector and matrix objects are up-to-date
in the device memory space. To put it succinctly, it is the responsibility of the user’s calling program
to manage data coherency between the CPU and GPU-device memory spaces unless unified virtual
memory (UVM), also known as managed memory, is being utilized. Typically, the GPU-enabled
SUNDIALS modules provide functions to copy data from the host to the device and vice-versa as well
as support for unmanaged memory or UVM. In practical terms, the way SUNDIALS handles distinct
host and device memory spaces means that users need to ensure that the user-supplied functions, e.g.
the right-hand side function, only operate on simulation data in the device memory space otherwise
extra memory transfers will be required and performance will be poor. The exception to this rule is if
some form of hybrid data partitioning (achievable with the NVECTOR_MANYVECTOR §9.15) is utilized.

SUNDIALS provides many native shared features and modules that are GPU-enabled. Currently,
these are primarily limited to the NVIDIA CUDA platform [5], although support for more GPU
computing platforms such as AMD ROCm/HIP [1] and Intel oneAPI [2], is an area of active de-
velopment. Table 8.1 summarizes the shared SUNDIALS modules that are GPU-enabled, what GPU
programming environments they support, and what class of memory they support (unmanaged or
UVM). Users may also supply their own GPU-enabled N_Vector, SUNMatrix, SUNLinearSolver, or
SUNNonlinearSolver implementation, and the capabilties will be leveraged since SUNDIALS operates
on data through these APIs.
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In addition, SUNDIALS provides the SUNMemoryHelper API §13.1 to support applications which
implement their own memory management or memory pooling.

Table 8.1: List of SUNDIALS GPU Enabled Modules. Note that support for ROCm/HIP and oneAPI
are currently untested, and implicit UVM (i.e. malloc returning UVM) is not accounted for. A The
1 symbol indicates that the module inherits support from the NVECTOR module used.

ROCm/HIP
oneAPI

Module

NVECTOR_CUDA (§9.9)

NVECTOR_RAJA (§9.11)
NVECTOR_OPENMPDEV (§9.13)
SUNMATRIX_CUSPARSE (§10.7)
SUNLINSOL_CUSOLVERSP_BATCHQR (§11.12)
SUNLINSOL_SPGMR (§11.14)
)

)

)

)

)

)

SUNLINSOL_SPTFQMR (§11.17
SUNLINSOL_SPBCGS (§11.16
SUNLINSOL_PCG (§11.18
SUNNONLINSOL_NEWTON (§12.3
SUNNONLINSOL_FIXEDPOINT (§77

(

(
SUNLINSOL_SPFGMR (§11.15

(

(

(
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8.2 Steps for Using GPU Accelerated SUNDIALS

For any SUNDIALS package, the generalized steps a user needs to take to use GPU accelerated SUNDIALS

are:

1.

=~ W

Utilize a GPU-enabled NVECTOR implementation. Initial data can be loaded on the host, but
must be in the device memory space prior to handing control to SUNDIALS.

Utilize a GPU-enabled SUNLINSOL linear solver (if necessary).
Utilize a GPU-enabled SUNMATRIX implementation (if using a matrix-based linear solver).
Utilize a GPU-enabled SUNNONLINSOL nonlinear solver (if necessary).

Write user-supplied functions so that they use data only in the device memory space (again,
unless an atypical data partitioning is used). A few examples of these functions are the right-
hand side evaluation function, the Jacobian evalution function, or the preconditioner evaluation
function. In the context of CUDA and the right-hand side function, one way a user might
ensure data is accessed on the device is, for example, calling a CUDA kernel, which does all of
the computation, from a CPU function which simply extracts the underlying device data array
from the NVECTOR object that is passed from SUNDIALS to the user-supplied function.

Users should refer to Table 8.1 for a list of GPU-enabled native SUNDIALS modules.
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Description of the NVECTOR
module

The SUNDIALS solvers are written in a data-independent manner. They all operate on generic vectors
(of type N_Vector) through a set of operations defined by the particular NVECTOR implementation.
Users can provide their own specific implementation of the NVECTOR module, or use one of the
implementations provided with SUNDIALS. The generic NVECTOR is described below and the imple-
mentations provided with SUNDIALS are described in the following sections.

9.1 The NVECTOR API

The generic NVECTOR API can be broken down into groups of functions: the core vector operations,
the fused vector operations, the vector array operations, the local reduction operations, the exchange
operations, and finally some utility functions. All but the last group are defined by a particular
NVECTOR implementation. The utility functions are defined by the generic NVECTOR itself.

9.1.1 NVECTOR core functions

’ N_VGetVectorID ‘
Call id = N_VGetVectorID(w);

Description  Returns the vector type identifier for the vector w. It is used to determine the vector
implementation type (e.g. serial, parallel,...) from the abstract N_Vector interface.

Arguments w (N_Vector) a NVECTOR object
Return value This function returns an N_Vector_ID. Possible values are given in Table 9.1.

F2003 Name FN_VGetVectorID

Call v = N_VClone(w);

Description  Creates a new N_Vector of the same type as an existing vector w and sets the ops field.
It does not copy the vector, but rather allocates storage for the new vector.

Arguments w (N_Vector) a NVECTOR object

Return value This function returns an N_Vector object. If an error occurs, then this routine will
return NULL.

F2003 Name FN_VClone
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N_VCloneEmpty

Call v = N_VCloneEmpty(w) ;

Description Creates a new N_Vector of the same type as an existing vector w and sets the ops field.
It does not allocate storage for data.

Arguments w (N_Vector) a NVECTOR object

Return value This function returns an N_Vector object. If an error occurs, then this routine will
return NULL.

F2003 Name FN_VCloneEmpty

N_VDestroy

Call N_VDestroy(v);

Description Destroys the N_Vector v and frees memory allocated for its internal data.
Arguments v (N_Vector) a NVECTOR object to destroy

Return value None

F2003 Name FN_VDestroy

Call N_VSpace(v, &lrw, &liw);

Description  Returns storage requirements for one N_Vector. lrw contains the number of realtype
words and 1liw contains the number of integer words, This function is advisory only, for
use in determining a user’s total space requirements; it could be a dummy function in
a user-supplied NVECTOR module if that information is not of interest.

Arguments v (N_Vector) a NVECTOR object
lrv (sunindextype*) out parameter containing the number of realtype words

liv (sunindextype*) out parameter containing the number of integer words
Return value None
F2003 Name FN_VSpace

F2003 Call integer(c_long) :: 1lrw(1), 1liw(l)
call FN_VSpace_Serial(v, lrw, liw)

N_VGetArrayPointer

Call vdata = N_VGetArrayPointer(v);

Description  Returns a pointer to a realtype array from the N_Vector v. Note that this assumes
that the internal data in N_Vector is a contiguous array of realtype and is accessible
from the CPU.

This routine is only used in the solver-specific interfaces to the dense and banded (serial)
linear solvers, the sparse linear solvers (serial and threaded), and in the interfaces to
the banded (serial) and band-block-diagonal (parallel) preconditioner modules provided
with SUNDIALS.

Arguments v (N_Vector) a NVECTOR object
Return value realtypex

F2003 Name FN_VGetArrayPointer
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N_VGetDeviceArrayPointer

Call vdata = N_VGetDeviceArrayPointer(v);

Description  Returns a device pointer to a realtype array from the N_Vector v. Note that this
assumes that the internal data in N_Vector is a contiguous array of realtype and is
accessible from the device (e.g., GPU).

This operation is optional except when using the GPU-enabled direct linear solvers.
Arguments v (N_Vector) a NVECTOR object
Return value realtype*

Notes Currently, only the GPU-enabled SUNDIALS vectors provide this operation. All other
SUNDIALS vectors will return NULL.

F2003 Name FN_VGetDeviceArrayPointer

N_VSetArrayPointer

Call N_VSetArrayPointer (vdata, v);

Description  Overwrites the pointer to the data in an N_Vector with a given realtype*. Note that
this assumes that the internal data in N_Vector is a contiguous array of realtype. This
routine is only used in the interfaces to the dense (serial) linear solver, hence need not
exist in a user-supplied NVECTOR module for a parallel environment.

Arguments v (N_Vector) a NVECTOR object
Return value None

F2003 Name FN_VSetArrayPointer

’ N_VGetCommunicator

Call N_VGetCommunicator(v) ;

Description  Returns a pointer to the MPI_Comm object associated with the vector (if applicable). For
MPI-unaware vector implementations, this should return NULL.

Arguments v (N_Vector) a NVECTOR object
Return value A void * pointer to the MPI_Comm object if the vector is MPI-aware, otherwise NULL.

F2003 Name FN_VGetCommunicator

N_VGetLength

Call N_VGetLength(v);

Description  Returns the global length (number of ‘active’ entries) in the NVECTOR v. This value
should be cumulative across all processes if the vector is used in a parallel environment.
If v contains additional storage, e.g., for parallel communication, those entries should
not be included.

Arguments v (N_Vector) a NVECTOR object
Return value sunindextype

F2003 Name FN_VGetLength
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N_VLinearSum

Call

Description

Arguments

Return value

F2003 Name

Call
Description

Arguments

Return value

F2003 Name

Call

Description

Arguments

Return value

F2003 Name

Call

Description

Arguments

Return value

F2003 Name

N_VLinearSum(a, x, b, y, 2);

Performs the operation z = ax + by, where a and b are realtype scalars and x and y
are of type N_Vector: z; = az; +by;, 1 =0,...,n— 1.

(realtype) constant that scales x
(N_Vector) a NVECTOR object

a
x
b (realtype) constant that scales y
y (N_Vector) a NVECTOR object

z

(N_Vector) a NVECTOR object containing the result
The output vector z can be the same as either of the input vectors (x or y).

FN_VLinearSum

N_VConst(c, z);
Sets all components of the N_Vector z to realtype c: z;, =¢, i =0,...,n— 1.

c (realtype) constant to set all components of z to

z (N_Vector) a NVECTOR object containing the result
None

FN_VConst

N_VProd(x, y, 2);

Sets the N_Vector z to be the component-wise product of the N_Vector inputs x and y:
Zi = TiYi, iZO,...,n—l.

x (N_Vector) a NVECTOR object

y (N_Vector) a NVECTOR object
z (N_Vector) a NVECTOR object containing the result

None

FN_VProd

N VDiv(x, y, 2);

Sets the N_Vector z to be the component-wise ratio of the N_Vector inputs x and y:
zi = 23 /yi, i = 0,...,n — 1. The y; may not be tested for 0 values. It should only be
called with a y that is guaranteed to have all nonzero components.

x (N_Vector) a NVECTOR object
y (N_Vector) a NVECTOR object
z (N_Vector) a NVECTOR object containing the result

None

FN_VDiv
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Call N_VScale(c, x, z);

Description  Scales the N_Vector x by the realtype scalar ¢ and returns the result in z: z; = cx;, i =
0,...,n—1.

Arguments ¢ (realtype) constant that scales the vector x
x (N_Vector) a NVECTOR object
z (N_Vector) a NVECTOR object containing the result

Return value None
F2003 Name FN_VScale

Call N_VAbs(x, z);

Description  Sets the components of the N_Vector z to be the absolute values of the components of
the N.Vector x: z; = |z, 1=0,...,n— 1.

Arguments x (N_Vector) a NVECTOR object

z (N_Vector) a NVECTOR object containing the result
Return value None
F2003 Name FN_VAbs

Call N_VInv(x, z);
Description  Sets the components of the N_Vector z to be the inverses of the components of the
N_Vector x: z; = 1.0/x;,i=0,...,n— 1. This routine may not check for division by 0.

It should be called only with an x which is guaranteed to have all nonzero components.

Arguments x (N_Vector) a NVECTOR object to
z (N_Vector) a NVECTOR object containing the result

Return value None
F2003 Name FN_VInv

N_VAddConst

Call N_VAddConst(x, b, z);

Description  Adds the realtype scalar b to all components of x and returns the result in the N_Vector
z: zi=x;+0b,1=0,...,n—1.

Arguments x (N_Vector) a NVECTOR object
b (realtype) constant added to all components of x
z (N_Vector) a NVECTOR object containing the result

Return value None
F2003 Name FN_VAddConst

N_VDotProd

Call d = N_VDotProd(x, y);

Description  Returns the value of the ordinary dot product of x and y: d = 2?2—01 TiYi-

Arguments x (N_Vector) a NVECTOR object with y
y (N_Vector) a NVECTOR object with x
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Return value realtype

F2003 Name FN_VDotProd

N_VMaxNorm

Call m = N_VMaxNorm(x) ;

Description  Returns the maximum norm of the N_Vector x: m = max; |z;|.
Arguments x (N_Vector) a NVECTOR object

Return value realtype

F2003 Name FN_VMaxNorm

N_VWrmsNorm

Call m = N_VWrmsNorm(x, w)

Description  Returns the weighted root-mean-square norm of the N_Vector x with realtype weight
vector w: m = \/(Z?_Ol (xl-wi)2> /n.

Arguments x (N_Vector) a NVECTOR object

w (N_Vector) a NVECTOR object containing weights
Return value realtype

F2003 Name FN_VWrmsNorm

\ N_VWrmsNormMask \
Call m = N_VWrmsNormMask(x, w, id);

Description  Returns the weighted root mean square norm of the N_Vector x with realtype weight
vector w built using only the elements of x corresponding to positive elements of the

- 1 0
N_Vector id: m = \/<Z:l_01 (x'Lle(Zd’L))Q) /n7 Where H(a) = {O ¢ z O
@ =

Arguments x (N_Vector) a NVECTOR object
w (N_Vector) a NVECTOR object containing weights

id (N_Vector) mask vector
Return value realtype

F2003 Name FN_VWrmsNormMask

Call m = N_VMin(x);

Description  Returns the smallest element of the N_Vector x: m = min; x;.
Arguments x (N_Vector) a NVECTOR object

Return value realtype

F2003 Name FN_VMin
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N_VWL2Norm

Call m = N_VWL2Norm(x, w);

Description  Returns the weighted Euclidean #5 norm of the N_Vector x with realtype weight vector
w:om o=/ (w2,

Arguments x (N_Vector) a NVECTOR object
w (N_Vector) a NVECTOR object containing weights

Return value realtype

F2003 Name FN_VWL2Norm

Call m = N_VLiNorm(x);

Description  Returns the £, norm of the N_Vector x: m = S0 |z;.
Arguments x (N_Vector) a NVECTOR object to obtain the norm of
Return value realtype

F2003 Name FN_VL1Norm

N_VCompare

Call N_VCompare(c, x, 2z);

Description Compares the components of the N_Vector x to the realtype scalar ¢ and returns an
N_Vector z such that: z; = 1.0 if |2;| > ¢ and z; = 0.0 otherwise.

Arguments ¢ (realtype) constant that each component of x is compared to
x (N_Vector) a NVECTOR object
z (N_Vector) a NVECTOR object containing the result

Return value None

F2003 Name FN_VCompare

N_VInvTest

Call t = N_VInvTest(x, z);
Description  Sets the components of the N_Vector z to be the inverses of the components of the
N_Vector x, with prior testing for zero values: z; = 1.0/z;, i =0,...,n— 1.

Arguments x (N_Vector) a NVECTOR object
z (N_Vector) an output NVECTOR object

Return value Returns a booleantype with value SUNTRUE if all components of x are nonzero (success-
ful inversion) and returns SUNFALSE otherwise.

F2003 Name FN_VInvTest

’ N_VConstrMask ‘
Call t = N_VConstrMask(c, x, m);

Description  Performs the following constraint tests: z; > 0if ¢; = 2, z; > 0if ¢; = 1, z; < 0 if
¢; = —1, x; < 0if ¢; = —2. There is no constraint on x; if ¢; = 0. This routine returns
a boolean assigned to SUNFALSE if any element failed the constraint test and assigned
to SUNTRUE if all passed. It also sets a mask vector m, with elements equal to 1.0 where
the constraint test failed, and 0.0 where the test passed. This routine is used only for
constraint checking.
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Arguments ¢ (realtype) scalar constraint value
x (N_Vector) a NVECTOR object
m (N_Vector) output mask vector

Return value Returns a booleantype with value SUNFALSE if any element failed the constraint test,
and SUNTRUE if all passed.

F2003 Name FN_VConstrMask

N_VMinQuotient

Call ming = N_VMinQuotient(num, denom) ;

Description  This routine returns the minimum of the quotients obtained by term-wise dividing num;
by denom;. A zero element in denom will be skipped. If no such quotients are found, then
the large value BIG_REAL (defined in the header file sundials_types.h) is returned.

Arguments num (N_Vector) a NVECTOR object used as the numerator
denom (N_Vector) a NVECTOR object used as the denominator

Return value realtype
F2003 Name FN_VMinQuotient

9.1.2 NVECTOR fused functions

Fused and vector array operations are intended to increase data reuse, reduce parallel communication
on distributed memory systems, and lower the number of kernel launches on systems with accelerators.
If a particular NVECTOR implementation defines a fused or vector array operation as NULL, the generic
NVECTOR module will automatically call standard vector operations as necessary to complete the
desired operation. In all SUNDIALS-provided NVECTOR implementations, all fused and vector array
operations are disabled by default. However, these implementations provide additional user-callable
functions to enable/disable any or all of the fused and vector array operations. See the following
sections for the implementation specific functions to enable/disable operations.

’ N_VLinearCombination ‘

Call ier = N_VLinearCombination(nv, c, X, z);

Description  This routine computes the linear combination of n, vectors with n elements:

Ny, —1

Zi = E CiTj, Z':(),...,’I’L—l7
Jj=0

where c is an array of n, scalars, X is an array of n,, vectors, and z is the output vector.
Arguments nv (int) the number of vectors in the linear combination

c (realtype*) an array of n, scalars used to scale the corresponding vector in X

X (N_Vectorx) an array of n, NVECTOR objects to be scaled and combined

z (N_Vector) a NVECTOR object containing the result
Return value Returns an int with value 0 for success and a non-zero value otherwise.

Notes If the output vector z is one of the vectors in X, then it must be the first vector in the
vector array.

F2003 Name FN_VLinearCombination

F2003 Call real(c_double) :: c(av)
type(c_ptr), target :: X(av)
type(N_Vector), pointer :: =z

ierr = FN_VLinearCombination(nv, c, X, z)
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[N_VScaleAddMulti

Call ier = N_VScaleAddMulti(av, c, x, Y, Z);

Description  This routine scales and adds one vector to n, vectors with n elements:
Zj,i:Cj$i+yj,i7 jZO,...,’ﬂvfl Z':(),...,n*l,

where c is an array of n, scalars, z is the vector to be scaled and added to each vector

in the vector array of n, vectors Y, and Z is a vector array of n, output vectors.
Arguments nv (int) the number of scalars and vectors in ¢, Y, and Z

c (realtype*) an array of n, scalars

x (N_Vector) a NVECTOR object to be scaled and added to each vector in Y

(N_Vector*) an array of n, NVECTOR objects where each vector j will have the
vector x scaled by c_j added to it

Z (N_Vector) an output array of n, NVECTOR objects
Return value Returns an int with value 0 for success and a non-zero value otherwise.

F2003 Name FN_VScaleAddMulti

F2003 Call real(c_double) :: c(av)
type(c_ptr), target :: Y(av), Z(av)
type(N_Vector), pointer :: x

ierr = FN_VScaleAddMulti(av, c, x, Y, Z)

| N_VDotProdMulti

Call ier = N_VDotProdMulti(anv, x, Y, d);
Description  This routine computes the dot product of a vector with n, other vectors:

n—1

djzzxiyj,ia j:O7"'7nv_1a
=0

where d is an array of n, scalars containing the dot products of the vector x with each
of the n, vectors in the vector array Y.
Arguments nv (int) the number of vectors in Y
x (N_Vector) a NVECTOR object to be used in a dot product with each of the vectors
inY
Y (N_Vector#) an array of n, NVECTOR objects to use in a dot product with x

d (realtype*) an output array of n, dot products
Return value Returns an int with value 0 for success and a non-zero value otherwise.

F2003 Name FN_VDotProdMulti

F2003 Call real(c_double) :: d(av)
type(c_ptr), target :: Y(av)
type(N_Vector), pointer :: x

ierr = FN_VDotProdMulti(av, x, Y, d)

9.1.3 NVECTOR vector array functions
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N_VLinearSumVectorArray

Call ier = N_VLinearSumVectorArray(nv, a, X, b, Y, Z);

Description  This routine computes the linear sum of two vector arrays containing n, vectors of n
elements:

zM:aJ;j,i—&—byj,i, 1=0,....,n—1 57=0,...,n, — 1,
where a and b are scalars and X, Y, and Z are arrays of n, vectors.

Arguments nv (int) the number of vectors in the vector arrays
a (realtype) constant to scale each vector in X by
X (N_Vector*) an array of n, NVECTOR objects
Y (N_Vectorx) an array of n, NVECTOR objects
Z (N_Vector*) an output array of n, NVECTOR objects

Return value Returns an int with value 0 for success and a non-zero value otherwise.

F2003 Name FN_VLinearSumVectorArray

N_VScaleVectorArray

Call ier = N_VScaleVectorArray(anv, c, X, Z);
Description  This routine scales each vector of n elements in a vector array of n, vectors by a
potentially different constant:

Zji =¢jxjs, 1=0,....n—=1 j=0,...,n, -1,

where ¢ is an array of n, scalars and X and Z are arrays of n, vectors.

Arguments nv (int) the number of vectors in the vector arrays
¢ (realtype) constant to scale each vector in X by
X (N_Vector*) an array of n, NVECTOR objects
Z (N_Vector*) an output array of n, NVECTOR objects

Return value Returns an int with value 0 for success and a non-zero value otherwise.

F2003 Name FN_VScaleVectorArray

N_VConstVectorArray

Call ier = N_VConstVectorArray(nv, c, X);
Description  This routine sets each element in a vector of n elements in a vector array of n, vectors

to the same value:

zji=¢ 1=0,...,n—=1 j=0,...,n, -1,

)

where c is a scalar and X is an array of n, vectors.

Arguments nv (int) the number of vectors in X
c (realtype) constant to set every element in every vector of X to
X (N_Vector*) an array of n, NVECTOR objects

Return value Returns an int with value 0 for success and a non-zero value otherwise.

F2003 Name FN_VConstVectorArray
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N_VWrmsNormVectorArray

Call ier = N_VWrmsNormVectorArray(nv, X, W, m);

Description  This routine computes the weighted root mean square norm of n, vectors with n ele-

ments:
1 n—1 1/2
mj = <n Z (xj,lw],l)2> ) .7 = Oa sy Ty — ]-7

i=0
where m contains the n, norms of the vectors in the vector array X with corresponding
weight vectors W.
Arguments nv (int) the number of vectors in the vector arrays
X (N_Vector*) an array of n, NVECTOR objects
W (N_Vector*) an array of n, NVECTOR objects
m (realtype*) an output array of n, norms

Return value Returns an int with value 0 for success and a non-zero value otherwise.

F2003 Name FN_VWrmsNormVectorArray

N_VWrmsNormMaskVectorArray

Call ier = N_VWrmsNormMaskVectorArray(nv, X, W, id, m);

Description  This routine computes the masked weighted root mean square norm of n, vectors with
n elements:

n -
=0

ne1 1/2
1
mj = ( > (%,z‘wj,z‘H(idi))2> v J=0m = 1L

H(id;) =1 for id; > 0 and is zero otherwise, m contains the n, norms of the vectors in

the vector array X with corresponding weight vectors W and mask vector id.
Arguments nv (int) the number of vectors in the vector arrays

X (N_Vector*) an array of n, NVECTOR objects

W (N_Vectorx) an array of n, NVECTOR objects

id (N_Vector) the mask vector

m (realtype*) an output array of n, norms

Return value Returns an int with value 0 for success and a non-zero value otherwise.

F2003 Name FN_VWrmsNormMaskVectorArray

N_VScaleAddMultiVectorArray

Call ier = N_VScaleAddMultiVectorArray(av, ns, c, X, YY, ZZ);

Description  This routine scales and adds a vector in a vector array of n, vectors to the corresponding
vector in ng vector arrays:

Zkji = CkTji + Ykji, ©=0,...,n—1 j=0,...,nv—-1, k=0,...,ns—1

where ¢ is an array of ny scalars, X is a vector array of n, vectors to be scaled and
added to the corresponding vector in each of the ng vector arrays in the array of vector
arrays Y'Y and stored in the output array of vector arrays ZZ.

Arguments nv (int) the number of vectors in the vector arrays
ns (int) the number of scalars in ¢ and vector arrays in YY and ZZ
c (realtype*) an array of ny scalars
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X (N_Vector*) an array of n, NVECTOR objects
YY (N_Vector#x) an array of ny NVECTOR arrays
ZZ (N_Vector#*) an output array of ng NVECTOR arrays

Return value Returns an int with value 0 for success and a non-zero value otherwise.

N_VLinearCombinationVectorArray ‘

Call ier = N_VLinearCombinationVectorArray(nv, ns, c, XX, 2);

Description  This routine computes the linear combination of ng vector arrays containing n, vectors
with n elements:

ns—1

Zj’i:E CkThji, t=0,...,n—1 7=0,...,n,—1,
k=0

where c is an array of ng scalars (type realtype*), X X (type N_Vector**) is an array
of ng vector arrays each containing n, vectors to be summed into the output vector
array of n, vectors Z (type N_Vectorx). If the output vector array Z is one of the
vector arrays in X X, then it must be the first vector array in X X.

Arguments nv (int) the number of vectors in the vector arrays
ns (int) the number of scalars in ¢ and vector arrays in YY and ZZ
c (realtype*) an array of ng scalars
XX (N_Vector#*) an array of ny, NVECTOR arrays
Z (N_Vector*) an output array NVECTOR objects

Return value Returns an int with value 0 for success and a non-zero value otherwise.

9.1.4 NVECTOR local reduction functions

Local reduction operations are intended to reduce parallel communication on distributed memory
systems, particularly when NVECTOR objects are combined together within a
NVECTOR_MPIMANYVECTOR object (see Section 9.16). If a particular NVECTOR implementation de-
fines a local reduction operation as NULL, the NVECTOR_MPIMANYVECTOR module will automati-
cally call standard vector reduction operations as necessary to complete the desired operation. All
SUNDIALS-provided NVECTOR implementations include these local reduction operations, which may
be used as templates for user-defined NVECTOR implementations.

| N_vDotProdLocal

Call d = N_VDotProdLocal(x, y);
Description  This routine computes the MPI task-local portion of the ordinary dot product of x and
y:
Niocal—1
d= Yz,
i=0

where njyeq; corresponds to the number of components in the vector on this MPI task
(or Nypeqr = n for MPI-unaware applications).

Arguments x (N_Vector) a NVECTOR object
y (N_Vector) a NVECTOR object

Return value realtype

F2003 Name FN_VDotProdLocal



9.1 The NVECTOR API 191

’ N_VMaxNormLocal

Call m = N_VMaxNormLocal (x);
Description  This routine computes the MPI task-local portion of the maximum norm of the N_Vector
X:
m= max |z,
0<i<Niocal

where njyeq; corresponds to the number of components in the vector on this MPI task
(or nypear = n for MPI-unaware applications).

Arguments x (N_Vector) a NVECTOR object
Return value realtype

F2003 Name FN_VMaxNormLocal

N_VMinLocal

Call m = N_VMinLocal(x);
Description  This routine computes the smallest element of the MPI task-local portion of the N_Vector
X:
m= min 1z,
0<i<niocal

where njycq; corresponds to the number of components in the vector on this MPI task
(or Nyoeqr = n for MPI-unaware applications).

Arguments x (N_Vector) a NVECTOR object
Return value realtype
F2003 Name FN_VMinLocal

| N_VLiNormLocal
Call n = N_VL1NormLocal(x);

Description  This routine computes the MPI task-local portion of the £; norm of the N_Vector x:

Niocal —1

n= > el

i=0
where njyeqr corresponds to the number of components in the vector on this MPI task
(or Nyoeqr = n for MPI-unaware applications).
Arguments x (N_Vector) a NVECTOR object
Return value realtype
F2003 Name FN_VL1NormLocal

N_VWSqrSumLocal

Call s = N_VWSqrSumLocal (x,w) ;

Description  This routine computes the MPI task-local portion of the weighted squared sum of the
N_Vector x with weight vector w:

Niocal —1
s= > (zaw)?
=0

where njyeq; corresponds to the number of components in the vector on this MPI task
(or Nypear = n for MPI-unaware applications).
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Arguments x (N_Vector) a NVECTOR object
w (N_Vector) a NVECTOR object containing weights

Return value realtype
F2003 Name FN_VWSqrSumLocal

N_VWSqrSumMaskLocal

Call s = N_VWSqrSumMaskLocal (x,w,id);

Description  This routine computes the MPI task-local portion of the weighted squared sum of the
N_Vector x with weight vector w built using only the elements of x corresponding to
positive elements of the N_Vector id:

Niocal —1
1 a>0
= w; H (id;))? h H(a) =
m ; (z;w;H(id;))*, where (@) {O @<

and nypeq; corresponds to the number of components in the vector on this MPT task (or
Nocal = 1 for MPI-unaware applications).
Arguments x (N_Vector) a NVECTOR object
w (N_Vector) a NVECTOR object containing weights
id (N_Vector) a NVECTOR object used as a mask
Return value realtype
F2003 Name FN_VWSqrSumMaskLocal

’ N_VInvTestLocal ‘
Call t = N_VInvTestLocal(x, z);

Description  Sets the MPI task-local components of the N_Vector z to be the inverses of the compo-
nents of the N_Vector x, with prior testing for zero values:
Z; = 10/5171, 1= 07 <y Niocal — 17
where njyeq; corresponds to the number of components in the vector on this MPI task
(or Nypear = n for MPI-unaware applications).
Arguments x (N_Vector) a NVECTOR object
z (N_Vector) an output NVECTOR object

Return value Returns a booleantype with the value SUNTRUE if all task-local components of x are
nonzero (successful inversion) and with the value SUNFALSE otherwise.

F2003 Name FN_VInvTestLocal

’ N_VConstrMaskLocal ‘
Call t = N_VConstrMaskLocal(c,x,m);

Description  Performs the following constraint tests:
;>0 if ¢ =2,
z; <0 if ¢ =-1,
r; <0 if ¢;=-2,and
no test if ¢; =0,
for all MPI task-local components of the vectors. It sets a mask vector m, with elements

equal to 1.0 where the constraint test failed, and 0.0 where the test passed. This routine
is used only for constraint checking.
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Arguments ¢ (realtype) scalar constraint value
x (N_Vector) a NVECTOR object

m (N_Vector) output mask vector

Return value Returns a booleantype with the value SUNFALSE if any task-local element failed the
constraint test and the value SUNTRUE if all passed.

F2003 Name FN_VConstrMaskLocal

] N_VMinQuotientLocal \

Call ming = N_VMinQuotientLocal (num,denom) ;

Description  This routine returns the minimum of the quotients obtained by term-wise dividing num;
by denom;, for all MPI task-local components of the vectors. A zero element in denom
will be skipped. If no such quotients are found, then the large value BIG_REAL (defined
in the header file sundials_types.h) is returned.

Arguments num (N_Vector) a NVECTOR object used as the numerator

denom (N_Vector) a NVECTOR object used as the denominator
Return value realtype

F2003 Name FN_VMinQuotientLocal

9.1.5 NVECTOR exchange operations

The following vector exchange operations are also optional and are intended only for use when in-
terfacing with the XBraid library for parallel-in-time integration. In that setting these operations
are required but are otherwise unused by SUNDIALS packages and may be set to NULL. For each
operation, we give the function signature, a description of the expected behavior, and an example of
the function usage.

N_VBufSize

Call flag = N_VBufSize(N_Vector x, sunindextype *size);

Description = This routine returns the buffer size need to exchange in the data in the vector x between
computational nodes.

Arguments  x (N_Vector) a NVECTOR object

size (sunindextype*) the size of the message buffer
Return value Returns an int with value 0 for success and a non-zero value otherwise.

F2003 Name FN_VBufSize

N_VBufPack

Call flag = N_VBufPack(N_Vector x, void *buf);
Description  This routine fills the exchange buffer buf with the vector data in x.

Arguments x  (N_Vector) a NVECTOR object
buf (sunindextype*) the exchange buffer to pack

Return value Returns an int with value 0 for success and a non-zero value otherwise.

F2003 Name FN_VBufPack
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N_VBufUnpack

Call flag = N_VBufUnpack(N_Vector x, void *buf);
Description  This routine unpacks the data in the exchange buffer buf into the vector x.

Arguments x  (N_Vector) a NVECTOR object
buf (sunindextypex*) the exchange buffer to unpack

Return value Returns an int with value 0 for success and a non-zero value otherwise.
F2003 Name FN_VBufUnpack

9.1.6 NVECTOR utility functions

To aid in the creation of custom NVECTOR modules the generic NVECTOR module provides three utility
functions N_VNewEmpty, N_-VCopyOps and N_VFreeEmpty. When used in custom NVECTOR constructors
and clone routines these functions will ease the introduction of any new optional vector operations to
the NVECTOR API by ensuring only required operations need to be set and all operations are copied
when cloning a vector.

To aid the use of arrays of NVECTOR objects, the generic NVECTOR module also provides the utility
functions N_VCloneVectorArray, N.VCloneVectorArrayEmpty, and N_VDestroyVectorArray.

N_VNewEmpty

Call v = N_VNewEmpty () ;

Description  The function N_VNewEmpty allocates a new generic NVECTOR object and initializes its
content pointer and the function pointers in the operations structure to NULL.

Arguments  None

Return value This function returns an N_Vector object. If an error occurs when allocating the object,
then this routine will return NULL.

F2003 Name FN_VNewEmpty

N_VCopyOps

Call retval = N_VCopyOps(w, v);

Description  The function N_VCopyOps copies the function pointers in the ops structure of w into the
ops structure of v.

Arguments w (N_Vector) the vector to copy operations from
v (N_Vector) the vector to copy operations to

Return value This returns 0 if successful and a non-zero value if either of the inputs are NULL or the
ops structure of either input is NULL.

F2003 Name FN_VCopyOps

N_VFreeEmpty

Call N_VFreeEmpty (v) ;

Description  This routine frees the generic N_Vector object, under the assumption that any implementation-
specific data that was allocated within the underlying content structure has already been
freed. It will additionally test whether the ops pointer is NULL, and, if it is not, it will
free it as well.

Arguments v (N_Vector)
Return value None
F2003 Name FN_VFreeEmpty
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N_VCloneEmptyVectorArray

Call vecarray = N_VCloneEmptyVectorArray(count, w);

Description  Creates an array of count variables of type N_Vector, each of the same type as the exist-
ing N_Vector w. It achieves this by calling the implementation-specific N_-VCloneEmpty
operation.

Arguments count (int) the size of the vector array
W (N_Vector) the vector to clone

Return value Returns an array of count N_Vector objects if successful, or NULL if an error occurred
while cloning.

N_VCloneVectorArray

Call vecarray = N_VCloneVectorArray(count, w);

Description Creates an array of count variables of type N_Vector, each of the same type as the
existing N_Vector w. It achieves this by calling the implementation-specific N_-VClone
operation.

Arguments count (int) the size of the vector array
W (N_Vector) the vector to clone

Return value Returns an array of count N_Vector objects if successful, or NULL if an error occurred
while cloning.

N_VDestroyVectorArray ‘

Call N_VDestroyVectorArray(count, w);

Description  Destroys (frees) an array of variables of type N_Vector. It depends on the implementation-
specific N_VDestroy operation.

Arguments vs (N_Vectorx*) the array of vectors to destroy

count (int) the size of the vector array

Return value None

N_VNewVectorArray

Call vecarray = N_VNewVectorArray(count);

Description Returns an empty N_Vector array large enough to hold count N_Vector objects. This
function is primarily meant for users of the Fortran 2003 interface.

Arguments count (int) the size of the vector array
Return value Returns a N_Vectorx if successful, Returns NULL if an error occurred.

Notes Users of the Fortran 2003 interface to the N_-VManyVector or N.-VMPIManyVector will need
this to create an array to hold the subvectors. Note that this function does restrict the
the max number of subvectors usable with the N_VManyVector and N_VMPIManyVector
to the max size of an int despite the ManyVector implementations accepting a subvector
count larger than this value.

F2003 Name FN_VNewVectorArray
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Table 9.1: Vector Identifications associated with vector kernels supplied with SUNDIALS.

Vector ID Vector type ID Value
SUNDIALS NVEC_SERIAL Serial 0
SUNDIALS NVEC_PARALLEL Distributed memory parallel (MPT) 1
SUNDIALS_NVEC_OPENMP OpenMP shared memory parallel 2
SUNDIALS_NVEC_PTHREADS PThreads shared memory parallel 3
SUNDIALS_NVEC_PARHYP hypre ParHyp parallel vector 4
SUNDIALS_NVEC_PETSC PETSc parallel vector 5
SUNDIALS_NVEC_CUDA CUDA vector 6
SUNDIALS_NVEC_HIP HIP vector 7
SUNDIALS_NVEC_SYCL SYCL vector 8
SUNDIALS NVEC_RAJA RAJA vector 9
SUNDIALS_NVEC_OPENMPDEV OpenMP vector with device offloading 10
SUNDIALS_NVEC_TRILINOS Trilinos Tpetra vector 11
SUNDIALS NVEC_MANYVECTOR “ManyVector” vector 12
SUNDIALS_NVEC_MPIMANYVECTOR | MPI-enabled “ManyVector” vector 13
SUNDIALS NVEC_MPIPLUSX MPI+X vector 14
SUNDIALS_NVEC_CUSTOM User-provided custom vector 15

N_VGetVecAtIndexVectorArray

Call v = N_VGetVecAtIndexVectorArray(vecs, index);

Description Returns the N_Vector object stored in the vector array at the provided index. This
function is primarily meant for users of the Fortran 2003 interface.

Arguments vecs (N_Vector®) the array of vectors to index
index (int) the index of the vector to return

Return value Returns the N_Vector object stored in the vector array at the provided index. Returns
NULL if an error occurred.

F2003 Name FN_VGetVecAtIndexVectorArray

N_VSetVecAtIndexVectorArray

Call N_VSetVecAtIndexVectorArray(vecs, index, v);

Description  Sets the N_Vector object stored in the vector array at the provided index. This function
is primarily meant for users of the Fortran 2003 interface.

Arguments vecs (N_Vector*) the array of vectors to index
index (int) the index of the vector to return
v (N_Vector) the vector to store at the index

Return value None
F2003 Name FN_VSetVecAtIndexVectorArray

9.1.7 NVECTOR identifiers

Each NVECTOR implementation included in SUNDIALS has a unique identifier specified in enumeration
and shown in Table 9.1.

9.1.8 The generic NVECTOR module implementation

The generic N_Vector type is a pointer to a structure that has an implementation-dependent content
field containing the description and actual data of the vector, and an ops field pointing to a structure
with generic vector operations. The type N_Vector is defined as
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typedef struct

_generic_N_Vector *N_Vector;

struct _generic_N_Vector {
void *content;
struct _generic_N_Vector_Ops *ops;

};

The _generic N Vector Ops structure is essentially a list of pointers to the various actual vector
operations, and is defined as

struct _generic_N_Vector_Ops {

N_Vector_ID
N_Vector
N_Vector
void

void
realtypex*
realtypex*
void

voidx*
sunindextype
void

void

void

void

void

void

void

void
realtype
realtype
realtype
realtype
realtype
realtype
realtype
void
booleantype
booleantype
realtype
int

int

int

int

int

int

int

int

int

int

realtype

(*nvgetvectorid) (N_Vector) ;

(*nvclone) (N_Vector);

(*nvcloneempty) (N_Vector) ;

(*nvdestroy) (N_Vector) ;

(*nvspace) (N_Vector, sunindextype *, sunindextype *);

(*nvgetarraypointer) (N_Vector) ;

(*nvgetdevicearraypointer) (N_Vector) ;

(*nvsetarraypointer) (realtype *, N_Vector);

(*nvgetcommunicator) (N_Vector) ;

(*nvgetlength) (N_Vector);

(*nvlinearsum) (realtype, N_Vector, realtype, N_Vector, N_Vector);

(*nvconst) (realtype, N_Vector);

(*nvprod) (N_Vector, N_Vector, N_Vector);

(*nvdiv) (N_Vector, N_Vector, N_Vector);

(*nvscale) (realtype, N_Vector, N_Vector);

(*nvabs) (N_Vector, N_Vector);

(*nvinv) (N_Vector, N_Vector);

(*nvaddconst) (N_Vector, realtype, N_Vector);

(*nvdotprod) (N_Vector, N_Vector);

(*nvmaxnorm) (N_Vector) ;

(*nvwrmsnorm) (N_Vector, N_Vector);

(*nvwrmsnormmask) (N_Vector, N_Vector, N_Vector);

(*nvmin) (N_Vector);

(*nvwl2norm) (N_Vector, N_Vector);

(*nvlinorm) (N_Vector) ;

(*nvcompare) (realtype, N_Vector, N_Vector);

(*nvinvtest) (N_Vector, N_Vector);

(*nvconstrmask) (N_Vector, N_Vector, N_Vector);

(*nvminquotient) (N_Vector, N_Vector);

(*nvlinearcombination) (int, realtype*, N_Vector*, N_Vector);

(*nvscaleaddmulti) (int, realtypex, N_Vector, N_Vector*, N_Vectorx)

(*nvdotprodmulti) (int, N_Vector, N_Vector*, realtype*);

(*nvlinearsumvectorarray) (int, realtype, N_Vector*, realtype,
N_Vector*, N_Vectorx*);

(*nvscalevectorarray) (int, realtype*, N_Vector*, N_Vectorx);

(*nvconstvectorarray) (int, realtype, N_Vector*);

(*nvwrmsnomrvectorarray) (int, N_Vector*, N_Vector*, realtypex);

(*nvwrmsnomrmaskvectorarray) (int, N_Vector*, N_Vector*, N_Vector,

realtypex);
(*nvscaleaddmultivectorarray) (int, int, realtypex, N_Vector*,
N_Vector*x, N_Vector*x);
(*nvlinearcombinationvectorarray) (int, int, realtype*, N_Vectorxx,
N_Vector*) ;
(*nvdotprodlocal) (N_Vector, N_Vector);

>
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realtype (*nvmaxnormlocal) (N_Vector) ;
realtype (*nvminlocal) (N_Vector) ;
realtype (*nvlinormlocal) (N_Vector) ;

booleantype (*nvinvtestlocal) (N_Vector, N_Vector);
booleantype (*nvconstrmasklocal) (N_Vector, N_Vector, N_Vector);

realtype (*nvminquotientlocal) (N_Vector, N_Vector);

realtype (*nvwsqrsumlocal) (N_Vector, N_Vector);

realtype (*nvwsqrsummasklocal (N_Vector, N_Vector, N_Vector);
int (*nvbufsize) (N_Vector, sunindextype *);

int (*nvbufpack) (N_Vector, voidx);

int (*nvbufunpack) (N_Vector, voidx);

};

The generic NVECTOR module defines and implements the vector operations acting on an N_Vector.
These routines are nothing but wrappers for the vector operations defined by a particular NVECTOR
implementation, which are accessed through the ops field of the N_Vector structure. To illustrate
this point we show below the implementation of a typical vector operation from the generic NVECTOR
module, namely N_VScale, which performs the scaling of a vector x by a scalar c:

void N_VScale(realtype c, N_Vector x, N_Vector z)
{
z->ops->nvscale(c, x, 2z);

}

Section 9.1.1 defines a complete list of all standard vector operations defined by the generic NVECTOR
module. Sections 9.1.2, 9.1.3 and 9.1.4 list optional fused, vector array and local reduction operations,
respectively.

The Fortran 2003 interface provides a bind(C) derived-type for the _generic_N_Vector and the
_generic N Vector Ops structures. Their definition is given below.

type, bind(C), public :: N_Vector
type(C_PTR), public :: content
type (C_PTR), public :: ops

end type N_Vector

type, bind(C), public :: N_Vector_Ops

type (C_FUNPTR), public :: nvgetvectorid
type (C_FUNPTR), public :: nvclone

type (C_FUNPTR), public :: nvcloneempty

type (C_FUNPTR), public :: nvdestroy

type (C_FUNPTR), public :: nvspace

type (C_FUNPTR), public :: nvgetarraypointer
type (C_FUNPTR), public :: nvsetarraypointer
type (C_FUNPTR), public :: nvgetcommunicator
type (C_FUNPTR), public :: nvgetlength

type (C_FUNPTR), public :: nvlinearsum

type (C_FUNPTR), public :: nvconst

type (C_FUNPTR), public :: nvprod

type (C_FUNPTR), public :: nvdiv

type (C_FUNPTR), public :: nvscale

type (C_FUNPTR), public :: nvabs

type (C_FUNPTR), public :: nvinv

type (C_FUNPTR), public :: nvaddconst

type (C_FUNPTR), public :: nvdotprod

type (C_FUNPTR), public :: nvmaxnorm

type (C_FUNPTR), public :: nvwrmsnorm
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type (C_FUNPTR), public :: nvwrmsnormmask

type (C_FUNPTR), public :: nvmin

type (C_FUNPTR), public :: nvwl2norm

type (C_FUNPTR), public :: nvllnorm

type (C_FUNPTR), public :: nvcompare

type (C_FUNPTR), public :: nvinvtest

type (C_FUNPTR), public :: nvconstrmask

type (C_FUNPTR), public :: nvminquotient

type (C_FUNPTR), public :: nvlinearcombination
type (C_FUNPTR), public :: nvscaleaddmulti

type (C_FUNPTR), public :: nvdotprodmulti

type (C_FUNPTR), public :: nvlinearsumvectorarray
type (C_FUNPTR), public :: nvscalevectorarray
type (C_FUNPTR), public :: nvconstvectorarray
type (C_FUNPTR), public :: nvwrmsnormvectorarray

type (C_FUNPTR), public :: nvwrmsnormmaskvectorarray
type (C_FUNPTR), public :: nvscaleaddmultivectorarray
type (C_FUNPTR), public :: nvlinearcombinationvectorarray

type (C_FUNPTR), public :: nvdotprodlocal
type (C_FUNPTR), public :: nvmaxnormlocal
type (C_FUNPTR) , public :: nvminlocal

type (C_FUNPTR), public :: nvllnormlocal

type (C_FUNPTR), public :: nvinvtestlocal
type (C_FUNPTR), public :: nvconstrmasklocal
type (C_FUNPTR), public :: nvminquotientlocal
type (C_FUNPTR), public :: nvwsqrsumlocal
type (C_FUNPTR), public :: nvwsqrsummasklocal
type (C_FUNPTR), public :: nvbufsize

type (C_FUNPTR), public :: nvbufpack

type (C_FUNPTR), public :: nvbufunpack

end type N_Vector_Ops

9.1.9 Implementing a custom NVECTOR

A particular implementation of the NVECTOR module must:

e Specify the content field of N_Vector.

e Define and implement the vector operations. Note that the names of these routines should be
unique to that implementation in order to permit using more than one NVECTOR module (each
with different N_Vector internal data representations) in the same code.

e Define and implement user-callable constructor and destructor routines to create and free an
N_Vector with the new content field and with ops pointing to the new vector operations.

e Optionally, define and implement additional user-callable routines acting on the newly defined
N_Vector (e.g., a routine to print the content for debugging purposes).

e Optionally, provide accessor macros as needed for that particular implementation to be used to
access different parts in the content field of the newly defined N_Vector.

It is recommended that a user-supplied NVECTOR implementation returns the SUNDIALS_NVEC_CUSTOM
identifier from the N_VGetVectorID function.

To aid in the creation of custom NVECTOR modules the generic NVECTOR module provides two
utility functions N_VNewEmpty and N_VCopyOps. When used in custom NVECTOR constructors and
clone routines these functions will ease the introduction of any new optional vector operations to the
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NVECTOR API by ensuring only required operations need to be set and all operations are copied when
cloning a vector.

9.1.9.1 Support for complex-valued vectors

While SUNDIALS itself is written under an assumption of real-valued data, it does provide limited
support for complex-valued problems. However, since none of the built-in NVECTOR modules supports
complex-valued data, users must provide a custom NVECTOR implementation for this task. Many of
the NVECTOR routines described in Sections 9.1.1-9.1.4 above naturally extend to complex-valued
vectors; however, some do not. To this end, we provide the following guidance:

e N_VMin and N_VMinLocal should return the minimum of all real components of the vector, i.e.,
m = min; real(x;).

e N_VConst (and similarly N_-VConstVectorArray) should set the real components of the vector to
the input constant, and set all imaginary components to zero, i.e., z; = c+0j, 1 =0,...,n — 1.

e N_VAddConst should only update the real components of the vector with the input constant,
leaving all imaginary components unchanged.

e N_VWrmsNorm, N_VWrmsNormMask, N_VWSqrSumLocal and N_VWSqrSumMaskLocal should assume
that all entries of the weight vector w and the mask vector id are real-valued.

e N_VDotProd should mathematically return a complex number for complex-valued vectors; as
this is not possible with SUNDIALS’ current realtype, this routine should be set to NULL in the
custom NVECTOR implementation.

e N_VCompare, N_VConstrMask, N VMinQuotient, N VConstrMaskLocal and N_VMinQuotientLocal
are ill-defined due to the lack of a clear ordering in the complex plane. These routines should
be set to NULL in the custom NVECTOR implementation.

While many SUNDIALS solver modules may be utilized on complex-valued data, others cannot.
Specifically, although both SUNNONLINSOL_NEWTON and SUNNONLINSOL_FIXEDPOINT may be used
with any of the IVP solvers (CVODE, CVODES, IDA, IDAS and ARKODE) for complex-valued problems,
the Anderson-acceleration feature SUNNONLINSOL_FIXEDPOINT cannot be used due to its reliance on
N_VDotProd. By this same logic, the Anderson acceleration feature within KINSOL also will not work
with complex-valued vectors.

Similarly, although each package’s linear solver interface (e.g., CVLS) may be used on complex-
valued problems, none of the built-in SUNMATRIX or SUNLINSOL modules work. Hence a complex-
valued user should provide a custom SUNLINSOL (and optionally a custom SUNMATRIX) implementation
for solving linear systems, and then attach this module as normal to the package’s linear solver
interface.

Finally, constraint-handling features of each package cannot be used for complex-valued data,
due to the issue of ordering in the complex plane discussed above with N_VCompare, N_VConstrMask,
N_VMinQuotient, N_VConstrMaskLocal and N_VMinQuotientLocal.

We provide a simple example of a complex-valued example problem, including a custom complex-
valued Fortran 2003 NVECTOR module, in the files
examples/arkode/F2003_custom/ark_analytic_complex_£2003.£90,
examples/arkode/F2003_custom/fnvector_complex_mod.£90, and
examples/arkode/F2003_custom/test_fnvector_complex mod.£f90.

9.2 NVECTOR functions used by IDAS

In Table 9.2 below, we list the vector functions used in the NVECTOR module used by the IDAS package.
The table also shows, for each function, which of the code modules uses the function. The IDAS column
shows function usage within the main integrator module, while the remaining columns show function
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usage within the IDAS linear solvers interface, the IDABBDPRE preconditioner module, and the IDAA
module.

At this point, we should emphasize that the IDAS user does not need to know anything about the
usage of vector functions by the IDAS code modules in order to use IDAS. The information is presented
as an implementation detail for the interested reader.

Special cases (numbers match markings in table):

1. These routines are only required if an internal difference-quotient routine for constructing dense
or band Jacobian matrices is used.

2. This routine is optional, and is only used in estimating space requirements for IDAS modules for
user feedback.

3. The optional function N_VDotProdMulti is only used when Classical Gram-Schmidt is enabled
with SPGMR or SPFGMR. The remaining operations from Tables 9.1.2 and 9.1.3 not listed above
are unused and a user-supplied NVECTOR module for IDAS could omit these operations.

4. This routine is only used when an iterative or matrix iterative SUNLINSOL module is supplied to
IDAS.

Of the functions listed in Table 9.1.1, N.DotProd, N_VWL2Norm, N_VLiNorm, N_VInvTest, and
N_VGetCommunicator are mot used by IDAS. Therefore a user-supplied NVECTOR module for IDAS
could omit these functions (although some may be needed by SUNNONLINSOL or SUNLINSOL modules).

9.3 The NVECTOR_SERIAL implementation

The serial implementation of the NVECTOR module provided with SUNDIALS, NVECTOR_SERIAL, defines
the content field of N_Vector to be a structure containing the length of the vector, a pointer to the
beginning of a contiguous data array, and a boolean flag own_data which specifies the ownership of
data.

struct _N_VectorContent_Serial {
sunindextype length;
booleantype own_data;

realtype *data;

};

The header file to include when using this module is nvector_serial.h. The installed module
library to link to is libsundials nvecserial. l4b where .14b is typically .so for shared libraries
and .a for static libraries.

9.3.1 NVECTOR_SERIAL accessor macros

The following macros are provided to access the content of an NVECTOR_SERIAL vector. The suffix _S
in the names denotes the serial version.

e NV_CONTENT_S
This routine gives access to the contents of the serial vector N_Vector.

The assignment v_cont = NV_CONTENT_S(v) sets v_cont to be a pointer to the serial N_Vector
content structure.

Implementation:

#define NV_CONTENT_S(v) ( (N_VectorContent_Serial) (v->content) )
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e NV_OWN_DATA_S, NV_DATA_S, NV_.LENGTH_S
These macros give individual access to the parts of the content of a serial N_Vector.

The assignment v_data = NV_DATA_S(v) sets v_data to be a pointer to the first component of
the data for the N_Vector v. The assignment NV_DATA_S(v) = v_data sets the component array
of v to be v_data by storing the pointer v_data.

The assignment v_len = NV_LENGTH_S(v) sets v_len to be the length of v. On the other hand,
the call NV_.LENGTH_S(v) = len_v sets the length of v to be len_v.

Implementation:

#define NV_OWN_DATA_S(v) ( NV_CONTENT_S(v)->own_data )
#define NV_DATA_S(v) ( NV_CONTENT_S(v)->data )
#define NV_LENGTH_S(v) ( NV_CONTENT_S(v)->length )

e NV_Ith S
This macro gives access to the individual components of the data array of an N_Vector.

The assignment r = NV_Ith S(v,i) sets r to be the value of the i-th component of v. The
assignment NV_Ith S(v,i) = r sets the value of the i-th component of v to be r.

Here ¢ ranges from 0 to n — 1 for a vector of length n.
Implementation:
#define NV_Ith_S(v,i) ( NV_DATA_S(v)[i] )

9.3.2 NVECTOR_SERIAL functions

The NVECTOR_SERIAL module defines serial implementations of all vector operations listed in Tables
9.1.1, 9.1.2, 9.1.3 and 9.1.4. Their names are obtained from those in these tables by appending the
suffix _Serial (e.g. N_VDestroy_Serial). All the standard vector operations listed in 9.1.1 with
the suffix _Serial appended are callable via the FORTRAN 2003 interface by prepending an ‘F’ (e.g.
FN_VDestroy_Serial).

The module NVECTOR_SERIAL provides the following additional user-callable routines:

N_VNew_Serial ‘

Prototype = N_Vector N_VNew Serial (sunindextype vec_length);

Description This function creates and allocates memory for a serial N_Vector. Its only argument is
the vector length.

F2003 Name This function is callable as FN_VNew_Serial when using the Fortran 2003 interface mod-
ule.

N_VNewEmpty_Serial

Prototype  N_Vector N_VNewEmpty_Serial(sunindextype vec_length);
Description This function creates a new serial N_Vector with an empty (NULL) data array.

F2003 Name This function is callable as FN_VNewEmpty_Serial when using the Fortran 2003 interface
module.

N_VMake Serial |

Prototype = N_Vector N_VMake_Serial(sunindextype vec_length, realtype *v_data);

Description This function creates and allocates memory for a serial vector with user-provided data
array.

(This function does not allocate memory for v_data itself.)
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F2003 Name This function is callable as FN_VMake Serial when using the Fortran 2003 interface
module.

N_VCloneVectorArray_ Serial ‘

Prototype N_Vector *N_VCloneVectorArray Serial(int count, N_Vector w);
Description This function creates (by cloning) an array of count serial vectors.

F2003 Name This function is callable as FN_VCloneVectorArray_Serial when using the Fortran 2003
interface module.

N_VCloneVectorArrayEmpty_Serial ‘

Prototype  N_Vector *N_VCloneVectorArrayEmpty_Serial(int count, N_Vector w);

Description This function creates (by cloning) an array of count serial vectors, each with an empty
(NULL) data array.

F2003 Name This function is callable as FN_VCloneVectorArrayEmpty_Serial when using the For-
tran 2003 interface module.

N_VDestroyVectorArray Serial

Prototype  void N_VDestroyVectorArray Serial (N_Vector *vs, int count);

Description This function frees memory allocated for the array of count variables of type N_Vector
created with N_VCloneVectorArray_ Serial or with
N_VCloneVectorArrayEmpty_Serial.

F2003 Name This function is callable as FN_VDestroyVectorArray Serial when using the Fortran
2003 interface module.

N_VPrint_Serial

Prototype = void N_VPrint_Serial (N_Vector v);
Description This function prints the content of a serial vector to stdout.

F2003 Name This function is callable as FN_VPrint_Serial when using the Fortran 2003 interface
module.

N_VPrintFile Serial |

Prototype  void N_VPrintFile Serial(N_Vector v, FILE *outfile);
Description This function prints the content of a serial vector to outfile.

F2003 Name This function is callable as FN_VPrintFile_Serial when using the Fortran 2003 interface
module.

By default all fused and vector array operations are disabled in the NVECTOR_SERIAL module.
The following additional user-callable routines are provided to enable or disable fused and vector
array operations for a specific vector. To ensure consistency across vectors it is recommended to first
create a vector with N_VNew_Serial, enable/disable the desired operations for that vector with the
functions below, and create any additional vectors from that vector using N_VClone. This guarantees
the new vectors will have the same operations enabled/disabled as cloned vectors inherit the same
enable/disable options as the vector they are cloned from while vectors created with N_-VNew_Serial
will have the default settings for the NVECTOR_SERIAL module.
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N_VEnableFusedOps_Serial ‘

Prototype  int N_VEnableFusedOps_Serial(N_Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array op-
erations in the serial vector. The return value is O for success and -1 if the input vector
or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableFusedOps_Serial when using the Fortran 2003
interface module.

N_VEnableLinearCombination_Serial ‘

Prototype  int N_VEnableLinearCombination_Serial(N_Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused
operation in the serial vector. The return value is O for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableLinearCombination_Serial when using the For-
tran 2003 interface module.

| N_VEnableScaleAddMulti Serial]
Prototype int N_VEnableScaleAddMulti_Serial(N_Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to
multiple vectors fused operation in the serial vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableScaleAddMulti _Serial when using the Fortran
2003 interface module.

| N_VEnableDotProdMulti_Serial |
Prototype int N_VEnableDotProdMulti_Serial(N_Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused
operation in the serial vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableDotProdMulti_Serial when using the Fortran
2003 interface module.

N_VEnableLinearSumVectorArray_Serial ‘

Prototype int N_VEnableLinearSumVectorArray Serial(N_Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for
vector arrays in the serial vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableLinearSumVectorArray_Serial when using the
Fortran 2003 interface module.

N_VEnableScaleVectorArray_ Serial ‘

Prototype  int N_VEnableScaleVectorArray Serial(N_Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector
arrays in the serial vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.
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F2003 Name This function is callable as FN_VEnableScaleVectorArray_Serial when using the For-
tran 2003 interface module.

N_VEnableConstVectorArray_Serial ‘

Prototype  int N_VEnableConstVectorArray_Serial(N_Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector
arrays in the serial vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableConstVectorArray Serial when using the For-
tran 2003 interface module.

N_VEnableWrmsNormVectorArray_ Serial ‘

Prototype  int N_VEnableWrmsNormVectorArray Serial (N_Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for
vector arrays in the serial vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableWrmsNormVectorArray Serial when using the
Fortran 2003 interface module.

N_VEnableWrmsNormMaskVectorArray_Serial ‘

Prototype  int N_VEnableWrmsNormMaskVectorArray_Serial (N_Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm op-
eration for vector arrays in the serial vector. The return value is 0 for success and -1 if
the input vector or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableWrmsNormMaskVectorArray_Serial when using
the Fortran 2003 interface module.

N_VEnableScaleAddMultiVectorArray_Serial ‘

Prototype = int N_VEnableScaleAddMultiVectorArray Serial(N_Vector v,
booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array
to multiple vector arrays operation in the serial vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

N_VEnableLinearCombinationVectorArray Serial ‘

Prototype int N_VEnableLinearCombinationVectorArray_Serial(N_Vector v,
booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation
for vector arrays in the serial vector. The return value is 0 for success and -1 if the
input vector or its ops structure are NULL.

Notes

e When looping over the components of an N_Vector v, it is more efficient to first obtain the
component array via v_data = NV_DATA_S(v) and then access v_data[i] within the loop than
it is to use NV_Ith_S(v,i) within the loop.
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o N_VNewEmpty_Serial, N_VMake Serial, and N_VCloneVectorArrayEmpty_Serial set the field
own_data = SUNFALSE. N_VDestroy_Serial and N_VDestroyVectorArray Serial will not at-
tempt to free the pointer data for any N_Vector with own_data set to SUNFALSE. In such a case,
it is the user’s responsibility to deallocate the data pointer.

e To maximize efficiency, vector operations in the NVECTOR_SERIAL implementation that have
more than one N_Vector argument do not check for consistent internal representation of these
vectors. It is the user’s responsibility to ensure that such routines are called with N_Vector
arguments that were all created with the same internal representations.

9.3.3 NVECTOR_SERIAL Fortran interfaces

The NVECTOR_SERIAL module provides a FORTRAN 2003 module as well as FORTRAN 77 style interface
functions for use from FORTRAN applications.

FORTRAN 2003 interface module

The fnvector_serial mod FORTRAN module defines interfaces to all NVECTOR_SERIAL C functions
using the intrinsic iso_c_binding module which provides a standardized mechanism for interoperat-
ing with C. As noted in the C function descriptions above, the interface functions are named after
the corresponding C function, but with a leading ‘F’. For example, the function N_VNew_Serial is
interfaced as FN_VNew_Serial.

The FORTRAN 2003 NVECTOR_SERIAL interface module can be accessed with the use statement,
i.e. use fnvector_serial mod, and linking to the library libsundials _fnvectorserial mod.lib in
addition to the C library. For details on where the library and module file fnvector_serial mod.mod
are installed see Appendix A. We note that the module is accessible from the FORTRAN 2003 SUNDIALS
integrators without separately linking to the 1ibsundials_fnvectorserial_mod library.

FORTRAN 77 interface functions

For solvers that include a FORTRAN 77 interface module, the NVECTOR_SERIAL module also includes a
FORrRTRAN-callable function FNVINITS (code, NEQ, IER), to initialize this NVECTOR_SERIAL module.
Here code is an input solver id (1 for CVODE, 2 for IDA, 3 for KINSOL, 4 for ARKODE); NEQ is the
problem size (declared so as to match C type long int); and IER is an error return flag equal 0 for
success and -1 for failure.

9.4 The NVECTOR_PARALLEL implementation

The NVECTOR_PARALLEL implementation of the NVECTOR module provided with SUNDIALS is based on
MPI. It defines the content field of N_-Vector to be a structure containing the global and local lengths
of the vector, a pointer to the beginning of a contiguous local data array, an MPI communicator, and
a boolean flag own_data indicating ownership of the data array data.

struct _N_VectorContent_Parallel {
sunindextype local_length;
sunindextype global_length;
booleantype own_data;
realtype *data;
MPI_Comm comm;

};

The header file to include when using this module is nvector_parallel.h. The installed module
library to link to is libsundials nvecparallel. l2b where . 12b is typically .so for shared libraries
and .a for static libraries.
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9.4.1 NVECTOR_PARALLEL accessor macros

The following macros are provided to access the content of a NVECTOR_PARALLEL vector. The suffix
_P in the names denotes the distributed memory parallel version.
e NV_CONTENT_P
This macro gives access to the contents of the parallel vector N_Vector.

The assignment v_cont = NV_CONTENT_P(v) sets v_cont to be a pointer to the N_Vector content
structure of type struct _N_VectorContent Parallel.

Implementation:

#define NV_CONTENT_P(v) ( (N_VectorContent_Parallel) (v—>content) )

e NV_OWN_DATA P, NV_DATA P, NV_.LOCLENGTH_P, NV_GLOBLENGTH_P
These macros give individual access to the parts of the content of a parallel N_Vector.

The assignment v_data = NV_DATA P(v) sets v_data to be a pointer to the first component of
the local data for the N_-Vector v. The assignment NV_.DATA P(v) = v_data sets the component
array of v to be v_data by storing the pointer v_data.

The assignment v_1len = NV_LOCLENGTH_P(v) sets v_1len to be the length of the local part of
v. The call NV_.LENGTH_P(v) = 1llen_v sets the local length of v to be 1len_v.

The assignment v_glen = NV_GLOBLENGTH_P(v) sets v_glen to be the global length of the vector
v. The call NV_.GLOBLENGTH_P(v) = glen_v sets the global length of v to be glen_v.

Implementation:
#define NV_OWN_DATA_P(v) ( NV_CONTENT_P(v)->own_data )
#define NV_DATA_P(v) ( NV_CONTENT_P(v)->data )

#define NV_LOCLENGTH_P(v) ( NV_CONTENT_P(v)->local_length )
#define NV_GLOBLENGTH_P(v) ( NV_CONTENT_P(v)->global_length )

e NV_COMM_P
This macro provides access to the MPI communicator used by the NVECTOR_PARALLEL vectors.
Implementation:

#define NV_COMM_P(v) ( NV_CONTENT_P(v)->comm )

e NV_Ith P
This macro gives access to the individual components of the local data array of an N_Vector.

The assignment r = NV_Ith P(v,i) sets r to be the value of the i-th component of the local
part of v. The assignment NV_Ith P(v,i) = r sets the value of the i-th component of the local
part of v to be r.

Here ¢ ranges from 0 to n — 1, where n is the local length.
Implementation:

#define NV_Ith_P(v,i) ( NV_DATA_P(v)[i] )

9.4.2 NVECTOR_PARALLEL functions

The NVECTOR_PARALLEL module defines parallel implementations of all vector operations listed in
Tables 9.1.1, 9.1.2, 9.1.3, and 9.1.4. Their names are obtained from those in these tables by appending
the suffix _Parallel (e.g. N_VDestroy.Parallel). The module NVECTOR_PARALLEL provides the
following additional user-callable routines:
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N_VNew_Parallel

Prototype  N_Vector N_VNew Parallel(MPI_Comm comm, sunindextype local_length,
sunindextype global_length);

Description This function creates and allocates memory for a parallel vector.

F2003 Name This function is callable as FN_VNew_Parallel when using the Fortran 2003 interface
module.

N_VNewEmpty_Parallel

Prototype N _Vector N_VNewEmpty Parallel(MPI Comm comm, sunindextype local_length,
sunindextype global_length);

Description  This function creates a new parallel N_Vector with an empty (NULL) data array.

F2003 Name This function is callable as FN_VNewEmpty_Parallel when using the Fortran 2003 inter-
face module.

N_VMake Parallel |

Prototype  N_Vector N_VMake Parallel(MPI Comm comm, sunindextype local_length,
sunindextype global_length, realtype *v_data);

Description This function creates and allocates memory for a parallel vector with user-provided data
array. This function does not allocate memory for v_data itself.

F2003 Name This function is callable as FN_VMake Parallel when using the Fortran 2003 interface
module.

N_VCloneVectorArray Parallel ‘

Prototype N _Vector *N_VCloneVectorArray Parallel(int count, N_Vector w);
Description This function creates (by cloning) an array of count parallel vectors.

F2003 Name This function is callable as FN_VCloneVectorArray_Parallel when using the Fortran
2003 interface module.

N_VCloneVectorArrayEmpty_Parallel ‘

Prototype  N_Vector #N_VCloneVectorArrayEmpty Parallel(int count, N_Vector w);

Description This function creates (by cloning) an array of count parallel vectors, each with an empty
(NULL) data array.

F2003 Name This function is callable as FN_VCloneVectorArrayEmpty Parallel when using the For-
tran 2003 interface module.

N_VDestroyVectorArray Parallel

Prototype  void N_VDestroyVectorArray Parallel(N_Vector *vs, int count);

Description This function frees memory allocated for the array of count variables of type N_Vector
created with N_-VCloneVectorArray Parallel or with
N_VCloneVectorArrayEmpty Parallel.

F2003 Name This function is callable as FN_VDestroyVectorArray Parallel when using the Fortran
2003 interface module.
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N_VGetLocallLength Parallel

Prototype  sunindextype N_VGetLocallength Parallel(N_Vector v);
Description This function returns the local vector length.

F2003 Name This function is callable as FN_VGetLocalLength Parallel when using the Fortran 2003
interface module.

N_VPrint Parallel |
Prototype  void N_VPrint Parallel(N_Vector v);

Description This function prints the local content of a parallel vector to stdout.

F2003 Name This function is callable as FN_VPrint Parallel when using the Fortran 2003 interface
module.

N_VPrintFile Parallel |
Prototype  void N_VPrintFile Parallel(N_Vector v, FILE x*outfile);

Description This function prints the local content of a parallel vector to outfile.

F2003 Name This function is callable as FN_VPrintFile Parallel when using the Fortran 2003 in-
terface module.

By default all fused and vector array operations are disabled in the NVECTOR_PARALLEL module.
The following additional user-callable routines are provided to enable or disable fused and vector
array operations for a specific vector. To ensure consistency across vectors it is recommended to first
create a vector with N_VNew_Parallel, enable/disable the desired operations for that vector with the
functions below, and create any additional vectors from that vector using N_VClone with that vector.
This guarantees the new vectors will have the same operations enabled/disabled as cloned vectors
inherit the same enable/disable options as the vector they are cloned from while vectors created with
N_VNew_Parallel will have the default settings for the NVECTOR_PARALLEL module.

N_VEnableFusedOps_Parallel \

Prototype int N_VEnableFusedOps_Parallel(N_Vector v, booleantype tf);

Description  This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array oper-
ations in the parallel vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableFusedOps_Parallel when using the Fortran 2003
interface module.

N_VEnableLinearCombination Parallel ‘

Prototype  int N_VEnableLinearCombination Parallel(N_Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused
operation in the parallel vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableLinearCombination Parallel when using the
Fortran 2003 interface module.

N_VEnableScaleAddMulti_Parallel ‘
Prototype  int N_VEnableScaleAddMulti_Parallel(N_Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to
multiple vectors fused operation in the parallel vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.
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F2003 Name This function is callable as FN_VEnableScaleAddMulti_Parallel when using the For-
tran 2003 interface module.

N_VEnableDotProdMulti Parallel \
Prototype  int N_VEnableDotProdMulti_ Parallel(N_Vector v, booleantype tf);

Description  This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused
operation in the parallel vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableDotProdMulti Parallel when using the Fortran
2003 interface module.

N_VEnableLinearSumVectorArray Parallel ‘

Prototype  int N_VEnableLinearSumVectorArray Parallel(N_Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for
vector arrays in the parallel vector. The return value is O for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableLinearSumVectorArray Parallel when using
the Fortran 2003 interface module.

N_VEnableScaleVectorArray Parallel ‘

Prototype  int N_VEnableScaleVectorArray Parallel(N_Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector
arrays in the parallel vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableScaleVectorArray Parallel when using the
Fortran 2003 interface module.

N_VEnableConstVectorArray Parallel ‘

Prototype int N_VEnableConstVectorArray Parallel(N_Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector
arrays in the parallel vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableConstVectorArray Parallel when using the
Fortran 2003 interface module.

N_VEnableWrmsNormVectorArray_ Parallel ‘

Prototype  int N_VEnableWrmsNormVectorArray Parallel(N_Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for
vector arrays in the parallel vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableWrmsNormVectorArray Parallel when using the
Fortran 2003 interface module.
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N_VEnableWrmsNormMaskVectorArray Parallel ‘

Prototype  int N_VEnableWrmsNormMaskVectorArray_Parallel(N_Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm op-
eration for vector arrays in the parallel vector. The return value is 0 for success and -1
if the input vector or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableWrmsNormMaskVectorArray Parallel when us-
ing the Fortran 2003 interface module.

N_VEnableScaleAddMultiVectorArray_Parallel ‘

Prototype int N_VEnableScaleAddMultiVectorArray Parallel(N_Vector v,
booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector
array to multiple vector arrays operation in the parallel vector. The return value is 0
for success and -1 if the input vector or its ops structure are NULL.

N_VEnableLinearCombinationVectorArray Parallel ‘

Prototype  int N_VEnableLinearCombinationVectorArray Parallel(N_Vector v,
booleantype tf);

Description  This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation
for vector arrays in the parallel vector. The return value is 0 for success and -1 if the
input vector or its ops structure are NULL.

Notes

e When looping over the components of an N_Vector v, it is more efficient to first obtain the local
component array via v_data = NV_DATA P(v) and then access v_data[i] within the loop than
it is to use NV_Ith_P(v,i) within the loop.

e N_VNewEmpty Parallel, N_.VMake Parallel, and N_VCloneVectorArrayEmpty Parallel set the
field own_data = SUNFALSE. N_VDestroy_Parallel and N_VDestroyVectorArray Parallel will
not attempt to free the pointer data for any N_Vector with own_data set to SUNFALSE. In such
a case, it is the user’s responsibility to deallocate the data pointer.

e To maximize efficiency, vector operations in the NVECTOR_PARALLEL implementation that have
more than one N_Vector argument do not check for consistent internal representation of these
vectors. It is the user’s responsibility to ensure that such routines are called with N_Vector
arguments that were all created with the same internal representations.

9.4.3 NVECTOR_PARALLEL Fortran interfaces

For solvers that include a FORTRAN 77 interface module, the NVECTOR_PARALLEL module also in-
cludes a FORTRAN-callable function FNVINITP(COMM, code, NLOCAL, NGLOBAL, IER), to initialize
this NVECTOR_PARALLEL module. Here COMM is the MPI communicator, code is an input solver
id (1 for cvODE, 2 for DA, 3 for KINSOL, 4 for ARKODE); NLOCAL and NGLOBAL are the local and
global vector sizes, respectively (declared so as to match C type long int); and IER is an error
return flag equal 0 for success and -1 for failure. NOTE: If the header file sundials_config.h de-
fines SUNDIALS_MPI_COMM_F2C to be 1 (meaning the MPI implementation used to build SUNDIALS
includes the MPI_Comm_f2c¢ function), then COMM can be any valid MPI communicator. Otherwise,
MPI_COMM_WORLD will be used, so just pass an integer value as a placeholder.
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9.5 The NVECTOR_OPENMP implementation

In situations where a user has a multi-core processing unit capable of running multiple parallel threads
with shared memory, SUNDIALS provides an implementation of NVECTOR using OpenMP, called NVEC-
TOR_OPENMP, and an implementation using Pthreads, called NVECTOR_PTHREADS. Testing has shown
that vectors should be of length at least 100,000 before the overhead associated with creating and
using the threads is made up by the parallelism in the vector calculations.

The OpenMP NVECTOR implementation provided with SUNDIALS, NVECTOR_OPENMP, defines the
content field of N_Vector to be a structure containing the length of the vector, a pointer to the
beginning of a contiguous data array, a boolean flag own_data which specifies the ownership of data,
and the number of threads. Operations on the vector are threaded using OpenMP.

struct _N_VectorContent_0OpenMP {
sunindextype length;
booleantype own_data;
realtype *data;
int num_threads;

};

The header file to include when using this module is nvector_openmp.h. The installed module
library to link to is 1ibsundials nvecopenmp. 14b where .1%b is typically .so for shared libraries
and .a for static libraries. The FORTRAN module file to use when using the FORTRAN 2003 interface
to this module is fnvector_openmp_mod.mod.

9.5.1 NVECTOR_OPENMP accessor macros

The following macros are provided to access the content of an NVECTOR_OPENMP vector. The suffix
_OMP in the names denotes the OpenMP version.
e NV_CONTENT_OMP
This routine gives access to the contents of the OpenMP vector N_Vector.

The assignment v_cont = NV_CONTENT_OMP(v) sets v_cont to be a pointer to the OpenMP
N_Vector content structure.

Implementation:

#define NV_CONTENT_OMP(v) ( (N_VectorContent_OpenMP) (v->content) )

e NV_OWN_DATA_OMP, NV_DATA_OMP, NV_LENGTH_OMP, NV_NUM_THREADS_OMP
These macros give individual access to the parts of the content of a OpenMP N_Vector.

The assignment v_data = NV_DATA OMP(v) sets v_data to be a pointer to the first component
of the data for the N_Vector v. The assignment NV_DATA_OMP(v) = v_data sets the component
array of v to be v_data by storing the pointer v_data.

The assignment v_len = NV_LENGTH_OMP(v) sets v_len to be the length of v. On the other
hand, the call NV_.LENGTH_OMP(v) = len_v sets the length of v to be len_v.

The assignment v_num_threads = NV_NUM_THREADS_OMP(v) sets v_num_threads to be the num-
ber of threads from v. On the other hand, the call NV.NUM_THREADS OMP(v) = num threads_v
sets the number of threads for v to be num_threads_v.

Implementation:

#define NV_OWN_DATA_OMP(v) ( NV_CONTENT_OMP(v)->own_data )
#define NV_DATA_OMP(v) ( NV_CONTENT_OMP(v)->data )

#define NV_LENGTH_OMP(v) ( NV_CONTENT_QOMP(v)->length )

#define NV_NUM_THREADS_OMP(v) ( NV_CONTENT_OMP(v)->num_threads )
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e NV_Ith_OMP
This macro gives access to the individual components of the data array of an N_Vector.

The assignment r = NV_Ith OMP(v,i) sets r to be the value of the i-th component of v. The
assignment NV_Ith OMP(v,i) = r sets the value of the i-th component of v to be r.

Here ¢ ranges from 0 to n — 1 for a vector of length n.
Implementation:

#define NV_Ith_OMP(v,i) ( NV_DATA_OMP(v) [i] )

9.5.2 NVECTOR_OPENMP functions

The NVECTOR_OPENMP module defines OpenMP implementations of all vector operations listed in
Tables 9.1.1, 9.1.2, 9.1.3, and 9.1.4. Their names are obtained from those in these tables by appending
the suffix _OpenMP (e.g. N_VDestroy_OpenMP). All the standard vector operations listed in 9.1.1 with
the suffix _OpenMP appended are callable via the FORTRAN 2003 interface by prepending an ‘F’ (e.g.
FN_VDestroy_OpenMP).

The module NVECTOR_OPENMP provides the following additional user-callable routines:

N_VNew_OpenMP \

Prototype  N_Vector N_VNew_OpenMP(sunindextype vec_length, int num_threads)

Description This function creates and allocates memory for a OpenMP N_Vector. Arguments are
the vector length and number of threads.

F2003 Name This function is callable as FN_VNew_OpenMP when using the Fortran 2003 interface mod-
ule.

N_VNewEmpty_OpenMP

Prototype N_Vector N_VNewEmpty_OpenMP(sunindextype vec_length, int num_threads)
Description This function creates a new OpenMP N_Vector with an empty (NULL) data array.

F2003 Name This function is callable as FN_VNewEmpty_OpenMP when using the Fortran 2003 interface
module.

N_VMake_OpenMP

Prototype  N_Vector N_VMake_OpenMP(sunindextype vec_length, realtype *v_data,
int num_threads);

Description This function creates and allocates memory for a OpenMP vector with user-provided
data array. This function does not allocate memory for v_data itself.

F2003 Name This function is callable as FN_VMake OpenMP when using the Fortran 2003 interface
module.

N_VCloneVectorArray_OpenMP \

Prototype  N_Vector *N_VCloneVectorArray OpenMP(int count, N_Vector w)
Description This function creates (by cloning) an array of count OpenMP vectors.

F2003 Name This function is callable as FN_VCloneVectorArray_OpenMP when using the Fortran 2003
interface module.



214 Description of the NVECTOR module

N_VCloneVectorArrayEmpty_OpenMP ‘

Prototype  N_Vector *N_VCloneVectorArrayEmpty OpenMP(int count, N_Vector w)

Description This function creates (by cloning) an array of count OpenMP vectors, each with an
empty (NULL) data array.

F2003 Name This function is callable as FN_VCloneVectorArrayEmpty_OpenMP when using the For-
tran 2003 interface module.

N_VDestroyVectorArray_OpenMP

Prototype  void N_VDestroyVectorArray OpenMP(N_Vector *vs, int count)

Description This function frees memory allocated for the array of count variables of type N_Vector
created with N_-VCloneVectorArray_OpenMP or with N_.VCloneVectorArrayEmpty_OpenMP.

F2003 Name This function is callable as FN_VDestroyVectorArray OpenMP when using the Fortran
2003 interface module.

N_VPrint_OpenMP

Prototype  void N_VPrint_OpenMP(N_Vector v)
Description This function prints the content of an OpenMP vector to stdout.

F2003 Name This function is callable as FN_VPrint_OpenMP when using the Fortran 2003 interface
module.

N_VPrintFile_OpenMP

Prototype  void N_VPrintFile OpenMP(N_Vector v, FILE *outfile)
Description This function prints the content of an OpenMP vector to outfile.

F2003 Name This function is callable as FN_VPrintFile_OpenMP when using the Fortran 2003 interface
module.

By default all fused and vector array operations are disabled in the NVECTOR_OPENMP module.
The following additional user-callable routines are provided to enable or disable fused and vector
array operations for a specific vector. To ensure consistency across vectors it is recommended to first
create a vector with N_VNew_OpenMP, enable/disable the desired operations for that vector with the
functions below, and create any additional vectors from that vector using N_VClone. This guarantees
the new vectors will have the same operations enabled/disabled as cloned vectors inherit the same
enable/disable options as the vector they are cloned from while vectors created with N_VNew_OpenMP
will have the default settings for the NVECTOR_OPENMP module.

] N_VEnableFusedOps_OpenMP \

Prototype  int N_VEnableFusedOps_OpenMP(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array op-
erations in the OpenMP vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableFusedOps_OpenMP when using the Fortran 2003
interface module.



9.5 The NVECTOR_OPENMP implementation 215

N_VEnableLinearCombination_OpenMP ‘

Prototype int N_VEnableLinearCombination OpenMP(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused
operation in the OpenMP vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableLinearCombination_OpenMP when using the For-
tran 2003 interface module.

N_VEnableScaleAddMulti_OpenMP ‘

Prototype  int N_VEnableScaleAddMulti OpenMP(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to
multiple vectors fused operation in the OpenMP vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableScaleAddMulti_OpenMP when using the Fortran
2003 interface module.

N_VEnableDotProdMulti_OpenMP ‘

Prototype  int N_VEnableDotProdMulti_OpenMP(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused
operation in the OpenMP vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableDotProdMulti_OpenMP when using the Fortran
2003 interface module.

N_VEnableLinearSumVectorArray_OpenMP ‘

Prototype  int N_VEnableLinearSumVectorArray_OpenMP(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for
vector arrays in the OpenMP vector. The return value is 0 for success and -1 if the
input vector or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableLinearSumVectorArray_OpenMP when using the
Fortran 2003 interface module.

N_VEnableScaleVectorArray_OpenMP ‘

Prototype  int N_VEnableScaleVectorArray OpenMP(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector
arrays in the OpenMP vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableScaleVectorArray OpenMP when using the For-
tran 2003 interface module.

N_VEnableConstVectorArray_OpenMP ‘

Prototype  int N_VEnableConstVectorArray OpenMP(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector
arrays in the OpenMP vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.
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F2003 Name This function is callable as FN_VEnableConstVectorArray OpenMP when using the For-
tran 2003 interface module.

N_VEnableWrmsNormVectorArray_OpenMP ‘

Prototype  int N_VEnableWrmsNormVectorArray OpenMP(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for
vector arrays in the OpenMP vector. The return value is 0 for success and -1 if the
input vector or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableWrmsNormVectorArray OpenMP when using the
Fortran 2003 interface module.

N_VEnableWrmsNormMaskVectorArray_OpenMP ‘

Prototype int N_VEnableWrmsNormMaskVectorArray OpenMP(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm op-
eration for vector arrays in the OpenMP vector. The return value is 0 for success and
-1 if the input vector or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableWrmsNormMaskVectorArray OpenMP when using
the Fortran 2003 interface module.

N_VEnableScaleAddMultiVectorArray_OpenMP ‘

Prototype  int N_VEnableScaleAddMultiVectorArray_OpenMP(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array
to multiple vector arrays operation in the OpenMP vector. The return value is 0 for
success and -1 if the input vector or its ops structure are NULL.

N_VEnableLinearCombinationVectorArray_OpenMP ‘

Prototype int N_VEnableLinearCombinationVectorArray OpenMP(N_Vector v,
booleantype tf)

Description  This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation
for vector arrays in the OpenMP vector. The return value is 0 for success and -1 if the
input vector or its ops structure are NULL.

Notes

e When looping over the components of an N_Vector v, it is more efficient to first obtain the
component array via v_data = NV_DATA OMP(v) and then access v_datal[i] within the loop
than it is to use NV_Ith_OMP(v,i) within the loop.

e N VNewEmpty_OpenMP, N_VMake OpenMP, and N_VCloneVectorArrayEmpty_OpenMP set the field
own_data = SUNFALSE. N_VDestroy_OpenMP and N_VDestroyVectorArray OpenMP will not at-
tempt to free the pointer data for any N_Vector with own_data set to SUNFALSE. In such a case,
it is the user’s responsibility to deallocate the data pointer.

e To maximize efficiency, vector operations in the NVECTOR_OPENMP implementation that have
more than one N_Vector argument do not check for consistent internal representation of these
vectors. It is the user’s responsibility to ensure that such routines are called with N_Vector
arguments that were all created with the same internal representations.
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9.5.3 NVECTOR_OPENMP Fortran interfaces

The NVECTOR_OPENMP module provides a FORTRAN 2003 module as well as FORTRAN 77 style inter-
face functions for use from FORTRAN applications.

FORTRAN 2003 interface module

The nvector_openmp mod FORTRAN module defines interfaces to most NVECTOR_OPENMP C functions
using the intrinsic iso_c_binding module which provides a standardized mechanism for interoperat-
ing with C. As noted in the C function descriptions above, the interface functions are named after
the corresponding C function, but with a leading ‘F’. For example, the function N_VNew_OpenMP is
interfaced as FN_VNew_OpenMP.

The FORTRAN 2003 NVECTOR_OPENMP interface module can be accessed with the use statement,
i.e. use fnvector_openmp.mod, and linking to the library libsundials_fnvectoropenmp_mod.lib in
addition to the C library. For details on where the library and module file fnvector_openmp_mod.mod
are installed see Appendix A.

FORTRAN 77 interface functions

For solvers that include a FORTRAN 77 interface module, the NVECTOR_OPENMP module also includes
a FORTRAN-callable function FNVINITOMP (code, NEQ, NUMTHREADS, IER), to initialize this module.
Here code is an input solver id (1 for CVODE, 2 for IDA, 3 for KINSOL, 4 for ARKODE); NEQ is the
problem size (declared so as to match C type long int); NUMTHREADS is the number of threads;
and IER is an error return flag equal 0 for success and -1 for failure.

9.6 The NVECTOR_PTHREADS implementation

In situations where a user has a multi-core processing unit capable of running multiple parallel threads
with shared memory, SUNDIALS provides an implementation of NVECTOR using OpenMP, called NVEC-
TOR_OPENMP, and an implementation using Pthreads, called NVECTOR_PTHREADS. Testing has shown
that vectors should be of length at least 100,000 before the overhead associated with creating and
using the threads is made up by the parallelism in the vector calculations.

The Pthreads NVECTOR implementation provided with SUNDIALS, denoted NVECTOR_PTHREADS,
defines the content field of N_-Vector to be a structure containing the length of the vector, a pointer
to the beginning of a contiguous data array, a boolean flag own_data which specifies the ownership
of data, and the number of threads. Operations on the vector are threaded using POSIX threads
(Pthreads).

struct _N_VectorContent_Pthreads {
sunindextype length;
booleantype own_data;
realtype *data;
int num_threads;

};

The header file to include when using this module is nvector_pthreads.h. The installed module
library to link to is 1ibsundials nvecpthreads. 17b where . 12b is typically .so for shared libraries
and .a for static libraries.

9.6.1 NVECTOR_PTHREADS accessor macros

The following macros are provided to access the content of an NVECTOR_PTHREADS vector. The suffix
_PT in the names denotes the Pthreads version.
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e NV_CONTENT_PT
This routine gives access to the contents of the Pthreads vector N_Vector.

The assignment v_cont = NV_CONTENT_PT(v) sets v_cont to be a pointer to the Pthreads
N_Vector content structure.

Implementation:

#define NV_CONTENT_PT(v) ( (N_VectorContent_Pthreads) (v->content) )

e NV_OWN_DATA_PT, NV.DATA_PT, NV_.LENGTH_PT, NV_NUM_THREADS_PT
These macros give individual access to the parts of the content of a Pthreads N_Vector.

The assignment v_data = NV_DATA PT(v) sets v_data to be a pointer to the first component
of the data for the N_Vector v. The assignment NV_DATA PT(v) = v_data sets the component
array of v to be v_data by storing the pointer v_data.

The assignment v_1len = NV_LENGTH_PT(v) sets v_len to be the length of v. On the other hand,
the call NV_.LENGTH PT(v) = len_v sets the length of v to be len_v.

The assignment v_num_threads = NV_NUM_THREADS_PT(v) sets v_num_threads to be the number
of threads from v. On the other hand, the call NV.NUM_THREADS PT(v) = num_threads_v sets
the number of threads for v to be num_threads_v.

Implementation:

#define NV_OWN_DATA_PT(v) ( NV_CONTENT_PT(v)->own_data )
#define NV_DATA_PT(v) ( NV_CONTENT_PT(v)->data )

#define NV_LENGTH_PT(v) ( NV_CONTENT_PT(v)->length )

#define NV_NUM_THREADS_PT(v) ( NV_CONTENT_PT(v)->num_threads )

e NV_Ith PT
This macro gives access to the individual components of the data array of an N_Vector.

The assignment r = NV_Ith PT(v,i) sets r to be the value of the i-th component of v. The
assignment NV_Ith PT(v,i) = r sets the value of the i-th component of v to be r.

Here ¢ ranges from 0 to n — 1 for a vector of length n.
Implementation:

#define NV_Ith_PT(v,i) ( NV_DATA_PT(v)[i] )

9.6.2 NVECTOR_PTHREADS functions

The NVECTOR_PTHREADS module defines Pthreads implementations of all vector operations listed in
Tables 9.1.1, 9.1.2, 9.1.3, and 9.1.4. Their names are obtained from those in these tables by appending
the suffix Pthreads (e.g. N_VDestroy_Pthreads). All the standard vector operations listed in 9.1.1
are callable via the FORTRAN 2003 interface by prepending an ‘F’ (e.g. FN_VDestroy Pthreads). The
module NVECTOR_PTHREADS provides the following additional user-callable routines:

N_VNew_Pthreads

Prototype  N_Vector N_VNew Pthreads(sunindextype vec_length, int num_threads)

Description This function creates and allocates memory for a Pthreads N_Vector. Arguments are
the vector length and number of threads.

F2003 Name This function is callable as FN_VNew_Pthreads when using the Fortran 2003 interface
module.
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N_VNewEmpty_Pthreads

Prototype  N_Vector N_VNewEmpty Pthreads(sunindextype vec_length, int num_threads)
Description This function creates a new Pthreads N_Vector with an empty (NULL) data array.

F2003 Name This function is callable as FN_VNewEmpty_Pthreads when using the Fortran 2003 inter-
face module.

N_VMake Pthreads |

Prototype  N_Vector N_VMake Pthreads(sunindextype vec_length, realtype *v_data,
int num_threads);

Description This function creates and allocates memory for a Pthreads vector with user-provided
data array. This function does not allocate memory for v_data itself.

F2003 Name This function is callable as FN_VMake Pthreads when using the Fortran 2003 interface
module.

N_VCloneVectorArray Pthreads ‘

Prototype  N_Vector *N_VCloneVectorArray Pthreads(int count, N_Vector w)
Description This function creates (by cloning) an array of count Pthreads vectors.

F2003 Name This function is callable as FN_VCloneVectorArray Pthreads when using the Fortran
2003 interface module.

N_VCloneVectorArrayEmpty_Pthreads ‘

Prototype  N_Vector *N_VCloneVectorArrayEmpty Pthreads(int count, N_Vector w)

Description This function creates (by cloning) an array of count Pthreads vectors, each with an
empty (NULL) data array.

F2003 Name This function is callable as FN_VCloneVectorArrayEmpty _Pthreads when using the For-
tran 2003 interface module.

N_VDestroyVectorArray Pthreads

Prototype  void N_VDestroyVectorArray Pthreads(N_Vector *vs, int count)

Description This function frees memory allocated for the array of count variables of type N_Vector
created with N_VCloneVectorArray Pthreads or with
N_VCloneVectorArrayEmpty_Pthreads.

F2003 Name This function is callable as FN_VDestroyVectorArray Pthreads when using the Fortran
2003 interface module.

N_VPrint_Pthreads

Prototype  void N_VPrint Pthreads(N_Vector v)
Description This function prints the content of a Pthreads vector to stdout.

F2003 Name This function is callable as FN_VPrint _Pthreads when using the Fortran 2003 interface
module.
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N_VPrintFile Pthreads

Prototype  void N_VPrintFile Pthreads(N_Vector v, FILE *outfile)
Description This function prints the content of a Pthreads vector to outfile.

F2003 Name This function is callable as FN_VPrintFile Pthreads when using the Fortran 2003 in-
terface module.

By default all fused and vector array operations are disabled in the NVECTOR_PTHREADS module.
The following additional user-callable routines are provided to enable or disable fused and vector
array operations for a specific vector. To ensure consistency across vectors it is recommended to first
create a vector with N_-VNew_Pthreads, enable/disable the desired operations for that vector with the
functions below, and create any additional vectors from that vector using N_VClone. This guarantees
the new vectors will have the same operations enabled/disabled as cloned vectors inherit the same
enable/disable options as the vector they are cloned from while vectors created with N_VNew_Pthreads
will have the default settings for the NVECTOR_PTHREADS module.

’ N_VEnableFusedOps_Pthreads ‘

Prototype int N_VEnableFusedOps_Pthreads(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array op-
erations in the Pthreads vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableFusedOps_Pthreads when using the Fortran 2003
interface module.

N_VEnableLinearCombination Pthreads ‘

Prototype  int N_VEnableLinearCombination Pthreads(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused
operation in the Pthreads vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableLinearCombination Pthreads when using the
Fortran 2003 interface module.

N_VEnableScaleAddMulti_Pthreads ‘

Prototype int N_VEnableScaleAddMulti Pthreads(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to
multiple vectors fused operation in the Pthreads vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableScaleAddMulti_Pthreads when using the For-
tran 2003 interface module.

N_VEnableDotProdMulti_ Pthreads ‘
Prototype  int N_VEnableDotProdMulti Pthreads(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused
operation in the Pthreads vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableDotProdMulti Pthreads when using the Fortran
2003 interface module.
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N_VEnableLinearSumVectorArray Pthreads ‘

Prototype int N_VEnableLinearSumVectorArray Pthreads(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for
vector arrays in the Pthreads vector. The return value is 0 for success and -1 if the
input vector or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableLinearSumVectorArray Pthreads when using
the Fortran 2003 interface module.

N_VEnableScaleVectorArray Pthreads ‘

Prototype int N_VEnableScaleVectorArray Pthreads(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector
arrays in the Pthreads vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableScaleVectorArray Pthreads when using the
Fortran 2003 interface module.

N_VEnableConstVectorArray Pthreads ‘

Prototype int N_VEnableConstVectorArray Pthreads(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector
arrays in the Pthreads vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableConstVectorArray Pthreads when using the
Fortran 2003 interface module.

N_VEnableWrmsNormVectorArray_Pthreads \

Prototype int N_VEnableWrmsNormVectorArray Pthreads(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for
vector arrays in the Pthreads vector. The return value is 0 for success and -1 if the
input vector or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableWrmsNormVectorArray Pthreads when using the
Fortran 2003 interface module.

N_VEnableWrmsNormMaskVectorArray Pthreads ‘

Prototype int N_VEnableWrmsNormMaskVectorArray Pthreads(N_Vector v, booleantype tf)

Description  This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm op-
eration for vector arrays in the Pthreads vector. The return value is 0 for success and
-1 if the input vector or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableWrmsNormMaskVectorArray Pthreads when us-
ing the Fortran 2003 interface module.

N_VEnableScaleAddMultiVectorArray_Pthreads ‘

Prototype int N_VEnableScaleAddMultiVectorArray Pthreads(N_Vector v,
booleantype tf)
Description  This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array
to multiple vector arrays operation in the Pthreads vector. The return value is 0 for
success and -1 if the input vector or its ops structure are NULL.
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N_VEnableLinearCombinationVectorArray Pthreads ‘

Prototype int N_VEnableLinearCombinationVectorArray Pthreads(N_Vector v,
booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation
for vector arrays in the Pthreads vector. The return value is 0 for success and -1 if the
input vector or its ops structure are NULL.

Notes

e When looping over the components of an N_Vector v, it is more efficient to first obtain the
component array via v.data = NV_DATA_PT(v) and then access v_data[i] within the loop than
it is to use NV_Ith PT(v,i) within the loop.

e N_VNewEmpty Pthreads, N_.VMake_Pthreads, and N_VCloneVectorArrayEmpty Pthreads set the
field own_data = SUNFALSE. N_VDestroy_Pthreads and N_VDestroyVectorArray_Pthreads will
not attempt to free the pointer data for any N_Vector with own_data set to SUNFALSE. In such
a case, it is the user’s responsibility to deallocate the data pointer.

e To maximize efficiency, vector operations in the NVECTOR_PTHREADS implementation that have
more than one N_Vector argument do not check for consistent internal representation of these
vectors. It is the user’s responsibility to ensure that such routines are called with N_Vector
arguments that were all created with the same internal representations.

9.6.3 NVECTOR_PTHREADS Fortran interfaces

The NVECTOR_PTHREADS module provides a FORTRAN 2003 module as well as FORTRAN 77 style
interface functions for use from FORTRAN applications.

FORTRAN 2003 interface module

The nvector_pthreads_mod FORTRAN module defines interfaces to most NVECTOR_PTHREADS C func-
tions using the intrinsic iso_c_binding module which provides a standardized mechanism for interop-
erating with C. As noted in the C function descriptions above, the interface functions are named after
the corresponding C function, but with a leading ‘F’. For example, the function N_VNew Pthreads is
interfaced as FN_VNew_Pthreads.

The FORTRAN 2003 NVECTOR_PTHREADS interface module can be accessed with the use statement,
i.e. use fnvector_pthreads_mod, and linking to the library 1ibsundials_fnvectorpthreads_mod.lib
in addition to the C library. For details on where the library and module file fnvector_pthreads_mod.mod
are installed see Appendix A.

FORTRAN 77 interface functions

For solvers that include a FORTRAN interface module, the NVECTOR_PTHREADS module also includes
a FORTRAN-callable function FNVINITPTS (code, NEQ, NUMTHREADS, IER), to initialize this module.
Here code is an input solver id (1 for CVODE, 2 for IDA, 3 for KINSOL, 4 for ARKODE); NEQ is the
problem size (declared so as to match C type long int); NUMTHREADS is the number of threads;
and IER is an error return flag equal 0 for success and -1 for failure.

9.7 The NVECTOR_PARHYP implementation

The NVECTOR_PARHYP implementation of the NVECTOR module provided with SUNDIALS is a wrapper
around hypre’s ParVector class. Most of the vector kernels simply call hypre vector operations. The
implementation defines the content field of N_Vector to be a structure containing the global and local
lengths of the vector, a pointer to an object of type HYPRE _ParVector, an MPI communicator, and a
boolean flag own_parvector indicating ownership of the hypre parallel vector object z.
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struct _N_VectorContent_ParHyp {
sunindextype local_length;
sunindextype global_length;
booleantype own_parvector;
MPI_Comm comm;
HYPRE_ParVector x;

};

The header file to include when using this module is nvector_parhyp.h. The installed module library
to link to is libsundials_nvecparhyp.l4b where . 14b is typically .so for shared libraries and .a
for static libraries.

Unlike native SUNDIALS vector types, NVECTOR_PARHYP does not provide macros to access its
member variables. Note that NVECTOR_PARHYP requires SUNDIALS to be built with MPI support.

9.7.1 NVECTOR_PARHYP functions

The NVECTOR_PARHYP module defines implementations of all vector operations listed in Tables 9.1.1,
9.1.2, 9.1.3, and 9.1.4, except for N_VSetArrayPointer and N_VGetArrayPointer, because access-
ing raw vector data is handled by low-level hypre functions. As such, this vector is not available
for use with SUNDIALS Fortran interfaces. When access to raw vector data is needed, one should
extract the hypre vector first, and then use hypre methods to access the data. Usage examples of
NVECTOR_PARHYP are provided in the cvAdvDiff non ph.c example program for CVODE [40] and the
ark_diurnal kry_ph.c example program for ARKODE [50].

The names of parhyp methods are obtained from those in Tables 9.1.1, 9.1.2, 9.1.3, and 9.1.4 by
appending the suffix ParHyp (e.g. N_VDestroy ParHyp). The module NVECTOR_PARHYP provides the
following additional user-callable routines:

N_VNewEmpty_ParHyp ‘

Prototype N_Vector N_VNewEmpty ParHyp(MPI_Comm comm, sunindextype local_length,
sunindextype global_length)

Description This function creates a new parhyp N_Vector with the pointer to the hypre vector set
to NULL.

N_VMake_ParHyp

Prototype = N_Vector N_VMake_ParHyp(HYPRE ParVector x)

Description This function creates an N_Vector wrapper around an existing hypre parallel vector. It
does not allocate memory for x itself.

N_VGetVector_ParHyp

Prototype = HYPRE ParVector N_VGetVector_ ParHyp(N Vector v)

Description This function returns the underlying hypre vector.

N_VCloneVectorArray_ParHyp ‘

Prototype  N_Vector *N_VCloneVectorArray ParHyp(int count, N_Vector w)

Description This function creates (by cloning) an array of count parallel vectors.
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N_VCloneVectorArrayEmpty_ParHyp ‘

Prototype  N_Vector *N_VCloneVectorArrayEmpty ParHyp(int count, N_Vector w)

Description This function creates (by cloning) an array of count parallel vectors, each with an empty
(NULL) data array.

N_VDestroyVectorArray ParHyp ‘

Prototype  void N_VDestroyVectorArray ParHyp(N_Vector *vs, int count)

Description This function frees memory allocated for the array of count variables of type N_Vector
created with N_VCloneVectorArray_ParHyp or with N_-VCloneVectorArrayEmpty_ParHyp.

N_VPrint_ParHyp

Prototype  void N_VPrint_ParHyp(N_Vector v)

Description This function prints the local content of a parhyp vector to stdout.

N_VPrintFile_ParHyp

Prototype  void N_VPrintFile_ParHyp(N_Vector v, FILE *outfile)
Description This function prints the local content of a parhyp vector to outfile.

By default all fused and vector array operations are disabled in the NVECTOR_PARHYP module.
The following additional user-callable routines are provided to enable or disable fused and vector
array operations for a specific vector. To ensure consistency across vectors it is recommended to first
create a vector with N_VMake ParHyp, enable/disable the desired operations for that vector with the
functions below, and create any additional vectors from that vector using N_VClone. This guarantees
the new vectors will have the same operations enabled/disabled as cloned vectors inherit the same
enable/disable options as the vector they are cloned from while vectors created with N_VMake ParHyp
will have the default settings for the NVECTOR_PARHYP module.

] N_VEnableFusedOps_ParHyp \

Prototype int N_VEnableFusedOps_ParHyp(N_Vector v, booleantype tf)

Description  This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array oper-
ations in the parhyp vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N_VEnableLinearCombination_ParHyp ‘

Prototype int N_VEnableLinearCombination ParHyp(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused
operation in the parhyp vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N_VEnableScaleAddMulti_ParHyp ‘

Prototype  int N_VEnableScaleAddMulti_ParHyp(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to
multiple vectors fused operation in the parhyp vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.
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N_VEnableDotProdMulti_ParHyp ‘

Prototype  int N_VEnableDotProdMulti_ParHyp(N_Vector v, booleantype tf)

Description  This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused
operation in the parhyp vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N_VEnableLinearSumVectorArray_ParHyp ‘

Prototype int N_VEnableLinearSumVectorArray ParHyp(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for
vector arrays in the parhyp vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N_VEnableScaleVectorArray ParHyp ‘

Prototype  int N_VEnableScaleVectorArray ParHyp(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector
arrays in the parhyp vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N_VEnableConstVectorArray_ParHyp ‘

Prototype int N_VEnableConstVectorArray ParHyp(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector
arrays in the parhyp vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N_VEnableWrmsNormVectorArray ParHyp ‘

Prototype int N_VEnableWrmsNormVectorArray ParHyp(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for
vector arrays in the parhyp vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N_VEnableWrmsNormMaskVectorArray ParHyp ‘

Prototype int N_VEnableWrmsNormMaskVectorArray ParHyp(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm op-
eration for vector arrays in the parhyp vector. The return value is 0 for success and -1
if the input vector or its ops structure are NULL.

N_VEnableScaleAddMultiVectorArray_ParHyp ‘

Prototype int N_VEnableScaleAddMultiVectorArray ParHyp(N_Vector v,
booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array
to multiple vector arrays operation in the parhyp vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.
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N_VEnableLinearCombinationVectorArray ParHyp ‘

Prototype int N_VEnableLinearCombinationVectorArray ParHyp(N_Vector v,
booleantype tf)

Description  This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation
for vector arrays in the parhyp vector. The return value is 0 for success and -1 if the
input vector or its ops structure are NULL.

Notes

e When there is a need to access components of an N_Vector_ParHyp, v, it is recommended to
extract the hypre vector via x_vec = N_VGetVector_ParHyp(v) and then access components
using appropriate hypre functions.

e N VNewEmpty_ParHyp, N_VMake ParHyp, and N_VCloneVectorArrayEmpty ParHyp set the field
own_parvector to SUNFALSE. N_VDestroy_ParHyp and N_VDestroyVectorArray_ParHyp will not
attempt to delete an underlying hypre vector for any N_Vector with own_parvector set to
SUNFALSE. In such a case, it is the user’s responsibility to delete the underlying vector.

e To maximize efficiency, vector operations in the NVECTOR_PARHYP implementation that have
more than one N_Vector argument do not check for consistent internal representations of these
vectors. It is the user’s responsibility to ensure that such routines are called with N_Vector
arguments that were all created with the same internal representations.

9.8 The NVECTOR_PETSC implementation

The NVECTOR_PETSC module is an NVECTOR wrapper around the PETSc vector. It defines the content
field of a N_Vector to be a structure containing the global and local lengths of the vector, a pointer
to the PETSc vector, an MPI communicator, and a boolean flag own_data indicating ownership of the
wrapped PETSc vector.

struct _N_VectorContent_Petsc {
sunindextype local_length;
sunindextype global_length;
booleantype own_data;
Vec *pvec;
MPI_Comm comm;

};

The header file to include when using this module is nvector_petsc.h. The installed module library
to link to is libsundials nvecpetsc. l2b where . 1%b is typically .so for shared libraries and .a for
static libraries.

Unlike native SUNDIALS vector types, NVECTOR_PETSC does not provide macros to access its mem-
ber variables. Note that NVECTOR_PETSC requires SUNDIALS to be built with MPI support.

9.8.1 NVECTOR_PETSC functions

The NVECTOR_PETSC module defines implementations of all vector operations listed in Tables 9.1.1,
9.1.2,9.1.3, and 9.1.4, except for N_-VGetArrayPointer and N_VSetArrayPointer. As such, this vector
cannot be used with SUNDIALS Fortran interfaces. When access to raw vector data is needed, it is
recommended to extract the PETSc vector first, and then use PETSc methods to access the data. Usage
examples of NVECTOR_PETSC are provided in example programs for IDA [38].

The names of vector operations are obtained from those in Tables 9.1.1, 9.1.2, 9.1.3, and 9.1.4
by appending the suffix Petsc (e.g. N_VDestroy_Petsc). The module NVECTOR_PETSC provides the
following additional user-callable routines:
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N_VNewEmpty_Petsc

Prototype  N_Vector N_VNewEmpty_Petsc(MPI_Comm comm, sunindextype local_length,
sunindextype global_length)

Description This function creates a new NVECTOR wrapper with the pointer to the wrapped PETSc
vector set to (NULL). It is used by the N_VMake Petsc and N_VClone_Petsc implementa-
tions.

N_VMake_Petsc ‘

Prototype = N_Vector N_VMake Petsc(Vec *pvec)

Description This function creates and allocates memory for an NVECTOR_PETSC wrapper around a
user-provided PETSc vector. It does not allocate memory for the vector pvec itself.

N_VGetVector_Petsc ‘
Prototype  Vec #*N_VGetVector_Petsc(N_Vector v)

Description This function returns a pointer to the underlying PETSc vector.

N_VCloneVectorArray_Petsc ‘

Prototype = N_Vector #N_VCloneVectorArray Petsc(int count, N_Vector w)

Description  This function creates (by cloning) an array of count NVECTOR_PETSC vectors.

N_VCloneVectorArrayEmpty_Petsc ‘

Prototype  N_Vector *N_VCloneVectorArrayEmpty Petsc(int count, N_Vector w)

Description This function creates (by cloning) an array of count NVECTOR_PETSC vectors, each with
pointers to PETSc vectors set to (NULL).

N_VDestroyVectorArray_Petsc ‘

Prototype = void N_VDestroyVectorArray Petsc(N_Vector *vs, int count)

Description This function frees memory allocated for the array of count variables of type N_Vector
created with N_VCloneVectorArray Petsc or with N_VCloneVectorArrayEmpty_Petsc.

N_VPrint Petsc |
Prototype  void N_VPrint Petsc(N_Vector v)

Description This function prints the global content of a wrapped PETSc vector to stdout.

N_VPrintFile Petsc|
Prototype = void N_VPrintFile Petsc(N_Vector v, const char fname[])

Description This function prints the global content of a wrapped PETSc vector to fname.

By default all fused and vector array operations are disabled in the NVECTOR_PETSC module.
The following additional user-callable routines are provided to enable or disable fused and vector
array operations for a specific vector. To ensure consistency across vectors it is recommended to first
create a vector with N_VMake Petsc, enable/disable the desired operations for that vector with the
functions below, and create any additional vectors from that vector using N_VClone. This guarantees
the new vectors will have the same operations enabled/disabled as cloned vectors inherit the same
enable/disable options as the vector they are cloned from while vectors created with N_VMake Petsc
will have the default settings for the NVECTOR_PETSC module.
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N_VEnableFusedOps_Petsc ‘

Prototype  int N_VEnableFusedOps_Petsc(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array oper-
ations in the PETSc vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N_VEnableLinearCombination_Petsc ‘

Prototype int N_VEnableLinearCombination Petsc(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused
operation in the PETSc vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N_VEnableScaleAddMulti Petsc |

Prototype  int N_VEnableScaleAddMulti_ Petsc(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to
multiple vectors fused operation in the PETSc vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

N_VEnableDotProdMulti_Petsc |

Prototype  int N_VEnableDotProdMulti Petsc(N_Vector v, booleantype tf)

Description  This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused
operation in the PETSc vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N_VEnableLinearSumVectorArray Petsc ‘

Prototype  int N_VEnableLinearSumVectorArray Petsc(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for
vector arrays in the PETSc vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N_VEnableScaleVectorArray Petsc ‘

Prototype  int N_VEnableScaleVectorArray Petsc(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector
arrays in the PETSc vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N_VEnableConstVectorArray_Petsc ‘

Prototype  int N_VEnableConstVectorArray Petsc(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector
arrays in the PETSc vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.
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N_VEnableWrmsNormVectorArray_Petsc ‘

Prototype int N_VEnableWrmsNormVectorArray Petsc(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for
vector arrays in the PETSc vector. The return value is O for success and -1 if the input
vector or its ops structure are NULL.

N_VEnableWrmsNormMaskVectorArray_Petsc ‘

Prototype  int N_VEnableWrmsNormMaskVectorArray Petsc(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm op-
eration for vector arrays in the PETSc vector. The return value is 0 for success and -1
if the input vector or its ops structure are NULL.

N_VEnableScaleAddMultiVectorArray_Petsc ‘

Prototype  int N_VEnableScaleAddMultiVectorArray Petsc(N_Vector v, booleantype tf)

Description  This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array
to multiple vector arrays operation in the PETSc vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

N_VEnableLinearCombinationVectorArray Petsc ‘

Prototype int N_VEnableLinearCombinationVectorArray Petsc(N_Vector v,
booleantype tf)

Description  This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation
for vector arrays in the PETSc vector. The return value is 0 for success and -1 if the
input vector or its ops structure are NULL.

Notes

e When there is a need to access components of an N_Vector Petsc, v, it is recommeded to
extract the PETSc vector via x_vec = N_VGetVector_Petsc(v) and then access components
using appropriate PETSc functions.

e The functions N_VNewEmpty Petsc, N_VMake Petsc, and N_VCloneVectorArrayEmpty Petsc set
the field own_data to SUNFALSE. N_VDestroy_Petsc and N_VDestroyVectorArray Petsc will not
attempt to free the pointer pvec for any N _Vector with own_data set to SUNFALSE. In such a
case, it is the user’s responsibility to deallocate the puvec pointer.

e To maximize efficiency, vector operations in the NVECTOR_PETSC implementation that have
more than one N_Vector argument do not check for consistent internal representations of these
vectors. It is the user’s responsibility to ensure that such routines are called with N_Vector
arguments that were all created with the same internal representations.

9.9 The NVECTOR_CUDA implementation

The NVECTOR_CUDA module is an NVECTOR implementation in the cUDA language. The module
allows for SUNDIALS vector kernels to run on NVIDIA GPU devices. It is intended for users who are
already familiar with cUDA and GPU programming. Building this vector module requires a CUDA
compiler and, by extension, a C++ compiler. The vector content layout is as follows:



230 Description of the NVECTOR module

struct _N_VectorContent_Cuda

{
sunindextype length;
booleantype own_exec;
booleantype own_helper;
SUNMemory host_data;
SUNMemory device_data;
SUNCudaExecPolicy* stream_exec_policy;
SUNCudaExecPolicy* reduce_exec_policy;
SUNMemoryHelper mem_helper;
voidx* priv; /* ’private’ data */
};

typedef struct _N_VectorContent_Cuda *N_VectorContent_Cuda;

The content members are the vector length (size), ownership flags for the *_exec_policy fields and
the mem helper field, SUNMemory objects for the vector data on the host and the device, pointers to
SUNCudaExecPolicy implementations that control how the CUDA kernels are launched for streaming
and reduction vector kernels, a SUNMemoryHelper object, and a private data structure which holds
additonal members that should not be accessed directly.

When instantiated with N_VNew_Cuda, the underlying data will be allocated memory on both the
host and the device. Alternatively, a user can provide host and device data arrays by using the
N_VMake_Cuda constructor. To use CUDA managed memory, the constructors N_VNewManaged Cuda
and
N_VMakeManaged_Cuda are provided. Details on each of these constructors are provided below.

To use the NVECTOR_CUDA module, the header file to include is nvector_cuda.h, and the library
to link to is libsundials nveccuda. lzb. The extension .14b is typically .so for shared libraries
and .a for static libraries.

9.9.1 NVECTOR_CUDA functions

Unlike other native SUNDIALS vector types, NVECTOR_CUDA does not provide macros to access its
member variables. Instead, user should use the accessor functions:

N_VGetHostArrayPointer_Cuda

Prototype  realtype *N_VGetHostArrayPointer_Cuda(N_Vector wv)

Description This function returns a pointer to the vector data on the host.

N_VGetDeviceArrayPointer_Cuda

Prototype  realtype *N_VGetDeviceArrayPointer_Cuda(N_Vector v)

Description This function returns a pointer to the vector data on the device.

N_VSetHostArrayPointer_Cuda

Prototype  realtype *N_VSetHostArrayPointer_Cuda(N_Vector wv)

Description This function sets the pointer to the vector data on the host. The existing pointer will
not be freed first.

N_VSetDeviceArrayPointer_Cuda

Prototype  realtype *N_VSetDeviceArrayPointer_Cuda(N_Vector v)
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Description This function sets pointer to the vector data on the device. The existing pointer will
not be freed first.

N_VIsManagedMemory_Cuda

Prototype  booleantype *N_VIsManagedMemory_Cuda(N_Vector v)

Description This function returns a boolean flag indicating if the vector data is allocated in managed
memory or not.

The NVECTOR_CUDA module defines implementations of all vector operations listed in Tables 9.1.1,
9.1.2, 9.1.3 and 9.1.4, except for N_VSetArrayPointer and N_VGetArrayPointer unless managed
memory is used. As such, this vector can only be used with the SUNDIALS Fortran interfaces, and
the SUNDIALS direct solvers and preconditioners when using managed memory. The NVECTOR_CUDA
module provides separate functions to access data on the host and on the device for the unmanaged
memory use case. It also provides methods for copying from the host to the device and vice versa.
Usage examples of NVECTOR_CUDA are provided in some example programs for CVODE [40)].

The names of vector operations are obtained from those in Tables 9.1.1, 9.1.2, 9.1.3, and 9.1.4
by appending the suffix Cuda (e.g. N_VDestroy_Cuda). The module NVECTOR_CUDA provides the
following functions:

N_VNew_Cuda

Prototype  N_Vector N_VNew_Cuda(sunindextype length)

Description This function creates and allocates memory for a CUDA N_Vector. The vector data array
is allocated on both the host and device.

N_VNewManaged_Cuda

Prototype  N_Vector N_VNewManaged Cuda(sunindextype length)

Description This function creates and allocates memory for a CUDA N_Vector. The vector data array
is allocated in managed memory.

N_VNewWithMemHelp_Cuda

Prototype  N_Vector N_VNewWithMemHelp_Cuda(sunindextype length, booleantype use_managed mem,
SUNMemoryHelper helper);

Description This function creates an NVECTOR_-CUDA which will use the SUNMemoryHelper object
to allocate memory. If use_managed memory is 0, then unmanaged memory is used,
otherwise managed memory is used.

N_VNewEmpty_Cuda

Prototype  N_Vector N_VNewEmpty_Cuda()

Description This function creates a new NVECTOR wrapper with the pointer to the wrapped cuDA
vector set to NULL. It is used by the N_VNew_Cuda, N_VMake Cuda, and N_VClone_Cuda
implementations.

N_VMake_Cuda

Prototype  N_Vector N_VMake_Cuda(sunindextype length, realtype *h_data, realtype *dev_data)

Description This function creates an NVECTOR_CUDA with user-supplied vector data arrays h_vdata
and d_vdata. This function does not allocate memory for data itself.
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N_VMakeManaged_Cuda

Prototype

Description

N_Vector N_VMakeManaged Cuda(sunindextype length, realtype *vdata)

This function creates an NVECTOR_CUDA with a user-supplied managed memory data
array. This function does not allocate memory for data itself.

N_VMakeWithManagedAllocator_Cuda

Prototype

Description

N_Vector N_VMakeWithManagedAllocator_Cuda(sunindextype length, void* (*allocfn) (size_t
size), void (xfreefn) (void* ptr));

This function creates an NVECTOR_CUDA with a user-supplied memory allocator. It
requires the user to provide a corresponding free function as well. The memory allocated
by the allocator function must behave like CUDA managed memory.

This function is deprecated and will be removed in the next major release. Use N_-VNewWithMemHelp_Cuda
instead.

The module NVECTOR_CUDA also provides the following user-callable routines:

N_VSetKernelExecPolicy_Cuda

Prototype

Description

void N_VSetKernelExecPolicy_Cuda(N_Vector v, SUNCudaExecPolicy* stream_exec_policy,
SUNCudaExecPolicy* reduce_exec_policy);

This function sets the execution policies which control the kernel parameters utilized
when launching the streaming and reduction CUDA kernels. By default the vector is
setup to use the SUNCudaThreadDirectExecPolicy and SUNCudaBlockReduceExecPolicy.
Any custom execution policy for reductions must ensure that the grid dimensions (num-
ber of thread blocks) is a multiple of the CUDA warp size (32). See section 9.9.2 below
for more information about the SUNCudaExecPolicy class.

Note: All vectors used in a single instance of a SUNDIALS solver must use the same
execution policy. It is strongly recommended that this function is called immediately
after constructing the vector, and any subsequent vector be created by cloning to ensure
consistent execution policies across vectors.

N_VSetCudaStream_Cuda ‘

Prototype

Description

void N_VSetCudaStream_Cuda(N_Vector v, cudaStream_t *stream)

This function sets the CUDA stream that all vector kernels will be launched on. By
default an NVECTOR_CUDA uses the default CUDA stream.

Note: All vectors used in a single instance of a SUNDIALS solver must use the same
CUDA stream. It is strongly recommended that this function is called immediately
after constructing the vector, and any subsequent vector be created by cloning to ensure
consistent execution policies across vectors.

This function will be removed in the next major release, user should utilize the N_VSetKernelExecPolicy_Cud
function instead.

] N_VCopyToDevice_Cuda

Prototype

Description

void N_VCopyToDevice Cuda(N_Vector v)

This function copies host vector data to the device.
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N_VCopyFromDevice_Cuda

Prototype  void N_VCopyFromDevice_Cuda(N_Vector v)

Description This function copies vector data from the device to the host.

N_VPrint Cuda |
Prototype  void N_VPrint _Cuda(N_Vector v)

Description This function prints the content of a CUDA vector to stdout.

N_VPrintFile Cuda]
Prototype = void N_VPrintFile Cuda(N_Vector v, FILE *outfile)

Description This function prints the content of a CUDA vector to outfile.

By default all fused and vector array operations are disabled in the NVECTOR_CUDA module.
The following additional user-callable routines are provided to enable or disable fused and vector
array operations for a specific vector. To ensure consistency across vectors it is recommended to
first create a vector with N_VNew_Cuda, enable/disable the desired operations for that vector with the
functions below, and create any additional vectors from that vector using N_VClone. This guarantees
the new vectors will have the same operations enabled/disabled as cloned vectors inherit the same
enable/disable options as the vector they are cloned from while vectors created with N_VNew_Cuda will
have the default settings for the NVECTOR_CUDA module.

’ N_VEnableFusedOps_Cuda ‘

Prototype int N_VEnableFusedOps_Cuda(N_Vector v, booleantype tf)

Description  This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array op-
erations in the CUDA vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N_VEnablelLinearCombination_Cuda ‘

Prototype int N_VEnableLinearCombination Cuda(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused
operation in the CUDA vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N_VEnableScaleAddMulti Cuda |

Prototype  int N_VEnableScaleAddMulti_Cuda(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to
multiple vectors fused operation in the CUDA vector. The return value is O for success
and -1 if the input vector or its ops structure are NULL.

N_VEnableDotProdMulti Cuda |

Prototype  int N_VEnableDotProdMulti_Cuda(N_Vector v, booleantype tf)

Description  This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused
operation in the CUDA vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.
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N_VEnableLinearSumVectorArray_Cuda ‘

Prototype int N_VEnableLinearSumVectorArray Cuda(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for
vector arrays in the CUDA vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N_VEnableScaleVectorArray_Cuda ‘

Prototype  int N_VEnableScaleVectorArray Cuda(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector
arrays in the CUDA vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N_VEnableConstVectorArray_Cuda ‘

Prototype  int N_VEnableConstVectorArray Cuda(N _Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector
arrays in the CUDA vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N_VEnableWrmsNormVectorArray_Cuda ‘

Prototype int N_VEnableWrmsNormVectorArray Cuda(N_Vector v, booleantype tf)

Description  This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for
vector arrays in the CUDA vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N_VEnableWrmsNormMaskVectorArray_Cuda ‘

Prototype  int N_VEnableWrmsNormMaskVectorArray_Cuda(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm op-
eration for vector arrays in the CUDA vector. The return value is 0 for success and -1 if
the input vector or its ops structure are NULL.

N_VEnableScaleAddMultiVectorArray_Cuda ‘

Prototype  int N_VEnableScaleAddMultiVectorArray_Cuda(N_Vector v, booleantype tf)

Description  This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array
to multiple vector arrays operation in the CUDA vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

N_VEnableLinearCombinationVectorArray_Cuda ‘

Prototype int N_VEnableLinearCombinationVectorArray_Cuda(N_Vector v,
booleantype tf)

Description  This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation
for vector arrays in the CUDA vector. The return value is 0 for success and -1 if the
input vector or its ops structure are NULL.
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Notes

e When there is a need to access components of an N_Vector_Cuda, v, it is recommeded to use
functions N_VGetDeviceArrayPointer_Cuda or N_VGetHostArrayPointer_Cuda. However, when
using managed memory, the function N_VGetArrayPointer may also be used.

e Performance is better if the SUNMemoryHelper provided supports SUNMEMTYPE_PINNED; the de-
fault SUNMemoryHelper does provide this support. In the case that it does, then the buffers used
for reductions will be allocated as pinned memory.

e To maximize efficiency, vector operations in the NVECTOR_CUDA implementation that have more
than one N_Vector argument do not check for consistent internal representations of these vectors.
It is the user’s responsibility to ensure that such routines are called with N_Vector arguments
that were all created with the same internal representations.

9.9.2 The SUNCudaExecPolicy Class

In order to provide maximum flexibility to users, the CUDA kernel execution parameters used by ker-
nels within SUNDIALS are defined by objects of the sundials: :CudaExecPolicy abstract class type
(this class can be accessed in the global namespace as SUNCudaExecPolicy). Thus, users may provide
custom execution policies that fit the needs of their problem. The sundials: :CudaExecPolicy is
defined in the header file sundials_cuda policies.hpp, and is as follows:

class CudaExecPolicy

{

public:
virtual size_t gridSize(size_t numWorkUnits = O, size_t blockDim = 0) const = O;
virtual size_t blockSize(size_t numWorkUnits = 0, size_t gridDim = 0) const = O;

virtual cudaStream_t stream() const = 0;
virtual CudaExecPolicy* clone() const = 0;
virtual “CudaExecPolicy() {}

};

To define a custom execution policy, a user simply needs to create a class that inherits from the ab-
stract class and implements the methods. The SUNDIALS provided sundials: :CudaThreadDirectExecPolicy
(aka in the global namespace as SUNCudaThreadDirectExecPolicy) class is a good example of a what
a custom execution policy may look like:

class CudaThreadDirectExecPolicy : public CudaExecPolicy
{
public:
CudaThreadDirectExecPolicy(const size_t blockDim, const cudaStream_t stream = 0)
: blockDim_(blockDim), stream_(stream)

{3

CudaThreadDirectExecPolicy(const CudaThreadDirectExecPolicy& ex)
: blockDim_(ex.blockDim_), stream_(ex.stream_)

{3

virtual size_t gridSize(size_t numWorkUnits = O, size_t blockDim = 0) const
{

return (numWorkUnits + blockSize() - 1) / blockSize();
}

virtual size_t blockSize(size_t numWorkUnits = 0O, size_t gridDim = 0) const

{
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return blockDim_;

}
virtual cudaStream_t stream() const
{
return stream_;
}

virtual CudaExecPolicy* clone() const
{

return static_cast<CudaExecPolicy*>(new CudaThreadDirectExecPolicy(*this));

3

private:
const cudaStream_t stream_;
const size_t blockDim_;

};
In total, SUNDIALS provides 3 execution policies:

1. SUNCudaThreadDirectExecPolicy(const size_t blockDim, const cudaStream t stream =
0) maps each CUDA thread to a work unit. The number of threads per block (blockDim) can
be set to anything. The grid size will be calculated so that there are enough threads for one
thread per element. If a CUDA stream is provided, it will be used to execute the kernel.

2. SUNCudaGridStrideExecPolicy(const size_t blockDim, const size_t gridDim, const cudaStream t
stream = 0) is for kernels that use grid stride loops. The number of threads per block (block-
Dim) can be set to anything. The number of blocks (gridDim) can be set to anything. If a
CUDA stream is provided, it will be used to execute the kernel.

3. SUNCudaBlockReduceExecPolicy(const size_t blockDim, const size_t gridDim, const cudaStream_t
stream = 0) is for kernels performing a reduction across individual thread blocks. The number
of threads per block (blockDim) can be set to any valid multiple of the CUDA warp size. The
grid size (gridDim) can be set to any value greater than 0. If it is set to 0, then the grid size
will be chosen so that there is enough threads for one thread per work unit. If a CUDA stream
is provided, it will be used to execute the kernel.

For example, a policy that uses 128 threads per block and a user provided stream can be created
like so:

cudaStream_t stream;
cudaStreamCreate (&stream) ;
SUNCudaThreadDirectExecPolicy thread_direct(128, stream);

These default policy objects can be reused for multiple SUNDIALS data structures since they do
not hold any modifiable state information.

9.10 The NVECTOR_HIP implementation

The NVECTOR_HIP module is an NVECTOR implementation using the AMD ROCm HIP library. The
module allows for SUNDIALS vector kernels to run on AMD or NVIDIA GPU devices. It is intended for
users who are already familiar with HIP and GPU programming. Building this vector module requires
the HIP-clang compiler. The vector content layout is as follows:
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struct _N_VectorContent_Hip

{
sunindextype length;
booleantype own_exec;
booleantype own_helper;
SUNMemory host_data;
SUNMemory device_data;
SUNHipExecPolicy* stream_exec_policy;
SUNHipExecPolicy* reduce_exec_policy;
SUNMemoryHelper mem_helper;
voidx* priv; /* ’private’ data */
};

typedef struct _N_VectorContent_Hip *N_VectorContent_Hip;

The content members are the vector length (size), a boolean flag that signals if the vector owns
the data (i.e. it is in charge of freeing the data), pointers to vector data on the host and the device,
pointers to SUNHipExecPolicy implementations that control how the HIP kernels are launched for
streaming and reduction vector kernels, and a private data structure which holds additional members
that should not be accessed directly.

When instantiated with N_VNew_Hip, the underlying data will be allocated memory on both the
host and the device. Alternatively, a user can provide host and device data arrays by using the
N_VMake _Hip constructor. To use HIP managed memory, the constructors N_VNewManaged Hip and
N_VMakeManaged Hip are provided. Details on each of these constructors are provided below.

To use the NVECTOR_HIP module, the header file to include is nvector_hip.h, and the library to
link to is libsundials nvechip.l4b. The extension .14b is typically .so for shared libraries and
.a for static libraries.

9.10.1 NVECTOR_HIP functions

Unlike other native SUNDIALS vector types, NVECTOR_HIP does not provide macros to access its mem-
ber variables. Instead, user should use the accessor functions:

N_VGetHostArrayPointer Hip

Prototype  realtype *N_VGetHostArrayPointer Hip(N_Vector v)

Description This function returns a pointer to the vector data on the host.

N_VGetDeviceArrayPointer_Hip

Prototype  realtype *N_VGetDeviceArrayPointer Hip(N_Vector v)

Description This function returns a pointer to the vector data on the device.

N_VIsManagedMemory Hip

Prototype booleantype *N_VIsManagedMemory Hip(N_Vector v)

Description This function returns a boolean flag indicating if the vector data is allocated in managed
memory or not.

The NVECTOR_HIP module defines implementations of all vector operations listed in Tables 9.1.1,
9.1.2, 9.1.3 and 9.1.4, except for N_VSetArrayPointer. The names of vector operations are obtained
from those in Tables 9.1.1, 9.1.2, 9.1.3, and 9.1.4 by appending the suffix _Hip (e.g. N_-VDestroy_Hip).
The module NVECTOR_HIP provides the following functions:
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N_VNew_Hip

Prototype  N_Vector N_VNew Hip(sunindextype length)

Description This function creates an empty HIP N_Vector with the data pointers set to NULL.

N_VNewManaged_Hip

Prototype  N_Vector N_VNewManaged Hip(sunindextype length)

Description This function creates and allocates memory for a HIP N_Vector. The vector data array
is allocated in managed memory.

N_VNewEmpty_Hip

Prototype = N_Vector N_VNewEmpty_ Hip()

Description This function creates a new NVECTOR wrapper with the pointer to the wrapped HIP
vector set to NULL. It is used by the N_VNew Hip, N_VMake Hip, and N_VClone Hip im-
plementations.

N_VMake Hip

Prototype  N_Vector N_VMake Hip(sunindextype length, realtype *h_data, realtype *dev_data)

Description This function creates an NVECTOR_HIP with user-supplied vector data arrays h_vdata
and d_vdata. This function does not allocate memory for data itself.

N_VMakeManaged_Hip

Prototype N_Vector N_VMakeManaged Hip(sunindextype length, realtype *vdata)

Description This function creates an NVECTOR_HIP with a user-supplied managed memory data
array. This function does not allocate memory for data itself.

The module NVECTOR_HIP also provides the following user-callable routines:

N_VSetKernelExecPolicy_Hip

Prototype  void N_VSetKernelExecPolicy_Hip(N_Vector v,
SUNHipExecPolicy* stream_exec_policy,
SUNHipExecPolicy* reduce_exec_policy);

Description This function sets the execution policies which control the kernel parameters utilized
when launching the streaming and reduction HIP kernels. By default the vector is setup
to use the SUNHipThreadDirectExecPolicy and SUNHipBlockReduceExecPolicy. Any
custom execution policy for reductions must ensure that the grid dimensions (number
of thread blocks) is a multiple of the HIP warp size (64 when targeting AMD GPUs and
32 when targing NVIDIA GPUs). See section 9.10.2 below for more information about
the SUNHipExecPolicy class.

Note: All vectors used in a single instance of a SUNDIALS solver must use the same
execution policy. It is strongly recommended that this function is called immediately
after constructing the vector, and any subsequent vector be created by cloning to ensure
consistent execution policies across vectors.

N_VCopyToDevice_Hip ‘

Prototype  void N_VCopyToDevice Hip(N_Vector v)

Description This function copies host vector data to the device.
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N_VCopyFromDevice Hip

Prototype  void N_VCopyFromDevice Hip(N_Vector v)

Description This function copies vector data from the device to the host.

N_VPrint_Hip

Prototype  void N_VPrint Hip(N_Vector v)

Description This function prints the content of a HIP vector to stdout.

N_VPrintFile Hip

Prototype  void N_VPrintFile Hip(N_Vector v, FILE *outfile)
Description This function prints the content of a HIP vector to outfile.

By default all fused and vector array operations are disabled in the NVECTOR_HIP module. The
following additional user-callable routines are provided to enable or disable fused and vector array
operations for a specific vector. To ensure consistency across vectors it is recommended to first create a
vector with N_VNew_Hip, enable/disable the desired operations for that vector with the functions below,
and create any additional vectors from that vector using N_-VClone. This guarantees the new vectors
will have the same operations enabled/disabled as cloned vectors inherit the same enable/disable
options as the vector they are cloned from while vectors created with N_VNew_Hip will have the default
settings for the NVECTOR_HIP module.

N_VEnableFusedOps_Hip

Prototype  int N_VEnableFusedOps_Hip(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array op-
erations in the HIP vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N_VEnableLinearCombination Hip ‘

Prototype  int N_VEnableLinearCombination Hip(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused
operation in the HIP vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N_VEnableScaleAddMulti_Hip ‘

Prototype int N_VEnableScaleAddMulti Hip(N_Vector v, booleantype tf)

Description  This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to
multiple vectors fused operation in the HIP vector. The return value is 0 for success and
-1 if the input vector or its ops structure are NULL.

N_VEnableDotProdMulti_ Hip ‘

Prototype  int N_VEnableDotProdMulti Hip(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused
operation in the HIP vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.
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N_VEnableLinearSumVectorArray Hip ‘

Prototype int N_VEnableLinearSumVectorArray Hip(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for
vector arrays in the HIP vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N_VEnableScaleVectorArray_Hip ‘

Prototype  int N_VEnableScaleVectorArray Hip(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector
arrays in the HIP vector. The return value is 0 for success and -1 if the input vector or
its ops structure are NULL.

N_VEnableConstVectorArray_Hip ‘

Prototype  int N_VEnableConstVectorArray Hip(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector
arrays in the HIP vector. The return value is 0 for success and -1 if the input vector or
its ops structure are NULL.

N_VEnableWrmsNormVectorArray Hip ‘

Prototype int N_VEnableWrmsNormVectorArray Hip(N_Vector v, booleantype tf)

Description  This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for
vector arrays in the HIP vector. The return value is O for success and -1 if the input
vector or its ops structure are NULL.

N_VEnableWrmsNormMaskVectorArray Hip ‘

Prototype  int N_VEnableWrmsNormMaskVectorArray Hip(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm op-
eration for vector arrays in the HIP vector. The return value is O for success and -1 if
the input vector or its ops structure are NULL.

N_VEnableScaleAddMultiVectorArray Hip ‘

Prototype int N_VEnableScaleAddMultiVectorArray Hip(N_Vector v, booleantype tf)

Description  This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array
to multiple vector arrays operation in the HIP vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

N_VEnableLinearCombinationVectorArray_Hip ‘

Prototype int N_VEnableLinearCombinationVectorArray Hip(N_Vector v,
booleantype tf)

Description  This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation
for vector arrays in the HIP vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.
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Notes

e When there is a need to access components of an N_Vector Hip, v, it is recommended to use
functions N_VGetDeviceArrayPointer Hip or N_VGetHostArrayPointer Hip. However, when
using managed memory, the function N_VGetArrayPointer may also be used.

e To maximize efficiency, vector operations in the NVECTOR_HIP implementation that have more
than one N_Vector argument do not check for consistent internal representations of these vectors.
It is the user’s responsibility to ensure that such routines are called with N_Vector arguments
that were all created with the same internal representations.

9.10.2 The SUNHipExecPolicy Class

In order to provide maximum flexibility to users, the HIP kernel execution parameters used by kernels
within SUNDIALS are defined by objects of the sundials: :HipExecPolicy abstract class type (this
class can be accessed in the global namespace as SUNHipExecPolicy). Thus, users may provide custom
execution policies that fit the needs of their problem. The sundials::HipExecPolicy is defined in
the header file sundials_hip_policies.hpp, and is as follows:

class HipExecPolicy

{

public:
virtual size_t gridSize(size_t numWorkUnits = 0, size_t blockDim
virtual size_t blockSize(size_t numWorkUnits = 0, size_t gridDim
virtual hipStream_t stream() const = 0;
virtual HipExecPolicy* clone() const = 0;
virtual “HipExecPolicy() {}

s

0) const = 0;
0) const

1]
o

To define a custom execution policy, a user simply needs to create a class that inherits from the ab-
stract class and implements the methods. The SUNDIALS provided sundials: :HipThreadDirectExecPolicy
(aka in the global namespace as SUNHipThreadDirectExecPolicy) class is a good example of a what
a custom execution policy may look like:

class HipThreadDirectExecPolicy : public HipExecPolicy
{
public:
HipThreadDirectExecPolicy(const size_t blockDim, const hipStream_t stream = 0)
: blockDim_(blockDim), stream_(stream)

{3

HipThreadDirectExecPolicy(const HipThreadDirectExecPolicy& ex)
: blockDim_(ex.blockDim_), stream_(ex.stream_)

{3

virtual size_t gridSize(size_t numWorkUnits = O, size_t blockDim = 0) const

{
return (numWorkUnits + blockSize() - 1) / blockSize();
}

virtual size_t blockSize(size_t numWorkUnits = 0, size_t gridDim = 0) const

{
return blockDim_;

}

virtual hipStream_t stream() const
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{

return stream_;

}

virtual HipExecPolicy* clone() const
{

return static_cast<HipExecPolicy*>(new HipThreadDirectExecPolicy(*this));

}

private:
const hipStream_t stream_;
const size_t blockDim_;

}
In total, SUNDIALS provides 3 execution policies:

1. SUNHipThreadDirectExecPolicy(const size_t blockDim, const hipStream_t stream = 0)
maps each HIP thread to a work unit. The number of threads per block (blockDim) can be set
to anything. The grid size will be calculated so that there are enough threads for one thread
per element. If a HIP stream is provided, it will be used to execute the kernel.

2. SUNHipGridStrideExecPolicy(const size_t blockDim, const size_t gridDim, const hipStream_t
stream = 0) is for kernels that use grid stride loops. The number of threads per block (block-
Dim) can be set to anything. The number of blocks (gridDim) can be set to anything. If a HIP
stream is provided, it will be used to execute the kernel.

3. SUNHipBlockReduceExecPolicy(const size_t blockDim, const size_t gridDim, const hipStream_t
stream = 0) is for kernels performing a reduction across individual thread blocks. The number
of threads per block (blockDim) can be set to any valid multiple of the HIP warp size. The
grid size (gridDim) can be set to any value greater than 0. If it is set to 0, then the grid size
will be chosen so that there is enough threads for one thread per work unit. If a HIP stream is
provided, it will be used to execute the kernel.

For example, a policy that uses 128 threads per block and a user provided stream can be created
like so:

hipStream_t stream;
hipStreamCreate (&stream) ;
SUNHipThreadDirectExecPolicy thread_direct(128, stream);

These default policy objects can be reused for multiple SUNDIALS data structures since they do
not hold any modifiable state information.

9.11 The NVECTOR_RAJA implementation

The NVECTOR_RAJA module is an experimental NVECTOR implementation using the RAJA hardware
abstraction layer. In this implementation, RAJA allows for SUNDIALS vector kernels to run on AMD
or NVIDIA GPU devices. The module is intended for users who are already familiar with RAJA and
GPU programming. Building this vector module requires a C++11 compliant compiler and either
the NVIDIA CUDA programming environment, or the AMD ROCm HIP programming environment.
When using the AMD ROCm HIP environment, the HIP-clang compiler must be utilized. Users can
select which backend (CUDA or HIP) to compile with by setting the SUNDIALS_RAJA_BACKENDS CMake
variable to either CUDA or HIP. Besides the cuDA and HIP backends, RAJA has other backends such
as serial, OpenMP, and OpenACC. These backends are not used in this SUNDIALS release.
The vector content layout is as follows:
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struct _N_VectorContent_Raja

{

sunindextype length;

booleantype own_helper;

SUNMemory host_data;

SUNMemory device_data;

SUNMemoryHelper mem_helper;

voidx priv; /* ’private’ data */
+;

The content members are the vector length (size), a boolean flag that signals if the vector owns the
memory helper, SUNMemory objects for vector data on the host and the device, a SUNMemoryHelper
object and a private data structure which holds the memory management type, which should not be
accessed directly.

When instantiated with N_-VNew_Raja, the underlying data will be allocated on both the host and
the device. Alternatively, a user can provide host and device data arrays by using the N_VMake Raja
constructor. To use managed memory, the constructors N_VNewManaged Raja and
N_VMakeManaged Raja are provided. Details on each of these constructors are provided below.

The header file to include when using this module is nvector_raja.h. The installed mod-
ule library to link to are libsundials nveccudaraja.l4b when using the CUDA backend and
libsundials_nvechipraja.l4b when using the HIP backend. The extension .14b is typically .so
for shared libraries and .a for static libraries.

9.11.1 NVECTOR_RAJA functions

Unlike other native SUNDIALS vector types, NVECTOR_RAJA does not provide macros to access its
member variables. Instead, user should use the accessor functions:

N_VGetHostArrayPointer_Raja

Prototype  realtype *N_VGetHostArrayPointer Raja(N_Vector wv)

Description This function returns a pointer to the vector data on the host.

N_VGetDeviceArrayPointer Raja

Prototype  realtype *N_VGetDeviceArrayPointer Raja(N_Vector v)

Description This function returns a pointer to the vector data on the device.

N_VSetHostArrayPointer_Raja

Prototype  realtype *N_VSetHostArrayPointer Raja(N_Vector v)

Description This function sets the pointer to the vector data on the host. The existing pointer will
not be freed first.

N_VSetDeviceArrayPointer_Raja

Prototype  realtype *N_VSetDeviceArrayPointer_ Raja(N_Vector v)

Description This function sets pointer to the vector data on the device. The existing pointer will
not be freed first.
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N_VIsManagedMemory Raja

Prototype  booleantype *N_VIsManagedMemory_Raja(N_Vector v)

Description This function returns a boolean flag indicating if the vector data is allocated in managed
memory or not.

The NVECTOR_RAJA module defines the implementations of all vector operations listed in Tables
9.1.1, 9.1.2, 9.1.3, and 9.1.4, except for N_VDotProdMulti, N_VWrmsNormVectorArray, and
N_VWrmsNormMaskVectorArray as support for arrays of reduction vectors is not yet supported in RAJA.
These function will be added to the NVECTOR_RAJA implementation in the future. Additionally the
vector operations N_VGetArrayPointer and N_VSetArrayPointer are not provided by the RAJA vector
unless managed memory is used. As such, this vector cannot be used with the SUNDIALS Fortran
interfaces, nor with the SUNDIALS direct solvers and preconditioners. The NVECTOR_RAJA module
provides separate functions to access data on the host and on the device. It also provides methods
for copying data from the host to the device and vice versa. Usage examples of NVECTOR_RAJA are
provided in some example programs for CVODE [40].

The names of vector operations are obtained from those in Tables 9.1.1, 9.1.2, 9.1.3, and 9.1.4
by appending the suffix Raja (e.g. N_VDestroy Raja). The module NVECTOR_RAJA provides the
following additional user-callable routines:

N_VNew_Raja

Prototype = N_Vector N_VNew Raja(sunindextype length)

Description This function creates and allocates memory for a RAJA N_Vector. The vector data array
is allocated on both the host and device.

N_VNewWithMemHelp Raja

Prototype  N_Vector N_VNewWithMemHelp Raja(sunindextype length, booleantype use_managed mem,
SUNMemoryHelper helper);

Description This function creates an NVECTOR_-RAJA which will use the SUNMemoryHelper object
to allocate memory. If use managed memory is 0, then unmanaged memory is used,
otherwise managed memory is used.

N_VNewManaged_Raja

Prototype = N_Vector N_VNewManaged Raja(sunindextype length)

Description This function creates and allocates memory for a RAJA N_Vector. The vector data array
is allocated in managed memory.

N_VNewEmpty_Raja

Prototype  N_Vector N_VNewEmpty Raja()

Description This function creates a new NVECTOR wrapper with the pointer to the wrapped RAJA
vector set to NULL. It is used by the N_.VNew_Raja, N_.VMake Raja, and N_VClone_Raja
implementations.

N_VMake_Raja

Prototype  N_Vector N_VMake Raja(sunindextype length, realtype *h_data, realtype *dev_data)

Description This function creates an NVECTOR_-RAJA with user-supplied vector data arrays h_vdata
and d_vdata. This function does not allocate memory for data itself.
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N_VMakeManaged_Raja

Prototype = N_Vector N_VMakeManaged Raja(sunindextype length, realtype *vdata)

Description This function creates an NVECTOR_RAJA with a user-supplied managed memory data
array. This function does not allocate memory for data itself.

N_VCopyToDevice_Raja

Prototype  realtype *N_VCopyToDevice Raja(N_Vector v)

Description This function copies host vector data to the device.

N_VCopyFromDevice Raja

Prototype realtype *N_VCopyFromDevice Raja(N_Vector v)

Description This function copies vector data from the device to the host.

N_VPrint_Raja

Prototype  void N_VPrint Raja(N_Vector v)

Description This function prints the content of a RAJA vector to stdout.

N_VPrintFile Raja

Prototype  void N_VPrintFile Raja(N_Vector v, FILE *outfile)

Description This function prints the content of a RAJA vector to outfile.

By default all fused and vector array operations are disabled in the NVECTOR_RAJA module. The
following additional user-callable routines are provided to enable or disable fused and vector array
operations for a specific vector. To ensure consistency across vectors it is recommended to first
create a vector with N_VNew Raja, enable/disable the desired operations for that vector with the
functions below, and create any additional vectors from that vector using N_VClone. This guarantees
the new vectors will have the same operations enabled/disabled as cloned vectors inherit the same
enable/disable options as the vector they are cloned from while vectors created with N_VNew_Raja will
have the default settings for the NVECTOR_RAJA module.

’ N_VEnableFusedOps_Raja ‘

Prototype  int N_VEnableFusedOps_Raja(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array op-
erations in the RAJA vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N_VEnableLinearCombination_Raja ‘

Prototype int N_VEnableLinearCombination Raja(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused
operation in the RAJA vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.
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N_VEnableScaleAddMulti Raja ‘

Prototype int N_VEnableScaleAddMulti_Raja(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to
multiple vectors fused operation in the RAJA vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

N_VEnableLinearSumVectorArray Raja ‘

Prototype  int N_VEnableLinearSumVectorArray Raja(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for
vector arrays in the RAJA vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N_VEnableScaleVectorArray_Raja ‘

Prototype  int N_VEnableScaleVectorArray Raja(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector
arrays in the RAJA vector. The return value is O for success and -1 if the input vector
or its ops structure are NULL.

N_VEnableConstVectorArray Raja ‘

Prototype int N_VEnableConstVectorArray Raja(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector
arrays in the RAJA vector. The return value is O for success and -1 if the input vector
or its ops structure are NULL.

N_VEnableScaleAddMultiVectorArray_Raja ‘

Prototype  int N_VEnableScaleAddMultiVectorArray Raja(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array
to multiple vector arrays operation in the RAJA vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

N_VEnablelLinearCombinationVectorArray Raja ‘

Prototype int N_VEnableLinearCombinationVectorArray Raja(N_Vector v,
booleantype tf)

Description  This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation
for vector arrays in the RAJA vector. The return value is 0 for success and -1 if the
input vector or its ops structure are NULL.

Notes

e When there is a need to access components of an N_Vector Raja, v, it is recommended to
use functions N_VGetDeviceArrayPointer Raja or N_VGetHostArrayPointer Raja. However,
when using managed memory, the function N_VGetArrayPointer may also be used.

e To maximize efficiency, vector operations in the NVECTOR_RAJA implementation that have more
than one N_Vector argument do not check for consistent internal representations of these vectors.
It is the user’s responsibility to ensure that such routines are called with N_Vector arguments
that were all created with the same internal representations.
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9.12 The NVECTOR_SYCL implementation

The NVECTOR_SYCL module is an experimental NVECTOR implementation using the SYCL abstraction
layer. At present the only supported SyCL compiler is the DPC++ (Intel oneAPI) compiler. This
module allows for SUNDIALS vector kernels to run on Intel GPU devices. The module is intended for
users who are already familiar with sycL and GPU programming.

The vector content layout is as follows:

struct _N_VectorContent_Sycl

{
sunindextype length;
booleantype own_exec;
booleantype own_helper;
SUNMemory host_data;
SUNMemory device_data;
SUNSyclExecPolicy* stream_exec_policy;
SUNSyclExecPolicy* reduce_exec_policy;
SUNMemoryHelper mem_helper;
sycl: :queuex* queue;
void* priv; /* ’private’ data */
+;

typedef struct _N_VectorContent_Sycl *N_VectorContent_Sycl;

The content members are the vector length (size), boolean flags that indicate if the vector owns the
execution policies and memory helper objects (i.e., it is in charge of freeing the objects), SUNMemory
objects for the vector data on the host and device, pointers to execution policies that control how
streaming and reduction kernels are launched, a SUNMemoryHelper for performing memory operations,
the sYCL queue, and a private data structure which holds additional members that should not be
accessed directly.

When instantiated with N_-VNew_Syc1 (), the underlying data will be allocated on both the host and
the device. Alternatively, a user can provide host and device data arrays by using the N_VMake_Sycl ()
constructor. To use managed (shared) memory, the constructors N_VNewManaged Sycl() and
N_VMakeManaged Sycl() are provided. Additionally, a user-defined SUNMemoryHelper for allocat-
ing/freeing data can be provided with the constructor N_.VNewWithMemHelp_Sycl (). Details on each
of these constructors are provided below.

The header file to include when using this is nvector_sycl.h. The installed module library to
link to is libsundials nvecsycl.lib. The extension .1lib is typically .so for shared libraries .a for
static libraries.

9.12.1 NVECTOR_SYCL functions

The NVECTOR_SYCL module implementations of all vector operations listed in the sections in Tables
9.1.1, 9.1.2, 9.1.3, and 9.1.4, except for N_VDotProdMulti, N_VWrmsNormVectorArray, and
N_VWrmsNormMaskVectorArray as support for arrays of reduction vectors is not yet supported. These
function will be added to the NVECTOR_SYCL implementation in the future. The names of vector
operations are obtained from those in the aforementioned sections by appending the suffix _Sycl (e.g.,
N_VDestroy_Sycl).

Additionally, the NVECTOR_SYCL module provides the following user-callable constructors for cre-
ating a new NVECTOR_SYCL:

N_VNew_Sycl

Prototype  N_Vector N_VNew_Sycl(sunindextype length, sycl::queuex Q)

Description This function creates and allocates memory for a SYCL N_Vector. The vector data array
is allocated on both the host and device.
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N_VNewManaged _Sycl

Prototype  N_Vector N_VNewManaged Sycl(sunindextype length, sycl::queuex Q)

Description This function creates and allocates memory for a SYCL N_Vector. The vector data array
is allocated in managed memory.

N_VMake_Sycl

Prototype  N_Vector N_VMake_Sycl(sunindextype length, realtype *h_data,
realtype *dev_data, sycl::queuex Q)

Description This function creates an NVECTOR_SYCL with user-supplied vector data arrays h_vdata
and d_vdata. This function does not allocate memory for data itself.

N_VMakeManaged_Sycl

Prototype = N_Vector N_VMakeManaged Sycl(sunindextype length, realtype *vdata,
sycl: :queue* Q)

Description This function creates an NVECTOR_SYCL with a user-supplied managed memory data
array. This function does not allocate memory for data itself.

N_VNewWithMemHelp_Sycl

Prototype  N_Vector N_VNewWithMemHelp_Sycl(sunindextype length,
booleantype use_managed mem,
SUNMemoryHelper helper, sycl::queuex Q) ;

Description This function creates an NVECTOR_SYCL which will use the SUNMemoryHelper object
to allocate memory. If use managed memory is 0, then unmanaged memory is used,
otherwise managed memory is used.

N_VNewEmpty_Sycl

Prototype  N_Vector N_VNewEmpty_Sycl()

Description This function creates a new NVECTOR_SYCL where the members of the content structure
have not been allocated. This utility function is used by the other constructors to create
a new vector.

The following user-callable functions are provided for accessing the vector data arrays on the host
and device and copying data between the two memory spaces. Note the generic NVECTOR operations
N_VGetArrayPointer() and N_VSetArrayPointer() are mapped to the corresponding HostArray
functions given below. To ensure memory coherency, a user will need to call the CopyTo or CopyFrom
functions as necessary to transfer data between the host and device, unless managed (shared) memory
is used.

N_VGetHostArrayPointer Sycl

Prototype  realtype *N_VGetHostArrayPointer Sycl(N_Vector v)

Description This function returns a pointer to the vector data on the host.

N_VGetDeviceArrayPointer_Sycl

Prototype  realtype *N_VGetDeviceArrayPointer_Sycl(N_Vector v)

Description This function returns a pointer to the vector data on the device.
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N_VSetHostArrayPointer Sycl

Prototype  realtype *N_VSetHostArrayPointer_Sycl(N_Vector wv)

Description This function sets the pointer to the vector data on the host. The existing pointer will
not be freed first.

N_VSetDeviceArrayPointer_Sycl

Prototype  realtype *N_VSetDeviceArrayPointer_Sycl(N_Vector v)

Description This function sets pointer to the vector data on the device. The existing pointer will
not be freed first.

N_VCopyToDevice_Sycl

Prototype  realtype *N_VCopyToDevice_Sycl(N_Vector v)

Description This function copies host vector data to the device.

N_VCopyFromDevice_Sycl

Prototype  realtype *N_VCopyFromDevice_Sycl(N_Vector v)

Description This function copies vector data from the device to the host.

N_VIsManagedMemory_Sycl

Prototype  booleantype *N_VIsManagedMemory_Sycl(N_Vector v)

Description This function returns a boolean flag indicating if the vector data is allocated in managed
memory or not.

The following user-callable function is provided to set the execution policies for how SYCL kernels
are launched on a device.

N_VSetKernelExecPolicy_Sycl

Prototype = int N_VSetKernelExecPolicy_Sycl(N_Vector v,
SUNSyclExecPolicy *stream_exec_policy,
SUNSyclExecPolicy *reduce_exec_policy)

Description This function sets the execution policies which control the kernel parameters utilized
when launching the streaming and reduction kernels. By default the vector is setup to
use the SUNSyclThreadDirectExecPolicy and SUNSyclBlockReduceExecPolicy. See
Section 9.12.2 below for more information about the SUNSyclExecPolicy class.

Note: All vectors used in a single instance of a SUNDIALS package must use the same
execution policy. It is strongly recommended that this function is called immediately
after constructing the vector, and any subsequent vector be created by cloning to ensure
consistent execution policies across vectors.

The following user-callable functions are provided to print the host vector data array. Unless
managed memory is used, a user may need to call N_-VCopyFromDevice_Sycl() to ensure consistency
between the host and device array.

N_VPrint_Sycl

Prototype  void N_VPrint_Sycl(N_Vector wv)

Description This function prints the host data of a SYCL vector to stdout.
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N_VPrintFile_Sycl

Prototype  void N_VPrintFile_Sycl(N_Vector v, FILE *outfile)
Description This function prints the host data of a SYCL vector to outfile.

By default all fused and vector array operations are disabled in the NVECTOR_SYCL module. The
following additional user-callable routines are provided to enable or disable fused and vector array
operations for a specific vector. To ensure consistency across vectors it is recommended to first create
a vector with one of the above constructors, enable/disable the desired operations on that vector
with the functions below, and then use this vector in conjunction N_VClone to create any additional
vectors. This guarantees the new vectors will have the same operations enabled/disabled as cloned
vectors inherit the same enable/disable options as the vector they are cloned from while vectors created
by any of the above constructors will have the default settings for the NVECTOR_SYCL module.

N_VEnableFusedOps_Sycl ‘

Prototype  int N_VEnableFusedOps_Sycl(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array op-
erations in the SYCL vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N_VEnableLinearCombination_Sycl ‘

Prototype  int N_VEnableLinearCombination_Sycl(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused
operation in the SYCL vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N_VEnableScaleAddMulti_Sycl ‘

Prototype  int N_VEnableScaleAddMulti_Sycl(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to
multiple vectors fused operation in the SYCL vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

N_VEnableLinearSumVectorArray_Sycl ‘

Prototype  int N_VEnableLinearSumVectorArray_Sycl(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for
vector arrays in the syYCL vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N_VEnableScaleVectorArray_Sycl ‘

Prototype  int N_VEnableScaleVectorArray_Sycl(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector
arrays in the SYCL vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N_VEnableConstVectorArray_Sycl

Prototype  int N_VEnableConstVectorArray_Sycl(N_Vector v, booleantype tf)
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Description This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector
arrays in the SYCL vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N_VEnableScaleAddMultiVectorArray_Sycl ‘

Prototype  int N_VEnableScaleAddMultiVectorArray_Sycl(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array
to multiple vector arrays operation in the SYCL vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

N_VEnableLinearCombinationVectorArray Sycl ‘

Prototype int N_VEnableLinearCombinationVectorArray_Sycl(N_Vector v,
booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation
for vector arrays in the SYCL vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

Notes

e When there is a need to access components of an N_Vector_Sycl, v, it is recommended to use
N_VGetDeviceArrayPointer to access the device array or N_VGetArrayPointer for the host
array. When using managed (shared) memory, either function may be used. To ensure memory
coherency, a user may need to call the CopyTo or CopyFrom functions as necessary to transfer
data between the host and device, unless managed (shared) memory is used.

e To maximize efficiency, vector operations in the NVECTOR_SYCL implementation that have more
than one N_Vector argument do not check for consistent internal representations of these vectors.
It is the user’s responsibility to ensure that such routines are called with N_Vector arguments
that were all created with the same internal representations.

9.12.2 The SUNSyclExecPolicy Class

In order to provide maximum flexibility to users, the SYCL kernel execution parameters used by kernels
within SUNDIALS are defined by objects of the sundials: :SyclExecPolicy abstract class type (this
class can be accessed in the global namespace as SUNSyclExecPolicy). Thus, users may provide
custom execution policies that fit the needs of their problem. The sundials::SyclExecPolicy is
defined in the header file sundials_sycl_policies.hpp, as follows:

class SyclExecPolicy

{

public:
virtual size_t gridSize(size_t numWorkUnits = 0, size_t blockDim = 0) const = 0;
virtual size_t blockSize(size_t numWorkUnits = O, size_t gridDim = 0) const = 0;

virtual SyclExecPolicy* clone() const = 0;
virtual “SyclExecPolicy() {}
};

For consistency the function names and behavior mirror the execution policies for the CUDA and
HIP vectors. In the SYCL case the blockSize is the local work-group range in a one-dimensional
nd_range (threads per group). The gridSize is the number of local work groups so the global work-
group range in a one-dimensional nd_range is blockSize * gridSize (total number of threads).
All vector kernels are written with a many-to-one mapping where work units (vector elements) are
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mapped in a round-robin manner across the global range. As such, the blockSize and gridSize can
be set to any positive value.

To define a custom execution policy, a user simply needs to create a class that inherits from the

abstract class and implements the methods. The SUNDIALS provided
sundials::SyclThreadDirectExecPolicy (aka in the global namespace as
SUNSyclThreadDirectExecPolicy) class is a good example of a what a custom execution policy may
look like:

class SyclThreadDirectExecPolicy : public SyclExecPolicy

{

public:
SyclThreadDirectExecPolicy(const size_t blockDim)

: blockDim_(blockDim)

{3

SyclThreadDirectExecPolicy(const SyclThreadDirectExecPolicy& ex)

: blockDim_(ex.blockDim_)

{3
virtual size_t gridSize(size_t numWorkUnits = O, size_t blockDim = 0) const
{
return (numWorkUnits + blockSize() - 1) / blockSize();
X
virtual size_t blockSize(size_t numWorkUnits = 0, size_t gridDim = 0) const
{
return blockDim_;
X
virtual SyclExecPolicy* clone() const
{
return static_cast<SyclExecPolicy*>(new SyclThreadDirectExecPolicy(*this));
X
private:

};

const size_t blockDim_;

SUNDIALS provides the following execution policies:

1. SUNSyclThreadDirectExecPolicy(const size_t blockDim) is for kernels performing stream-

ing operations and maps each work unit (vector element) to a work-item (thread). Based on the
local work-group range (number of threads per group, blockSize) the number of local work-
groups (gridSize) is computed so there are enough work-items in the global work-group range
( total number of threads, blockSize * gridSize) for one work unit per work-item (thread).

SUNSyclGridStrideExecPolicy(const size_t blockDim, const size_t gridDim) is for ker-
nels performing streaming operations and maps each work unit (vector element) to a work-item
(thread) in a round-robin manner so the local work-group range (number of threads per group,
blockSize) and the number of local work-groups (gridSize) can be set to any positive value.
In this case the global work-group range (total number of threads, blockSize * gridSize) may
be less than the number of work units (vector elements).

SUNSyclBlockReduceExecPolicy(const size_t blockDim) is for kernels performing a reduc-
tion, the local work-group range (number of threads per group, blockSize) and the number of
local work-groups (gridSize) can be set to any positive value or the gridSize may be set to O
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in which case the global range is chosen so that there are enough threads for at most two work
units per work-item.

By default the NVECTOR_SYCL module uses the SUNSyclThreadDirectExecPolicy and
SUNSyclBlockReduceExecPolicy where the default blockDim is determined by querying the device for
the max_work_group_size. User may specify different policies by constructing a new SyclExecPolicy
and attaching it with N_VSetKernelExecPolicy Sycl(). For example, a policy that uses 128 work-
items (threads) per group can be created and attached like so:

N_Vector v = N_VNew_Sycl(length);

SUNSyclThreadDirectExecPolicy thread_direct(128);
SUNSyclBlockReduceExecPolicy block_reduce(128);

flag = N_VSetKernelExecPolicy_Sycl(v, &thread_direct, &block_reduce);

These default policy objects can be reused for multiple SUNDIALS data structures (e.g. a SUNMatrix
and an N_Vector) since they do not hold any modifiable state information.

9.13 The NVECTOR_OPENMPDEYV implementation

In situations where a user has access to a device such as a GPU for offloading computation, SUNDIALS
provides an NVECTOR implementation using OpenMP device offloading, called NVECTOR_OPENMPDEV.

The NVECTOR_OPENMPDEV implementation defines the content field of the N_Vector to be a
structure containing the length of the vector, a pointer to the beginning of a contiguous data array
on the host, a pointer to the beginning of a contiguous data array on the device, and a boolean flag
own_data which specifies the ownership of host and device data arrays.

struct _N_VectorContent_OpenMPDEV {
sunindextype length;
booleantype own_data;
realtype *host_data;
realtype *dev_data;
3

The header file to include when using this module is nvector_openmpdev.h. The installed module
library to link to is 1ibsundials nvecopenmpdev. 14b where . 14b is typically .so for shared libraries
and .a for static libraries.

9.13.1 NVECTOR_OPENMPDEYV accessor macros

The following macros are provided to access the content of an NVECTOR_OPENMPDEV vector.

e NV_CONTENT_OMPDEV
This routine gives access to the contents of the NVECTOR_OPENMPDEV vector N_Vector.

The assignment v_cont = NV_CONTENT_OMPDEV(v) sets v_cont to be a pointer to the NVEC-
TOR_OPENMPDEV N_Vector content structure.

Implementation:

#define NV_CONTENT_OMPDEV(v) ( (N_VectorContent_0OpenMPDEV) (v->content) )

e NV_OWN_DATA_OMPDEV, NV_DATA_HOST_OMPDEV, NV_DATA_DEV_OMPDEV, NV_LENGTH_OMPDEV

These macros give individual access to the parts of the content of an NVECTOR_OPENMPDEV
N_Vector.

The assignment v_data = NV_DATA HOST_OMPDEV(v) sets v_data to be a pointer to the first
component of the data on the host for the N_-Vector v. The assignment NV_DATA_HOST_OMPDEV (v)
= v_data sets the host component array of v to be v_data by storing the pointer v_data.
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The assignment v_dev_data = NV_DATA_DEV_OMPDEV(v) sets v_dev_data to be a pointer to the
first component of the data on the device for the N_Vector v. The assignment NV_DATA_DEV_OMPDEV (v)
= v_dev_data sets the device component array of v to be v_dev_data by storing the pointer
v_dev_data.

The assignment v_len = NV_LENGTH_OMPDEV(v) sets v_len to be the length of v. On the other
hand, the call NV_.LENGTH_OMPDEV(v) = len_v sets the length of v to be len_v.

Implementation:

#define NV_OWN_DATA_OMPDEV(v) ( NV_CONTENT_OMPDEV(v)->own_data )
#define NV_DATA_HOST_OMPDEV(v) ( NV_CONTENT_OMPDEV(v)->host_data )
#define NV_DATA_DEV_OMPDEV(v) ( NV_CONTENT_OMPDEV(v)->dev_data )
#define NV_LENGTH_OMPDEV(v) ( NV_CONTENT_OMPDEV(v)->length )

9.13.2 NVECTOR_OPENMPDEYV functions

The NVECTOR_OPENMPDEV module defines OpenMP device offloading implementations of all vec-
tor operations listed in Tables 9.1.1, 9.1.2, 9.1.3, and 9.1.4, except for N_VGetArrayPointer and
N_VSetArrayPointer. As such, this vector cannot be used with the SUNDIALS Fortran interfaces, nor
with the SUNDIALS direct solvers and preconditioners. It also provides methods for copying from the
host to the device and vice versa.

The names of vector operations are obtained from those in Tables 9.1.1, 9.1.2, 9.1.3, and 9.1.4 by
appending the suffix _OpenMPDEV (e.g. N_VDestroy_OpenMPDEV). The module NVECTOR_OPENMPDEV
provides the following additional user-callable routines:

N_VNew_OpenMPDEV

Prototype  N_Vector N_VNew_OpenMPDEV(sunindextype vec_length)

Description This function creates and allocates memory for an NVECTOR_OPENMPDEV N_Vector.

N_VNewEmpty_OpenMPDEV

Prototype = N_Vector N_VNewEmpty_OpenMPDEV(sunindextype vec_length)

Description  This function creates a new NVECTOR_OPENMPDEV N_Vector with an empty (NULL) host
and device data arrays.

N_VMake_OpenMPDEV

Prototype N_Vector N_VMake OpenMPDEV(sunindextype vec_length, realtype *h_vdata,
realtype *d_vdata)

Description This function creates an NVECTOR_OPENMPDEV vector with user-supplied vector data
arrays h_vdata and d_vdata. This function does not allocate memory for data itself.

N_VCloneVectorArray_OpenMPDEV ‘

Prototype  N_Vector *N_VCloneVectorArray_ OpenMPDEV(int count, N_Vector w)

Description This function creates (by cloning) an array of count NVECTOR_OPENMPDEV vectors.

N_VCloneVectorArrayEmpty_OpenMPDEV ‘

Prototype  N_Vector *N_VCloneVectorArrayEmpty OpenMPDEV(int count, N _Vector w)

Description This function creates (by cloning) an array of count NVECTOR_OPENMPDEV vectors,
each with an empty (NULL) data array.
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N_VDestroyVectorArray _OpenMPDEV

Prototype  void N_VDestroyVectorArray OpenMPDEV(N_Vector *vs, int count)

Description This function frees memory allocated for the array of count variables of type N_Vector
created with N_VCloneVectorArray OpenMPDEV or with
N_VCloneVectorArrayEmpty_OpenMPDEV.

N_VGetHostArrayPointer_OpenMPDEV

Prototype  realtype *N_VGetHostArrayPointer_OpenMPDEV(N_Vector v)

Description This function returns a pointer to the host data array.

N_VGetDeviceArrayPointer_OpenMPDEV

Prototype  realtype *N_VGetDeviceArrayPointer_OpenMPDEV(N_Vector v)

Description This function returns a pointer to the device data array.

N_VPrint_OpenMPDEV

Prototype  void N_VPrint OpenMPDEV(N_Vector v)
Description This function prints the content of an NVECTOR_OPENMPDEV vector to stdout.

N_VPrintFile_OpenMPDEV

Prototype  void N_VPrintFile OpenMPDEV(N_Vector v, FILE *outfile)
Description This function prints the content of an NVECTOR_OPENMPDEV vector to outfile.

N_VCopyToDevice_OpenMPDEV

Prototype  void N_VCopyToDevice_OpenMPDEV(N_Vector v)

Description This function copies the content of an NVECTOR_OPENMPDEV vector’s host data array
to the device data array.

N_VCopyFromDevice_OpenMPDEV

Prototype  void N_VCopyFromDevice_OpenMPDEV(N_Vector v)

Description This function copies the content of an NVECTOR_OPENMPDEV vector’s device data array
to the host data array.

By default all fused and vector array operations are disabled in the NVECTOR_OPENMPDEV module.
The following additional user-callable routines are provided to enable or disable fused and vector
array operations for a specific vector. To ensure consistency across vectors it is recommended to first
create a vector with N_VNew_OpenMPDEV, enable/disable the desired operations for that vector with the
functions below, and create any additional vectors from that vector using N_VClone. This guarantees
the new vectors will have the same operations enabled/disabled as cloned vectors inherit the same
enable/disable options as the vector they are cloned from while vectors created with N_-VNew_OpenMPDEV
will have the default settings for the NVECTOR_OPENMPDEV module.

] N_VEnableFusedOps_OpenMPDEV \

Prototype int N_VEnableFusedOps_OpenMPDEV(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array op-
erations in the NVECTOR_OPENMPDEV vector. The return value is 0 for success and -1
if the input vector or its ops structure are NULL.
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N_VEnableLinearCombination_OpenMPDEV ‘

Prototype int N_VEnableLinearCombination OpenMPDEV(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused
operation in the NVECTOR_OPENMPDEV vector. The return value is 0 for success and
-1 if the input vector or its ops structure are NULL.

N_VEnableScaleAddMulti_OpenMPDEV ‘

Prototype int N_VEnableScaleAddMulti_OpenMPDEV(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to
multiple vectors fused operation in the NVECTOR_OPENMPDEV vector. The return value
is 0 for success and -1 if the input vector or its ops structure are NULL.

N_VEnableDotProdMulti_OpenMPDEV ‘

Prototype int N_VEnableDotProdMulti_OpenMPDEV(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused
operation in the NVECTOR_OPENMPDEV vector. The return value is 0 for success and
-1 if the input vector or its ops structure are NULL.

N_VEnableLinearSumVectorArray_OpenMPDEV ‘

Prototype int N_VEnableLinearSumVectorArray OpenMPDEV (N Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for
vector arrays in the NVECTOR_OPENMPDEV vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

N_VEnableScaleVectorArray_OpenMPDEV ‘

Prototype  int N_VEnableScaleVectorArray OpenMPDEV(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector
arrays in the NVECTOR_OPENMPDEV vector. The return value is 0 for success and -1 if
the input vector or its ops structure are NULL.

N_VEnableConstVectorArray_OpenMPDEV ‘

Prototype  int N_VEnableConstVectorArray OpenMPDEV(N_Vector v, booleantype tf)

Description  This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector
arrays in the NVECTOR_OPENMPDEV vector. The return value is 0 for success and -1 if
the input vector or its ops structure are NULL.

N_VEnableWrmsNormVectorArray_OpenMPDEV ‘

Prototype  int N_VEnableWrmsNormVectorArray OpenMPDEV(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for
vector arrays in the NVECTOR_OPENMPDEV vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.
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N_VEnableWrmsNormMaskVectorArray _OpenMPDEV ‘

Prototype  int N_VEnableWrmsNormMaskVectorArray_OpenMPDEV(N_Vector v,
booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm op-
eration for vector arrays in the NVECTOR_OPENMPDEV vector. The return value is 0 for
success and -1 if the input vector or its ops structure are NULL.

N_VEnableScaleAddMultiVectorArray_OpenMPDEV ‘

Prototype int N_VEnableScaleAddMultiVectorArray OpenMPDEV(N_Vector v,
booleantype tf)

Description  This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array
to multiple vector arrays operation in the NVECTOR_OPENMPDEV vector. The return
value is 0 for success and -1 if the input vector or its ops structure are NULL.

N_VEnableLinearCombinationVectorArray_OpenMPDEV ‘

Prototype int N_VEnableLinearCombinationVectorArray OpenMPDEV(N Vector v,
booleantype tf)

Description  This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation
for vector arrays in the NVECTOR_OPENMPDEV vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

Notes

e When looping over the components of an N_Vector v, it is most efficient to first obtain the
component array via h_.data = NV_DATA_HOST_OMPDEV(v) for the host array or
d_data = NV_DATA_DEV_OMPDEV(v) for the device array and then access h_data[i] or d_datal[i]
within the loop.

e When accessing individual components of an N_Vector v on the host remember to first copy the
array back from the device with N_VCopyFromDevice _OpenMPDEV(v) to ensure the array is up
to date.

e N_VNewEmpty_OpenMPDEV, N_VMake_OpenMPDEV, and N_VCloneVectorArrayEmpty_OpenMPDEV set
the field own_data = SUNFALSE. N_VDestroy_OpenMPDEV and N_VDestroyVectorArray_OpenMPDEV
will not attempt to free the pointer data for any N_Vector with own_data set to SUNFALSE. In
such a case, it is the user’s responsibility to deallocate the data pointer.

e To maximize efficiency, vector operations in the NVECTOR_OPENMPDEV implementation that
have more than one N_Vector argument do not check for consistent internal representation of
these vectors. It is the user’s responsibility to ensure that such routines are called with N_Vector
arguments that were all created with the same internal representations.

9.14 The NVECTOR_TRILINOS implementation

The NVECTOR_TRILINOS module is an NVECTOR wrapper around the Trilinos Tpetra vector. The
interface to Tpetra is implemented in the Sundials::TpetraVectorInterface class. This class
simply stores a reference counting pointer to a Tpetra vector and inherits from an empty structure

struct _N_VectorContent_Trilinos {};
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to interface the C++ class with the NVECTOR C code. A pointer to an instance of this class is kept in
the content field of the N_Vector object, to ensure that the Tpetra vector is not deleted for as long
as the N_Vector object exists.

The Tpetra vector type in the Sundials::TpetraVectorInterface class is defined as:

typedef Tpetra::Vector<realtype, int, sunindextype> vector_type;

The Tpetra vector will use the SUNDIALS-specified realtype as its scalar type, int as its local ordinal
type, and sunindextype as the global ordinal type. This type definition will use Tpetra’s default
node type. Available Kokkos node types in Trilinos 12.14 release are serial (single thread), OpenMP,
Pthread, and cupA. The default node type is selected when building the Kokkos package. For
example, the Tpetra vector will use a CUDA node if Tpetra was built with CUDA support and the
CUDA node was selected as the default when Tpetra was built.

The header file to include when using this module is nvector_trilinos.h. The installed module
library to link to is 1ibsundials nvectrilinos. 12b where . 1¢b is typically .so for shared libraries
and .a for static libraries.

9.14.1 NVECTOR_TRILINOS functions

The NVECTOR_TRILINOS module defines implementations of all vector operations listed in Tables
9.1.1, 9.1.4, and 9.1.4, except for N_VGetArrayPointer and N_VSetArrayPointer. As such, this
vector cannot be used with SUNDIALS Fortran interfaces, nor with the SUNDIALS direct solvers and
preconditioners. When access to raw vector data is needed, it is recommended to extract the Trilinos
Tpetra vector first, and then use Tpetra vector methods to access the data. Usage examples of
NVECTOR_TRILINOS are provided in example programs for IDA [38].

The names of vector operations are obtained from those in Tables 9.1.1, 9.1.4, and 9.1.4 by append-
ing the suffix Trilinos (e.g. N_.VDestroy_Trilinos). Vector operations call existing Tpetra: :Vector
methods when available. Vector operations specific to SUNDIALS are implemented as standalone func-
tions in the namespace Sundials: : TpetraVector, located in the file SundialsTpetraVectorKernels.hpp.
The module NVECTOR_TRILINOS provides the following additional user-callable functions:

o N VGetVector_Trilinos

This C++ function takes an N_Vector as the argument and returns a reference counting pointer
to the underlying Tpetra vector. This is a standalone function defined in the global namespace.

Teuchos: :RCP<vector_type> N_VGetVector_Trilinos(N_Vector v);

e N_VMake_Trilinos

This C++ function creates and allocates memory for an NVECTOR_TRILINOS wrapper around a
user-provided Tpetra vector. This is a standalone function defined in the global namespace.

N_Vector N_VMake_Trilinos(Teuchos::RCP<vector_type> v);

Notes

e The template parameter vector_type should be set as:
typedef Sundials::TpetraVectorInterface::vector_type vector_type
This will ensure that data types used in Tpetra vector match those in SUNDIALS.

e When there is a need to access components of an N_Vector_Trilinos, v, it is recommeded
to extract the Trilinos vector object via x_vec = N_VGetVector_Trilinos(v) and then access
components using the appropriate Trilinos functions.

e The functions N_VDestroy_ Trilinos and N_VDestroyVectorArray Trilinos only delete the
N_Vector wrapper. The underlying Tpetra vector object will exist for as long as there is at least
one reference to it.
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9.15 The NVECTOR _MANYVECTOR implementation

The NVECTOR_MANYVECTOR implementation of the NVECTOR module provided with SUNDIALS is
designed to facilitate problems with an inherent data partitioning for the solution vector within a
computational node. These data partitions are entirely user-defined, through construction of dis-
tinct NVECTOR modules for each component, that are then combined together to form the NVEC-
TOR_MANYVECTOR. We envision two generic use cases for this implementation:

A. Heterogeneous computational architectures: for users who wish to partition data on a node be-
tween different computing resources, they may create architecture-specific subvectors for each
partition. For example, a user could create one serial component based on NVECTOR_SERIAL,
another component for GPU accelerators based on NVECTOR_CUDA, and another threaded com-
ponent based on NVECTOR_OPENMP.

B. Structure of arrays (SOA) data layouts: for users who wish to create separate subvectors for
each solution component, e.g., in a Navier-Stokes simulation they could have separate sub-
vectors for density, velocities and pressure, which are combined together into a single NVEC-
TOR_MANYVECTOR for the overall “solution”.

We note that the above use cases are not mutually exclusive, and the NVECTOR_MANYVECTOR, imple-
mentation should support arbitrary combinations of these cases.

The NVECTOR_MANYVECTOR implementation is designed to work with any NVECTOR subvectors
that implement the minimum required set of operations. Additionally, NVECTOR_MANYVECTOR sets
no limit on the number of subvectors that may be attached (aside from the limitations of using
sunindextype for indexing, and standard per-node memory limitations). However, while this os-
tensibly supports subvectors with one entry each (i.e., one subvector for each solution entry), we
anticipate that this extreme situation will hinder performance due to non-stride-one memory accesses
and increased function call overhead. We therefore recommend a relatively coarse partitioning of the
problem, although actual performance will likely be problem-dependent.

As a final note, in the coming years we plan to introduce additional algebraic solvers and time
integration modules that will leverage the problem partitioning enabled by NVECTOR_MANYVECTOR.
However, even at present we anticipate that users will be able to leverage such data partitioning in
their problem-defining ODE right-hand side, DAE residual, or nonlinear solver residual functions.

9.15.1 NVECTOR_MANYVECTOR structure

The NVECTOR_MANYVECTOR implementation defines the content field of N_Vector to be a structure
containing the number of subvectors comprising the Many Vector, the global length of the Many Vector
(including all subvectors), a pointer to the beginning of the array of subvectors, and a boolean flag
own_data indicating ownership of the subvectors that populate subvec_array.

struct _N_VectorContent_ManyVector {

sunindextype num_subvectors; /* number of vectors attached */
sunindextype global_length; /* overall manyvector length */
N_Vector* subvec_array; /* pointer to N_Vector array x/

booleantype own_data; /* flag indicating data ownership */

}

The header file to include when using this module is nvector manyvector.h. The installed module
library to link against is 1ibsundials nvecmanyvector. 14b where . 14b is typically .so for shared
libraries and .a for static libraries.

9.15.2 NVECTOR _MANYVECTOR functions

The NVECTOR-MANYVECTOR module implements all vector operations listed in Tables 9.1.1, 9.1.2,
9.1.3, and 9.1.4, except for N.VGetArrayPointer, N_.VSetArrayPointer, N_.VScaleAddMultiVectorArray,
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and N_VLinearCombinationVectorArray. As such, this vector cannot be used with the SUNDIALS
Fortran-77 interfaces, nor with the SUNDIALS direct solvers and preconditioners. Instead, the
NVECTOR_MANYVECTOR module provides functions to access subvectors, whose data may in turn be
accessed according to their NVECTOR implementations.

The names of vector operations are obtained from those in Tables 9.1.1, 9.1.2, 9.1.3, and 9.1.4 by ap-
pending the suffix ManyVector (e.g. N_VDestroy ManyVector). The module NVECTOR_MANYVECTOR
provides the following additional user-callable routines:

N_VNew_ManyVector

Prototype  N_Vector N_VNew ManyVector(sunindextype num_subvectors,
N_Vector *vec_array) ;

Description This function creates a ManyVector from a set of existing NVECTOR objects.

This routine will copy all N_Vector pointers from the input vec_array, so the user may
modify/free that pointer array after calling this function. However, this routine does
not allocate any new subvectors, so the underlying NVECTOR objects themselves should
not be destroyed before the ManyVector that contains them.

Upon successful completion, the new ManyVector is returned; otherwise this routine
returns NULL (e.g., a memory allocation failure occurred).

Users of the Fortran 2003 interface to this function will first need to use the generic
N_Vector utility functions N_-VNewVectorArray, and N_.VSetVecAtIndexVectorArray to
create the N_Vector* argument. This is further explained in Chapter 7.1.3.5, and the
functions are documented in Chapter 9.1.6.

F2003 Name This function is callable as FN_VNew_ManyVector when using the Fortran 2003 interface
module.

N_VGetSubvector _ManyVector

Prototype  N_Vector N_VGetSubvector ManyVector(N_Vector v, sunindextype vec_num);
Description This function returns the vec_num subvector from the NVECTOR array.

F2003 Name This function is callable as FN_VGetSubvector_ManyVector when using the Fortran 2003
interface module.

N_VGetSubvectorArrayPointer _ManyVector

Prototype  realtype *N_VGetSubvectorArrayPointer ManyVector(N_Vector v, sunindextype vec_num);

Description This function returns the data array pointer for the vec_num subvector from the NVEC-
TOR array.

If the input vec_num is invalid, or if the subvector does not support the N_-VGetArrayPointer
operation, then NULL is returned.

F2003 Name This function is callable as FN_VGetSubvectorArrayPointer ManyVector when using
the Fortran 2003 interface module.

N_VSetSubvectorArrayPointer _ManyVector

Prototype int N_VSetSubvectorArrayPointer ManyVector(realtype *v_data, N Vector v, sunindextype
vec_num) ;

Description This function sets the data array pointer for the vec_num subvector from the NVECTOR
array.

If the input vec_num is invalid, or if the subvector does not support the N_-VSetArrayPointer
operation, then this routine returns -1; otherwise it returns 0.
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F2003 Name This function is callable as FN_VSetSubvectorArrayPointer ManyVector when using
the Fortran 2003 interface module.

N_VGetNumSubvectors_ManyVector

Prototype sunindextype N_VGetNumSubvectors ManyVector (N_Vector v);
Description This function returns the overall number of subvectors in the ManyVector object.

F2003 Name This function is callable as FN_VGetNumSubvectors_ManyVector when using the Fortran
2003 interface module.

By default all fused and vector array operations are disabled in the NVECTOR_MANYVECTOR module,
except for N_VWrmsNormVectorArray and N_-VWrmsNormMaskVectorArray, that are enabled by default.
The following additional user-callable routines are provided to enable or disable fused and vector
array operations for a specific vector. To ensure consistency across vectors it is recommended to
first create a vector with N_VNew_ManyVector, enable/disable the desired operations for that vector
with the functions below, and create any additional vectors from that vector using N_VClone. This
guarantees that the new vectors will have the same operations enabled/disabled, since cloned vectors
inherit those configuration options from the vector they are cloned from, while vectors created with
N_VNew_ManyVector will have the default settings for the NVECTOR_MANYVECTOR module. We note
that these routines do not call the corresponding routines on subvectors, so those should be set up as
desired before attaching them to the ManyVector in N_VNew_ManyVector.

’ N_VEnableFusedOps_ManyVector ‘

Prototype  int N_VEnableFusedOps_ManyVector(N_Vector v, booleantype tf);

Description  This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array op-
erations in the ManyVector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableFusedOps_ManyVector when using the Fortran
2003 interface module.

N_VEnableLinearCombination_ManyVector ‘

Prototype  int N_VEnableLinearCombination ManyVector(N_Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused
operation in the ManyVector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableLinearCombination ManyVector when using the
Fortran 2003 interface module.

N_VEnableScaleAddMulti_ManyVector ‘

Prototype  int N_VEnableScaleAddMulti_ManyVector(N_Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to
multiple vectors fused operation in the ManyVector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableScaleAddMulti_ManyVector when using the For-
tran 2003 interface module.
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N_VEnableDotProdMulti_ManyVector ‘

Prototype int N,VEnableDotProdMultiJVIanyVector(N,Vector v, booleantype tf);

Description  This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused
operation in the ManyVector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableDotProdMulti ManyVector when using the For-
tran 2003 interface module.

N_VEnableLinearSumVectorArray ManyVector ‘

Prototype int N_VEnableLinearSumVectorArray ManyVector (N_Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for
vector arrays in the ManyVector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableLinearSumVectorArray ManyVector when using
the Fortran 2003 interface module.

N_VEnableScaleVectorArray_ManyVector ‘

Prototype  int N_VEnableScaleVectorArray ManyVector(N_Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector
arrays in the ManyVector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableScaleVectorArray ManyVector when using the
Fortran 2003 interface module.

N_VEnableConstVectorArray_ManyVector ‘

Prototype  int N_VEnableConstVectorArray ManyVector(N_Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector
arrays in the ManyVector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableConstVectorArray ManyVector when using the
Fortran 2003 interface module.

N_VEnableWrmsNormVectorArray ManyVector ‘

Prototype  int N_VEnableWrmsNormVectorArray ManyVector(N_Vector v, booleantype tf);

Description  This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for
vector arrays in the ManyVector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableWrmsNormVectorArray ManyVector when using
the Fortran 2003 interface module.

N_VEnableWrmsNormMaskVectorArray _ManyVector ‘

Prototype  int N_VEnableWrmsNormMaskVectorArray ManyVector(N_Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm op-
eration for vector arrays in the ManyVector. The return value is 0 for success and -1 if
the input vector or its ops structure are NULL.
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F2003 Name This function is callable as FN_VEnableWrmsNormMaskVectorArray ManyVector when
using the Fortran 2003 interface module.

Notes

e N _VNew ManyVector sets the field own_data = SUNFALSE. N_VDestroy_ManyVector will not at-
tempt to call N_VDestroy on any subvectors contained in the subvector array for any N_Vector
with own_data set to SUNFALSE. In such a case, it is the user’s responsibility to deallocate the
subvectors.

e To maximize efficiency, arithmetic vector operations in the NVECTOR_MANYVECTOR implemen-
tation that have more than one N_Vector argument do not check for consistent internal repre-
sentation of these vectors. It is the user’s responsibility to ensure that such routines are called
with N_Vector arguments that were all created with the same subvector representations.

9.16 The NVECTOR_MPIMANYVECTOR implementation

The NVECTOR_MPIMANYVECTOR implementation of the NVECTOR module provided with SUNDIALS
is designed to facilitate problems with an inherent data partitioning for the solution vector, and
when using distributed-memory parallel architectures. As such, the MPIMany Vector implementation
supports all use cases allowed by the MPI-unaware Many Vector implementation, as well as partitioning
data between nodes in a parallel environment. These data partitions are entirely user-defined, through
construction of distinct NVECTOR modules for each component, that are then combined together to
form the NVECTOR_MPIMANYVECTOR. We envision three generic use cases for this implementation:

A. Heterogeneous computational architectures (single-node or multi-node): for users who wish to
partition data on a node between different computing resources, they may create architecture-
specific subvectors for each partition. For example, a user could create one MPI-parallel compo-
nent based on NVECTOR_PARALLEL, another single-node component for GPU accelerators based
on NVECTOR_CUDA, and another threaded single-node component based on NVECTOR_OPENMP.

B. Process-based multiphysics decompositions (multi-node): for users who wish to combine separate
simulations together, e.g., where one subvector resides on one subset of MPI processes, while
another subvector resides on a different subset of MPI processes, and where the user has created
a MPI intercommunicator to connect these distinct process sets together.

C. Structure of arrays (SOA) data layouts (single-node or multi-node): for users who wish to create
separate subvectors for each solution component, e.g., in a Navier-Stokes simulation they could
have separate subvectors for density, velocities and pressure, which are combined together into
a single NVECTOR_MPIMANYVECTOR for the overall “solution”.

We note that the above use cases are not mutually exclusive, and the NVECTOR_MPIMANYVECTOR
implementation should support arbitrary combinations of these cases.

The NVECTOR_MPIMANYVECTOR implementation is designed to work with any NVECTOR subvec-
tors that implement the minimum required set of operations, however significant performance benefits
may be obtained when subvectors additionally implement the optional local reduction operations listed
in Table 9.1.4.

Additionally, NVECTOR_MPIMANYVECTOR sets no limit on the number of subvectors that may
be attached (aside from the limitations of using sunindextype for indexing, and standard per-node
memory limitations). However, while this ostensibly supports subvectors with one entry each (i.e., one
subvector for each solution entry), we anticipate that this extreme situation will hinder performance
due to non-stride-one memory accesses and increased function call overhead. We therefore recommend
a relatively coarse partitioning of the problem, although actual performance will likely be problem-
dependent.

As a final note, in the coming years we plan to introduce additional algebraic solvers and time inte-
gration modules that will leverage the problem partitioning enabled by NVECTOR_MPIMANYVECTOR.



264 Description of the NVECTOR module

However, even at present we anticipate that users will be able to leverage such data partitioning in
their problem-defining ODE right-hand side, DAE residual, or nonlinear solver residual functions.

9.16.1 NVECTOR_MPIMANYVECTOR structure

The NVECTOR_MPIMANYVECTOR implementation defines the content field of N_-Vector to be a struc-
ture containing the MPI communicator (or MPI_COMM_NULL if running on a single-node), the number
of subvectors comprising the MPIManyVector, the global length of the MPIManyVector (including
all subvectors on all MPI tasks), a pointer to the beginning of the array of subvectors, and a boolean
flag own_data indicating ownership of the subvectors that populate subvec_array.

struct _N_VectorContent_MPIManyVector {

MPI_Comm comm; /* overall MPI communicator */
sunindextype num_subvectors; /* number of vectors attached */
sunindextype global_length; /* overall mpimanyvector length x/
N_Vectorx* subvec_array; /* pointer to N_Vector array x/
booleantype own_data; /* flag indicating data ownership */

};

The header file to include when using this module is nvector mpimanyvector.h. The installed
module library to link against is 1ibsundials nvecmpimanyvector.l<b where . 14b is typically .so
for shared libraries and .a for static libraries.

Note: If SUNDIALS is configured with MPI disabled, then the MPIManyVector library will not
be built. Furthermore, any user codes that include nvector mpimanyvector.h must be compiled
using an MPI-aware compiler (whether the specific user code utilizes MPI or not). We note that the
NVECTOR_MANYVECTOR implementation is designed for ManyVector use cases in an MPI-unaware
environment.

9.16.2 NVECTOR_MPIMANYVECTOR functions

The NVECTOR-MPIMANYVECTOR module implements all vector operations listed in Tables 9.1.1, 9.1.2,
9.1.3, and 9.1.4, except for N_VGetArrayPointer, N_VSetArrayPointer, N_VScaleAddMultiVectorArray,
and N_VLinearCombinationVectorArray. As such, this vector cannot be used with the SUNDIALS
Fortran-77 interfaces, nor with the SUNDIALS direct solvers and preconditioners. Instead, the
NVECTOR_MPIMANYVECTOR module provides functions to access subvectors, whose data may in turn
be accessed according to their NVECTOR implementations.

The names of vector operations are obtained from those in Tables 9.1.1, 9.1.2, 9.1.3, and 9.1.4
by appending the suffix MPIManyVector (e.g. N_VDestroy MPIManyVector). The module NVEC-
TOR_MPIMANYVECTOR provides the following additional user-callable routines:

N_VNew_MPIManyVector

Prototype  N_Vector N_VNew MPIManyVector(sunindextype num_subvectors,
N_Vector *vec_array);

Description This function creates an MPIMany Vector from a set of existing NVECTOR objects, under
the requirement that all MPI-aware subvectors use the same MPI communicator (this is
checked internally). If none of the subvectors are MPI-aware, then this may equivalently
be used to describe data partitioning within a single node. We note that this routine is
designed to support use cases A and C above.

This routine will copy all N_Vector pointers from the input vec_array, so the user may
modify/free that pointer array after calling this function. However, this routine does
not allocate any new subvectors, so the underlying NVECTOR objects themselves should
not be destroyed before the MPIMany Vector that contains them.

Upon successful completion, the new MPIMany Vector is returned; otherwise this routine
returns NULL (e.g., if two MPI-aware subvectors use different MPI communicators).
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Users of the Fortran 2003 interface to this function will first need to use the generic
N_Vector utility functions N_VNewVectorArray, and N_VSetVecAtIndexVectorArray to
create the N_Vector* argument. This is further explained in Chapter 7.1.3.5, and the
functions are documented in Chapter 9.1.6.

F2003 Name This function is callable as FN_VNew_MPIManyVector when using the Fortran 2003 inter-
face module.

N_VMake_MPIManyVector

Prototype  N_Vector N_VMake MPIManyVector (MPI_Comm comm, sunindextype num_subvectors,
N_Vector *vec_array) ;

Description This function creates an MPIMany Vector from a set of existing NVECTOR objects, and
a user-created MPI communicator that “connects” these subvectors. Any MPI-aware
subvectors may use different MPI communicators than the input comm. We note that
this routine is designed to support any combination of the use cases above.

The input comm should be this user-created MPI communicator. This routine will inter-
nally call MPI_Comm_dup to create a copy of the input comm, so the user-supplied comm
argument need not be retained after the call to N_-VMake MPIManyVector.

If all subvectors are MPI-unaware, then the input comm argument should be MPT_COMM_NULL,
although in this case, it would be simpler to call N_-VNew_MPIManyVector instead, or to
just use the NVECTOR_MANYVECTOR module.

This routine will copy all N_Vector pointers from the input vec_array, so the user may
modify/free that pointer array after calling this function. However, this routine does
not allocate any new subvectors, so the underlying NVECTOR objects themselves should
not be destroyed before the MPIMany Vector that contains them.

Upon successful completion, the new MPIManyVector is returned; otherwise this routine
returns NULL (e.g., if the input vec_array is NULL).

F2003 Name This function is callable as FN_VMake MPIManyVector when using the Fortran 2003 in-
terface module.

N_VGetSubvector MPIManyVector

Prototype  N_Vector N_VGetSubvector MPIManyVector(N_Vector v, sunindextype vec_num);
Description This function returns the vec_num subvector from the NVECTOR array.

F2003 Name This function is callable as FN_VGetSubvector MPIManyVector when using the Fortran
2003 interface module.

N_VGetSubvectorArrayPointer MPIManyVector

Prototype  realtype *N_VGetSubvectorArrayPointer MPIManyVector(N_Vector v, sunindextype
vec_num) ;

Description This function returns the data array pointer for the vec_num subvector from the NVEC-
TOR array.

If the input vec_num is invalid, or if the subvector does not support the N_-VGetArrayPointer
operation, then NULL is returned.

F2003 Name This function is callable as FN_VGetSubvectorArrayPointer MPIManyVector when us-
ing the Fortran 2003 interface module.
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N_VSetSubvectorArrayPointer MPIManyVector

Prototype int N_VSetSubvectorArrayPointer MPIManyVector(realtype *v_data, N_Vector v,
sunindextype vec_num) ;

Description This function sets the data array pointer for the vec_num subvector from the NVECTOR
array.

If the input vec_num is invalid, or if the subvector does not support the N_-VSetArrayPointer
operation, then this routine returns -1; otherwise it returns 0.

F2003 Name This function is callable as FN_VSetSubvectorArrayPointer MPIManyVector when us-
ing the Fortran 2003 interface module.

N_VGetNumSubvectors_MPIManyVector

Prototype sunindextype N_VGetNumSubvectors MPIManyVector (N_Vector v);
Description This function returns the overall number of subvectors in the MPIManyVector object.

F2003 Name This function is callable as FN_VGetNumSubvectors_MPIManyVector when using the For-
tran 2003 interface module.

By default all fused and vector array operations are disabled in the NVECTOR_MPIMANYVECTOR
module, except for N_-VWrmsNormVectorArray and N_VWrmsNormMaskVectorArray, that are enabled
by default. The following additional user-callable routines are provided to enable or disable fused and
vector array operations for a specific vector. To ensure consistency across vectors it is recommended
to first create a vector with N_VNew MPIManyVector or N_VMake MPIManyVector, enable/disable the
desired operations for that vector with the functions below, and create any additional vectors from
that vector using N_VClone. This guarantees that the new vectors will have the same operations
enabled /disabled, since cloned vectors inherit those configuration options from the vector they are
cloned from, while vectors created with N_VNew MPIManyVector and N_VMake MPIManyVector will
have the default settings for the NVECTOR_MPIMANYVECTOR module. We note that these routines do
not call the corresponding routines on subvectors, so those should be set up as desired before attaching
them to the MPIManyVector in N_VNew_MPIManyVector or N_VMake MPIManyVector.

N_VEnableFusedOps_MPIManyVector ‘

Prototype  int N_VEnableFusedOps_MPIManyVector(N_Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array op-
erations in the MPIManyVector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableFusedOps_MPIManyVector when using the For-
tran 2003 interface module.

N_VEnableLinearCombination_MPIManyVector ‘

Prototype  int N_VEnableLinearCombination MPIManyVector (N_Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused
operation in the MPIManyVector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableLinearCombination MPIManyVector when using
the Fortran 2003 interface module.

N_VEnableScaleAddMulti MPIManyVector

Prototype  int N_VEnableScaleAddMulti_MPIManyVector(N_Vector v, booleantype tf);
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Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to
multiple vectors fused operation in the MPIManyVector. The return value is O for
success and -1 if the input vector or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableScaleAddMulti MPIManyVector when using the
Fortran 2003 interface module.

N_VEnableDotProdMulti MPIManyVector ‘

Prototype int N_VEnableDotProdMulti MPIManyVector(N_Vector v, booleantype tf);

Description  This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused
operation in the MPIManyVector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableDotProdMulti MPIManyVector when using the
Fortran 2003 interface module.

N_VEnableLinearSumVectorArray MPIManyVector ‘

Prototype  int N_VEnableLinearSumVectorArray MPIManyVector(N_Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for
vector arrays in the MPIManyVector. The return value is 0 for success and -1 if the
input vector or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableLinearSumVectorArray MPIManyVector when
using the Fortran 2003 interface module.

N_VEnableScaleVectorArray MPIManyVector ‘

Prototype int N_VEnableScaleVectorArray MPIManyVector (N_Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector
arrays in the MPIManyVector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableScaleVectorArray MPIManyVector when using
the Fortran 2003 interface module.

N_VEnableConstVectorArray MPIManyVector ‘

Prototype  int N_VEnableConstVectorArray MPIManyVector(N_Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector
arrays in the MPIManyVector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableConstVectorArray MPIManyVector when using
the Fortran 2003 interface module.

N_VEnableWrmsNormVectorArray MPIManyVector ‘

Prototype int N,VEnableWrmsNormVectorArrayJ"IPIManyVector(N,Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for
vector arrays in the MPIManyVector. The return value is 0 for success and -1 if the
input vector or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableWrmsNormVectorArray MPIManyVector when us-
ing the Fortran 2003 interface module.
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N_VEnableWrmsNormMaskVectorArray MPIManyVector ‘

Prototype int N_VEnableWrmsNormMaskVectorArray MPIManyVector (N_Vector v, booleantype
tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm op-
eration for vector arrays in the MPIManyVector. The return value is 0 for success and
-1 if the input vector or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableWrmsNormMaskVectorArray MPIManyVector when
using the Fortran 2003 interface module.

Notes

e N_VNew MPIManyVector and N_VMake MPIManyVector set the field own_data = SUNFALSE.
N_VDestroy MPIManyVector will not attempt to call N_-VDestroy on any subvectors contained
in the subvector array for any N_Vector with own_data set to SUNFALSE. In such a case, it is the
user’s responsibility to deallocate the subvectors.

e To maximize efficiency, arithmetic vector operations in the NVECTOR_MPIMANYVECTOR imple-
mentation that have more than one N_Vector argument do not check for consistent internal
representation of these vectors. It is the user’s responsibility to ensure that such routines are
called with N_Vector arguments that were all created with the same subvector representations.

9.17 The NVECTOR_MPIPLUSX implementation

The NVECTOR_MPIPLUSX implementation of the NVECTOR module provided with SUNDIALS is designed
to facilitate the MPI+X paradigm, where X is some form of on-node (local) parallelism (e.g. OpenMP,
CUDA). This paradigm is becoming increasingly popular with the rise of heterogeneous computing
architectures.

The NVECTOR_MPIPLUSX implementation is designed to work with any NVECTOR that imple-
ments the minimum required set of operations. However, it is not recommended to use the NVEC-
TOR-PARALLEL, NVECTOR_PARHYP, NVECTOR_PETSC, or NVECTOR_TRILINOS implementations under-
neath the NVECTOR_MPIPLUSX module since they already provide MPI capabilities.

9.17.1 NVECTOR_MPIPLUSX structure

The NVECTOR_MPIPLUSX implementation is a thin wrapper around the NVECTOR_MPIMANYVECTOR.
Accordingly, it adopts the same content structure as defined in Section 9.16.1.

The header file to include when using this module is nvector mpiplusx.h. The installed module
library to link against is libsundials_nvecmpiplusx.lib where .14b is typically .so for shared
libraries and .a for static libraries.

Note: If SUNDIALS is configured with MPI disabled, then the mpiplusx library will not be built.
Furthermore, any user codes that include nvector mpiplusx.h must be compiled using an MPI-aware
compiler.

9.17.2 NVECTOR_MPIPLUSX functions

The NVECTOR_MPIPLUSX module adopts all vector operations listed in Tables 9.1.1, 9.1.2, 9.1.3, and

9.1.4, from the NVECTOR_MPIMANYVECTOR (see section 9.16.2) except for N_VGetArrayPointer and
N_VSetArrayPointer; the module provides its own implementation of these functions that call the

local vector implementations. Therefore, the NVECTOR_MPIPLUSX module implements all of the opera-

tions listed in the referenced sections except for N_VScaleAddMultiVectorArray, and N_VLinearCombinationVectorArray
Accordingly, it’s compatibility with the SUNDIALS Fortran-77 interface, and with the SUNDIALS direct

solvers and preconditioners depends on the local vector implementation.

The module NVECTOR_MPIPLUSX provides the following additional user-callable routines:
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N_VMake _MPIPlusX

Prototype = N_Vector N_VMake MPIPlusX(MPI _Comm comm,
N_Vector *local_vector);

Description  This function creates an MPIPlusX vector from an existing local (i.e. on-node) NVECTOR
object, and a user-created MPI communicator.

The input comm should be this user-created MPI communicator. This routine will inter-
nally call MPI_Comm_dup to create a copy of the input comm, so the user-supplied comm
argument need not be retained after the call to N_-VMake MPIPlusX.

This routine will copy the N_Vector pointer to the input local_vector, so the underlying
local NVECTOR object should not be destroyed before the mpiplusx that contains it.

Upon successful completion, the new MPIPlusX is returned; otherwise this routine re-
turns NULL (e.g., if the input local_vector is NULL).

F2003 Name This function is callable as FN_VMake MPIPlusX when using the Fortran 2003 interface
module.

N_VGetLocalVector MPIPlusX
Prototype = N_Vector N_VGetLocalVector MPIPlusX(N_Vector v);

Description This function returns the local vector underneath the the MPIPlusX NVECTOR.

F2003 Name This function is callable as FN_VGetLocalVector MPIP1lusX when using the Fortran 2003
interface module.

N_VGetArrayPointer MPIPlusX

Prototype  realtypex N_VGetLocalVector MPIPlusX(N_Vector v);

Description This function returns the data array pointer for the local vector if the local vector
implements the N_VGetArrayPointer operation; otherwise it returns NULL.

F2003 Name This function is callable as FN_VGetArrayPointer MPIPlusX when using the Fortran
2003 interface module.

N_VSetArrayPointer MPIPlusX

Prototype void N,VSetArrayPointerJVIPIPlusX(realtype xdata, N_Vector v);

Description This function sets the data array pointer for the local vector if the local vector imple-
ments the N_VSetArrayPointer operation.

F2003 Name This function is callable as FN_VSetArrayPointer MPIPlusX when using the Fortran
2003 interface module.

The NVECTOR_MPIPLUSX module does not implement any fused or vector array operations. Instead
users should enable/disable fused operations on the local vector.

Notes

e N_VMake MPIPlusX sets the field own_data = SUNFALSE.
and N_VDestroy MPIPlusX will not call N.VDestroy on the local vector. In this case, it is the
user’s responsibility to deallocate the local vector.

e To maximize efficiency, arithmetic vector operations in the NVECTOR_MPIPLUSX implementation
that have more than one N_Vector argument do not check for consistent internal representation
of these vectors. It is the user’s responsibility to ensure that such routines are called with
N_Vector arguments that were all created with the same local vector representations.

> >
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9.18 NVECTOR Examples

There are NVector examples that may be installed for the implementations provided with SUNDIALS.
Each implementation makes use of the functions in test_nvector.c. These example functions show
simple usage of the NVector family of functions. The input to the examples are the vector length,
number of threads (if threaded implementation), and a print timing flag.

The following is a list of the example functions in test_nvector.c:

Test_N_VClone: Creates clone of vector and checks validity of clone.
Test_N_VCloneEmpty: Creates clone of empty vector and checks validity of clone.
Test_N_VCloneVectorArray: Creates clone of vector array and checks validity of cloned array.

Test_N_VCloneVectorArray: Creates clone of empty vector array and checks validity of cloned
array.

Test_N_VGetArrayPointer: Get array pointer.

Test_N_VSetArrayPointer: Allocate new vector, set pointer to new vector array, and check
values.

Test_N_VGetLength: Compares self-reported length to calculated length.

Test_N_VGetCommunicator: Compares self-reported communicator to the one used in construc-
tor; or for MPI-unaware vectors it ensures that NULL is reported.

Test_N_VLinearSum Case la: Test y = x +y
Test_N_VLinearSum Case 1b: Test y = -x + y
Test_N_VLinearSum Case lc: Test y = ax + y
Test_N_VLinearSum Case 2a: Test x = x + y
Test_N_VLinearSum Case 2b: Test x = x -y
Test N _VLinearSum Case 2c: Test x = x + by
Test_N_VLinearSum Case 3: Test z =x + y
Test_N_VLinearSum Case 4a: Test z =x -y
Test N _VLinearSum Case 4b: Test z = -x + y
Test_N_VLinearSum Case ba: Test z = x + by
Test N _VLinearSum Case 5b: Test z = ax + y
Test N _VLinearSum Case 6a: Test z = -x + by
Test_N_VLinearSum Case 6b: Test z = ax - y
Test_N_VLinearSum Case 7: Test z = a(x + y)
Test_N_VLinearSum Case 8: Test z = a(x - y)
Test N _VLinearSum Case 9: Test z = ax + by
Test_N_VConst: Fill vector with constant and check result.

*

Test_N_VProd: Test vector multiply: z = x * y

Test_N_VDiv: Test vector division: z =x / y
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e Test_N VScale: Case 1: scale: x = cx

e Test_N_VScale: Case 2: copy: z = X

e Test_N_VScale: Case 3: negate: z = -x

e Test N _VScale: Case 4: combination: z = cx

e Test_N_VAbs: Create absolute value of vector.

e Test_N_VAddConst: add constant vector: z = ¢ + x

e Test_N_VDotProd: Calculate dot product of two vectors.

e Test_N VMaxNorm: Create vector with known values, find and validate the max norm.

e Test N VWrmsNorm: Create vector of known values, find and validate the weighted root mean
square.

e Test_N_VWrmsNormMask: Create vector of known values, find and validate the weighted root
mean square using all elements except one.

e Test_N_VMin: Create vector, find and validate the min.

e Test N_VWL2Norm: Create vector, find and validate the weighted Euclidean L2 norm.

e Test_N_VLiNorm: Create vector, find and validate the L1 norm.

e Test_N_VCompare: Compare vector with constant returning and validating comparison vector.
e Test N_VInvTest: Test z[i] = 1 / x][i]

e Test_N_VConstrMask: Test mask of vector x with vector c.

e Test_N_VMinQuotient: Fill two vectors with known values. Calculate and validate minimum
quotient.

e Test N VLinearCombination Case la: Test x = a x

e Test N VLinearCombination Case 1b: Test z = a x

e Test N VLinearCombination Case 2a: Test x =ax + by

e Test N VLinearCombination Case 2b: Test z=ax+ by

e Test_N_VLinearCombination Case 3a: Test x =x+ay + bz

e Test_N_VLinearCombination Case 3b: Test x =ax+ by +cz
e Test N VLinearCombination Case 3c: Test w =ax+ by +cz
e Test N VScaleAddMulti Case la: y =ax +y

e Test N VScaleAddMulti Case 1b: z=ax+y

e Test_N_VScaleAddMulti Case 2a: Y[i] = c[i] x + Y][i],i=1,2,3
e Test_N_VScaleAddMulti Case 2b: Z[i] = c[i] x + Y]i],i = 1,2,3
e Test_N_VDotProdMulti Case 1: Calculate the dot product of two vectors

e Test_N_VDotProdMulti Case 2: Calculate the dot product of one vector with three other vectors
in a vector array.

e Test_N_VLinearSumVectorArray Case l: z=ax+ by
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Test_N_VLinearSumVectorArray Case 2a: Z[i] = a X[i] + b Y]j]
Test_N_VLinearSumVectorArray Case 2b: X[i] = a X]i] + b Y]j]
Test_N_VLinearSumVectorArray Case 2c: Y[i] = a X[i] + b Y[
Test_N_VScaleVectorArray Case la: y =cy
Test_N_VScaleVectorArray Case 1b: z=cy
Test_N_VScaleVectorArray Case 2a: Y[i] = cli] Y[i]
Test_N_VScaleVectorArray Case 2b: Z[i] = c[i] Y]i]
Test_N_VScaleVectorArray Case la: z = ¢
Test_N_VScaleVectorArray Case 1b: Z[i] = ¢

Test_N_VWrmsNormVectorArray Case la: Create a vector of know values, find and validate the
weighted root mean square norm.

Test_N_VWrmsNormVectorArray Case 1b: Create a vector array of three vectors of know values,
find and validate the weighted root mean square norm of each.

Test_N_VWrmsNormMaskVectorArray Case la: Create a vector of know values, find and validate
the weighted root mean square norm using all elements except one.

Test_N_VWrmsNormMaskVectorArray Case 1b: Create a vector array of three vectors of know
values, find and validate the weighted root mean square norm of each using all elements except
one.

Test_N_VScaleAddMultiVectorArray Case la: y =ax + ¥y
Test_N_VScaleAddMultiVectorArray Case 1b: z =ax + ¥y
Test_N_VScaleAddMultiVectorArray Case 2a: Y[j][0] = a[j] X[0] + Y[j][0]
Test_N_VScaleAddMultiVectorArray Case 2b: Z[j][0] = a[j] X[0] + Y[j][0]

Test_N_VScaleAddMultiVectorArray Case 3a:

=
=
I

al0] X[i] + Y[0][i]
Test_N_VScaleAddMultiVectorArray Case 3b: Z[0][i] = a[0] X[i] + Y[0][i]
Test_N_VScaleAddMultiVectorArray Case 4a: Y[j|[i] = a[j] X[i] + YJj][i]
Test_N_VScaleAddMultiVectorArray Case 4b: Z[j][i] = a[j] X[i] + Y[j][i]
Test_N_VLinearCombinationVectorArray Case la: x = a x
Test_N_VLinearCombinationVectorArray Case 1b: z = a x
Test_N_VLinearCombinationVectorArray Case 2a: x =ax+ by
Test_N_VLinearCombinationVectorArray Case 2b: z=ax+ by
Test_N_VLinearCombinationVectorArray Case 3a: x =ax+ by + cz
Test_N_VLinearCombinationVectorArray Case 3b: w =ax+ by +cz
Test_N_VLinearCombinationVectorArray Case 4a: X[0][i] = c[0] X[0][i]
Test_N_VLinearCombinationVectorArray Case 4b: Z[i] = c[0] X[0][i]

Test_N_VLinearCombinationVectorArray Case 5a: X[0][i] = c[0] X[0][i] + c[1] X[1][i]
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e Test_N_VLinearCombinationVectorArray Case 5b: Z[i] = c[0] X[0][i] + ¢[1] X[1][i]
e Test_N_VLinearCombinationVectorArray Case 6a: X[0][i] = X[0][i] + ¢[1] X[1][i] + ¢[2] X[2][]

e Test_N_VLinearCombinationVectorArray Case 6b: X[0][i] = c[0] X[0][i] + c[1] X[1][i] + c[2]
X[2][i]

e Test_N_VLinearCombinationVectorArray Case 6¢: Z[i] = ¢[0] X[0][i] + ¢[1] X[1][i] + c[2] X[2][j]
e Test_N_VDotProdLocal: Calculate MPI task-local portion of the dot product of two vectors.

e Test_N_VMaxNormLocal: Create vector with known values, find and validate the MPI task-local
portion of the max norm.

e Test N VMinLocal: Create vector, find and validate the MPI task-local min.

e Test_ N VL1NormLocal: Create vector, find and validate the MPI task-local portion of the L1
norm.

o Test N_VWSqrSumLocal: Create vector of known values, find and validate the MPI task-local
portion of the weighted squared sum of two vectors.

o Test_N_VWSqrSumMaskLocal: Create vector of known values, find and validate the MPI task-
local portion of the weighted squared sum of two vectors, using all elements except one.

e Test_N_VInvTestLocal: Test the MPI task-local portion of z[i] = 1 / x[i]

e Test_N_VConstrMaskLocal: Test the MPI task-local portion of the mask of vector x with vector
c.

e Test_N_VMinQuotientLocal: Fill two vectors with known values. Calculate and validate the
MPI task-local minimum quotient.
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Table 9.2: List of vector functions usage by IDAS code modules
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N_VGetVectorID
N_VGetLength
N_VClone
N_VCloneEmpty
N_VDestroy
N_VCloneVectorArray
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N_VGetArrayPointer
N_VSetArrayPointer
N_VLinearSum
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Chapter 10

Description of the SUNMatrix
module

For problems that involve direct methods for solving linear systems, the SUNDIALS solvers not only op-
erate on generic vectors, but also on generic matrices (of type SUNMatrix), through a set of operations
defined by the particular SUNMATRIX implementation. Users can provide their own specific imple-
mentation of the SUNMATRIX module, particularly in cases where they provide their own NVECTOR
and/or linear solver modules, and require matrices that are compatible with those implementations.
Alternately, we provide three SUNMATRIX implementations: dense, banded, and sparse. The generic
operations are described below, and descriptions of the implementations provided with SUNDIALS
follow.

10.1 The SUNMatrix API

The SUNMATRIX API can be grouped into two sets of functions: the core matrix operations, and utility
functions. Section 10.1.1 lists the core operations, while Section 10.1.2 lists the utility functions.

10.1.1 SUNDMatrix core functions

The generic SUNMatrix object defines the following set of core operations:

SUNMatGetID

Call id = SUNMatGetID(A);

Description  Returns the type identifier for the matrix A. It is used to determine the matrix imple-
mentation type (e.g. dense, banded, sparse,...) from the abstract SUNMatrix interface.
This is used to assess compatibility with SUNDIALS-provided linear solver implementa-
tions.

Arguments A (SUNMatrix) a SUNMATRIX object
Return value A SUNMATRIX_ID, possible values are given in the Table 10.2.
F2003 Name FSUNMatGetID

SUNMatClone

Call B = SUNMatClone(A);

Description  Creates a new SUNMatrix of the same type as an existing matrix A and sets the ops
field. It does not copy the matrix, but rather allocates storage for the new matrix.

Arguments A (SUNMatrix) a SUNMATRIX object
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Return value SUNMatrix
F2003 Name FSUNMatClone
F2003 Call type(SUNMatrix), pointer :: B
B => FSUNMatClone(A)
SUNMatDestroy‘
Call SUNMatDestroy (A) ;
Description Destroys A and frees memory allocated for its internal data.
Arguments A (SUNMatrix) a SUNMATRIX object

Return value

F2003 Name

None

FSUNMatDestroy

SUNMatSpace

Call

Description

Arguments

Return value

Notes

F2003 Name
F2003 Call

SUNMatZero

Call
Description
Arguments
Return value

F2003 Name

SUNMatCopy

Call
Description

Arguments

Return value

F2003 Name

ier = SUNMatSpace(A, &lrw, &liw);

Returns the storage requirements for the matrix A. 1rw is a long int containing the
number of realtype words and 1iw is a long int containing the number of integer words.

A (SUNMatrix) a SUNMATRIX object
lrv (sunindextype*) the number of realtype words

liw (sunindextype*) the number of integer words
None

This function is advisory only, for use in determining a user’s total space requirements;
it could be a dummy function in a user-supplied SUNMATRIX module if that information
is not of interest.

FSUNMatSpace

integer(c_long) :: 1lrw(1), liw(1)
ier = FSUNMatSpace(A, lrw, liw)

ier = SUNMatZero(A);

Performs the operation A;; = 0 for all entries of the matrix A.
A (SUNMatrix) a SUNMATRIX object

A SUNMATRIX return code of type int denoting success/failure
FSUNMatZero

ier = SUNMatCopy(A,B);
Performs the operation B;; = A; ; for all entries of the matrices A and B.

A (SUNMatrix) a SUNMATRIX object
B (SUNMatrix) a SUNMATRIX object

A SUNMATRIX return code of type int denoting success/failure
FSUNMatCopy
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| SUNMatScaleAdd |
Call ier = SUNMatScaleAdd(c, A, B);

Description Performs the operation A = cA + B.

Arguments ¢ (realtype) constant that scales A
A (SUNMatrix) a SUNMATRIX object
B (SUNMatrix) a SUNMATRIX object
Return value A SUNMATRIX return code of type int denoting success/failure

F2003 Name FSUNMatScaleAdd

| SUNMatScaleAddI |
Call ier = SUNMatScaleAddI(c, A);

Description Performs the operation A = cA + I.

Arguments ¢ (realtype) constant that scales A
A (SUNMatrix) a SUNMATRIX object

Return value A SUNMATRIX return code of type int denoting success/failure

F2003 Name FSUNMatScaleAddI

SUNMatMatvecSetup

Call ier = SUNMatMatvecSetup(A);

Description  Performs any setup necessary to perform a matrix-vector product. It is useful for
SUNMatrix implementations which need to prepare the matrix itself, or communication
structures before performing the matrix-vector product.

Arguments A (SUNMatrix) a SUNMATRIX object
Return value A SUNMATRIX return code of type int denoting success/failure

F2003 Name FSUNMatMatvecSetup

SUNMatMatvec

Call ier = SUNMatMatvec(A, x, y);

Description  Performs the matrix-vector product operation, y = Az. It should only be called with
vectors x and y that are compatible with the matrix A — both in storage type and
dimensions.

Arguments A (SUNMatrix) a SUNMATRIX object
x (N_Vector) a NVECTOR object
y (N_Vector) an output NVECTOR object

Return value A SUNMATRIX return code of type int denoting success/failure

F2003 Name FSUNMatMatvec

10.1.2 SUNMatrix utility functions

To aid in the creation of custom SUNMATRIX modules the generic SUNMATRIX module provides two
utility functions SUNMatNewEmpty and SUNMatVCopyOps.
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SUNMatNewEmpty

Call A = SUNMatNewEmpty();

Description  The function SUNMatNewEmpty allocates a new generic SUNMATRIX object and initializes
its content pointer and the function pointers in the operations structure to NULL.

Arguments None

Return value This function returns a SUNMatrix object. If an error occurs when allocating the object,
then this routine will return NULL.

F2003 Name FSUNMatNewEmpty

SUNMatFreeEmpty

Call SUNMatFreeEmpty (A) ;

Description  This routine frees the generic SUNMatrix object, under the assumption that any implementation-
specific data that was allocated within the underlying content structure has already been
freed. It will additionally test whether the ops pointer is NULL, and, if it is not, it will
free it as well.

Arguments A (SUNMatrix) a SUNMatrix object
Return value None

F2003 Name FSUNMatFreeEmpty

SUNMatCopyOps

Call retval = SUNMatCopyOps(A, B);

Description  The function SUNMatCopyOps copies the function pointers in the ops structure of A into
the ops structure of B.

Arguments A (SUNMatrix) the matrix to copy operations from
B (SUNMatrix) the matrix to copy operations to

Return value This returns 0 if successful and a non-zero value if either of the inputs are NULL or the
ops structure of either input is NULL.

F2003 Name FSUNMatCopyOps

10.1.3 SUNMatrix return codes

The functions provided to SUNMATRIX modules within the SUNDIALS-provided SUNMATRIX implemen-
tations utilize a common set of return codes, shown in Table 10.1. These adhere to a common pattern:
0 indicates success, and a negative value indicates a failure. The actual values of each return code are
primarily to provide additional information to the user in case of a failure.

Table 10.1: Description of the SUNMatrix return codes

Name Value | Description

SUNMAT_SUCCESS ‘ 0 ‘ successful call or converged solve

continued on next page
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Table 10.2: Identifiers associated with matrix kernels supplied with SUNDIALS.

Matrix ID Matrix type ID Value
SUNMATRIX_DENSE Dense M x N matrix 0
SUNMATRIX_BAND Band M x M matrix 1
SUNMATRIX_MAGMADENSE | Magma dense M x N matrix 2
SUNMATRIX_SPARSE Sparse (CSR or CSC) M x N matrix 3
SUNMATRIX_SLUNRLOC Adapter for the SuperLU_DIST SuperMatrix 4
SUNMATRIX_CUSPARSE CUDA sparse CSR matrix 5
SUNMATRIX_CUSTOM User-provided custom matrix 6
Name Value | Description
SUNMAT_ILL_INPUT -701 an illegal input has been provided to the function
SUNMAT _MEM_FAIL -702 failed memory access or allocation
SUNMAT_OPERATION_FAIL -703 a SUNMatrix operation returned nonzero
SUNMAT_MATVEC_SETUP_REQUIRED | -704 | the SUNMatMatvecSetup routine needs to be called be-
fore calling SUNMatMatvec

10.1.4 SUNDMatrix identifiers

Each SUNMATRIX implementation included in SUNDIALS has a unique identifier specified in enumer-
ation and shown in Table 10.2. It is recommended that a user-supplied SUNMATRIX implementation
use the SUNMATRIX_CUSTOM identifier.

10.1.5 Compatibility of SUNMatrix modules

We note that not all SUNMATRIX types are compatible with all NVECTOR types provided with SUNDI-
ALS. This is primarily due to the need for compatibility within the SUNMatMatvec routine; however,
compatibility between SUNMATRIX and NVECTOR implementations is more crucial when considering
their interaction within SUNLINSOL objects, as will be described in more detail in Chapter 11. More
specifically, in Table 10.3 we show the matrix interfaces available as SUNMATRIX modules, and the
compatible vector implementations.

Table 10.3: SUNDIALS matrix interfaces and vector implementations that can be used for each.

Matrix Serial| Parallel | OpenMP | pThreads| hypre | PETSc | CUDA | RAJA | User
Interface (MPI) Vec. Vec. Suppl.
Dense v v v v
Band v v v v
Sparse v v v v
SLUNRIoc v v v v v v v
User supplied v v v v v v v v v

10.1.6 The generic SUNMatrix module implementation

The generic SUNMatrix type has been modeled after the object-oriented style of the generic N_Vector
type. Specifically, a generic SUNMatrix is a pointer to a structure that has an implementation-
dependent content field containing the description and actual data of the matrix, and an ops field
pointing to a structure with generic matrix operations. The type SUNMatrix is defined as
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typedef struct _generic_SUNMatrix *SUNMatrix;

struct _generic_SUNMatrix {
void *content;
struct _generic_SUNMatrix_Ops *ops;

};

The _generic_SUNMatrix Ops structure is essentially a list of pointers to the various actual matrix
operations, and is defined as

struct _generic_SUNMatrix_Ops {
SUNMatrix_ID (*getid) (SUNMatrix) ;
SUNMatrix (*clone) (SUNMatrix) ;

void (*destroy) (SUNMatrix) ;

int (*zero) (SUNMatrix) ;

int (*copy) (SUNMatrix, SUNMatrix);

int (*scaleadd) (realtype, SUNMatrix, SUNMatrix);
int (*scaleaddi) (realtype, SUNMatrix);

int (*matvecsetup) (SUNMatrix)

int (*matvec) (SUNMatrix, N_Vector, N_Vector);
int (*space) (SUNMatrix, long int*, long intx*);

};

The generic SUNMATRIX module defines and implements the matrix operations acting on SUNMatrix
objects. These routines are nothing but wrappers for the matrix operations defined by a particular
SUNMATRIX implementation, which are accessed through the ops field of the SUNMatrix structure. To
illustrate this point we show below the implementation of a typical matrix operation from the generic
SUNMATRIX module, namely SUNMatZero, which sets all values of a matrix A to zero, returning a flag
denoting a successful/failed operation:

int SUNMatZero(SUNMatrix A)
{

return((int) A->ops->zero(A));

}

Section 10.1.1 contains a complete list of all matrix operations defined by the generic SUNMATRIX
module.

The Fortran 2003 interface provides a bind(C) derived-type for the _generic_SUNMatrix and the
_generic_SUNMatrix_Ops structures. Their definition is given below.

type, bind(C), public :: SUNMatrix
type (C_PTR), public :: content
type(C_PTR), public :: ops

end type SUNMatrix

type, bind(C), public :: SUNMatrix_Ops
type (C_FUNPTR), public :: getid

type (C_FUNPTR), public :: clone

type (C_LFUNPTR), public :: destroy
type (C_FUNPTR), public :: zero

type (C_FUNPTR), public :: copy

type (C_FUNPTR), public :: scaleadd
type (C_FUNPTR), public :: scaleaddi
type (C_FUNPTR), public :: matvecsetup
type (C_FUNPTR), public :: matvec

type (C_FUNPTR), public :: space

end type SUNMatrix_Ops
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10.1.7 Implementing a custom SUNMatrix
A particular implementation of the SUNMATRIX module must:
e Specify the content field of the SUNMatrix object.

e Define and implement a minimal subset of the matrix operations. See the documentation for
each SUNDIALS solver to determine which SUNMATRIX operations they require.

Note that the names of these routines should be unique to that implementation in order to
permit using more than one SUNMATRIX module (each with different SUNMatrix internal data
representations) in the same code.

e Define and implement user-callable constructor and destructor routines to create and free a
SUNMatrix with the new content field and with ops pointing to the new matrix operations.

e Optionally, define and implement additional user-callable routines acting on the newly defined
SUNMatrix (e.g., a routine to print the content for debugging purposes).

e Optionally, provide accessor macros or functions as needed for that particular implementation
to access different parts of the content field of the newly defined SUNMatrix.

It is recommended that a user-supplied SUNMATRIX implementation use the SUNMATRIX_CUSTOM
identifier.

To aid in the creation of custom SUNMATRIX modules the generic SUNMATRIX module provides two
utility functions SUNMatNewEmpty and SUNMatVCopyOps. When used in custom SUNMATRIX construc-
tors and clone routines these functions will ease the introduction of any new optional matrix operations
to the SUNMATRIX API by ensuring only required operations need to be set and all operations are
copied when cloning a matrix. These functions are desrcribed in Section 10.1.2.

10.2 SUNMatrix functions used by IDAS

In Table 10.4, we list the matrix functions in the SUNMATRIX module used within the IDAS package.
The table also shows, for each function, which of the code modules uses the function. The main IDAS
integrator does not call any SUNMATRIX functions directly, so the table columns are specific to the
IDALS interface and the IDABBDPRE preconditioner module. We further note that the IDALS interface
only utilizes these routines when supplied with a matriz-based linear solver, i.e., the SUNMATRIX object
passed to IDASetLinearSolver was not NULL.

At this point, we should emphasize that the IDAS user does not need to know anything about the
usage of matrix functions by the IDAS code modules in order to use IDAS. The information is presented
as an implementation detail for the interested reader.

Table 10.4: List of matrix functions usage by IDAS code modules
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SUNMatGetID | v/
SUNMatDestroy v
SUNMatZero | v | Vv
SUNMatSpace T

The matrix functions listed in Section 10.1.1 with a  symbol are optionally used, in that these are
only called if they are implemented in the SUNMATRIX module that is being used (i.e. their function
pointers are non-NULL). The matrix functions listed in Section 10.1.1 that are not used by IDAS
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are: SUNMatCopy, SUNMatClone, SUNMatScaleAdd, SUNMatScaleAddI and SUNMatMatvec. Therefore
a user-supplied SUNMATRIX module for IDAS could omit these functions.

10.3 The SUNMatrix_Dense implementation

The dense implementation of the SUNMATRIX module provided with SUNDIALS, SUNMATRIX_DENSE,
defines the content field of SUNMatrix to be the following structure:

struct _SUNMatrixContent_Dense {
sunindextype M;
sunindextype N;
realtype *data;
sunindextype ldata;
realtype **cols;

+;

These entries of the content field contain the following information:
M - number of rows

N - number of columns

data - pointer to a contiguous block of realtype variables. The elements of the dense matrix are
stored columnwise, i.e. the (i,j)-th element of a dense SUNMATRIX A (with 0 < i <Mand 0 <
j < N) may be accessed via data[j*M+i].

ldata - length of the data array (= M-N).

cols - array of pointers. cols[j] points to the first element of the j-th column of the matrix in the
array data. The (i,j)-th element of a dense SUNMATRIX A (with 0 < i < Mand 0 < j < N)
may be accessed via cols[j] [i].

The header file to include when using this module is sunmatrix/sunmatrix _dense.h. The SUNMA-

TRIX_DENSE module is accessible from all SUNDIALS solvers without linking to the

libsundials_sunmatrixdense module library.

10.3.1 SUNMatrix_Dense accessor macros

The following macros are provided to access the content of a SUNMATRIX_DENSE matrix. The prefix
SM_ in the names denotes that these macros are for SUNMatriz implementations, and the suffix D
denotes that these are specific to the dense version.
e SM_CONTENT_D
This macro gives access to the contents of the dense SUNMatrix.

The assignment A_cont = SM_CONTENT_D(A) sets A_cont to be a pointer to the dense SUNMatrix
content structure.

Implementation:

#define SM_CONTENT_D(A) ( (SUNMatrixContent_Dense) (A->content) )

e SM_ROWS_D, SM_COLUMNS_D, and SM_LDATA_D

These macros give individual access to various lengths relevant to the content of a dense
SUNMatrix.

These may be used either to retrieve or to set these values. For example, the assignment A_rows
= SM_ROWS_D(A) sets A_rows to be the number of rows in the matrix A. Similarly, the assignment
SM_COLUMNS_D(A) = A_cols sets the number of columns in A to equal A_cols.

Implementation:

#define SM_ROWS_D(A) ( SM_CONTENT_D(A)->M )
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#define SM_COLUMNS_D(A) ( SM_CONTENT_D(A)->N )
#define SM_LDATA_D(A) ( SM_CONTENT_D(A)->ldata )

e SM_DATAD and SM_COLS.D
These macros give access to the data and cols pointers for the matrix entries.
The assignment A_data = SM_DATA D(A) sets A_data to be a pointer to the first component of

the data array for the dense SUNMatrix A. The assignment SM_DATA D(A) = A_data sets the data
array of A to be A_data by storing the pointer A_data.

Similarly, the assignment A_cols = SM_COLS_D(A) sets A_cols to be a pointer to the array of
column pointers for the dense SUNMatrix A. The assignment SM_COLS_D(A) = A_cols sets the
column pointer array of A to be A_cols by storing the pointer A_cols.

Implementation:
#define SM_DATA_D(A) ( SM_CONTENT_D(A)->data )
#define SM_COLS_D(A) ( SM_CONTENT_D(A)->cols )

e SM_COLUMN.D and SM_ELEMENT D

These macros give access to the individual columns and entries of the data array of a dense
SUNMatrix.

The assignment col_j = SM_COLUMN.D(A,j) sets col_j to be a pointer to the first entry of
the j-th column of the M X N dense matrix A (with 0 < j < N). The type of the expression
SM_COLUMN_D(A, j) is realtype *. The pointer returned by the call SM_COLUMN. D(A,j) can be
treated as an array which is indexed from 0 to M — 1.

The assignments SM_ELEMENT D(A,i,j) = a_ijanda_ij = SM_ELEMENT D(4,1i,j) reference the
(1,j)-th element of the M X N dense matrix A (with 0 <i <Mand 0 < j <N).

Implementation:
#define SM_COLUMN_D(A,j) ( (SM_CONTENT_D(A)->cols) [j]1 )
#define SM_ELEMENT_D(A,i,j) ( (SM_CONTENT_D(A)->cols) [j]1[i] )

10.3.2 SUNDMatrix_Dense functions

The SUNMATRIX_DENSE module defines dense implementations of all matrix operations listed in Sec-
tion 10.1.1. Their names are obtained from those in Section 10.1.1 by appending the suffix Dense
(e.g. SUNMatCopy Dense). All the standard matrix operations listed in Section 10.1.1 with the
suffix Dense appended are callable via the FORTRAN 2003 interface by prepending an ‘F’ (e.g.
FSUNMatCopy_Dense).

The module SUNMATRIX_DENSE provides the following additional user-callable routines:

SUNDenseMatrix‘

Prototype  SUNMatrix SUNDenseMatrix(sunindextype M, sunindextype N)

Description This constructor function creates and allocates memory for a dense SUNMatrix. Its
arguments are the number of rows, M, and columns, N, for the dense matrix.

F2003 Name This function is callable as FSUNDenseMatrix when using the Fortran 2003 interface
module.

SUNDenseMatrix_Print ‘
Prototype  void SUNDenseMatrix Print(SUNMatrix A, FILE* outfile)

Description This function prints the content of a dense SUNMatrix to the output stream specified
by outfile. Note: stdout or stderr may be used as arguments for outfile to print
directly to standard output or standard error, respectively.
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SUNDenseMatrix_Rows

Prototype  sunindextype SUNDenseMatrix Rows(SUNMatrix A)
Description This function returns the number of rows in the dense SUNMatrix.

F2003 Name This function is callable as FSUNDenseMatrix_Rows when using the Fortran 2003 inter-
face module.

SUNDenseMatrix_Columns ‘

Prototype sunindextype SUNDenseMatrix_Columns(SUNMatrix A)
Description This function returns the number of columns in the dense SUNMatrix.

F2003 Name This function is callable as FSUNDenseMatrix_Columns when using the Fortran 2003
interface module.

SUNDenseMatrix_LData ‘

Prototype  sunindextype SUNDenseMatrix LData(SUNMatrix A)
Description This function returns the length of the data array for the dense SUNMatrix.

F2003 Name This function is callable as FSUNDenseMatrix_LData when using the Fortran 2003 inter-
face module.

SUNDenseMatrix_Data ‘

Prototype  realtype* SUNDenseMatrix Data(SUNMatrix A)
Description This function returns a pointer to the data array for the dense SUNMatrix.

F2003 Name This function is callable as FSUNDenseMatrix Data when using the Fortran 2003 inter-
face module.

SUNDenseMatrix_Cols ‘
Prototype = realtype** SUNDenseMatrix Cols(SUNMatrix A)

Description This function returns a pointer to the cols array for the dense SUNMatrix.

SUNDenseMatrix_Column

Prototype  realtypex SUNDenseMatrix_Column(SUNMatrix A, sunindextype j)

Description  This function returns a pointer to the first entry of the jth column of the dense SUNMatrix.
The resulting pointer should be indexed over the range 0 to M — 1.

F2003 Name This function is callable as FSUNDenseMatrix_Column when using the Fortran 2003 in-
terface module.

Notes

e When looping over the components of a dense SUNMatrix A, the most efficient approaches are
to:

— First obtain the component array via A_data = SM_DATA D(A) or
A_data = SUNDenseMatrix_Data(A) and then access A_data[i] within the loop.

— First obtain the array of column pointers via A_cols = SM_COLS_D(A) or
A _cols = SUNDenseMatrix_Cols(A), and then access A_cols[j] [i] within the loop.

— Within a loop over the columns, access the column pointer via
A_colj = SUNDenseMatrix_Column(A,j) and then to access the entries within that column
using A_colj[i] within the loop.
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All three of these are more efficient than using SM_ELEMENT D(A,i,j) within a double loop.

e Within the SUNMatMatvec_Dense routine, internal consistency checks are performed to ensure
that the matrix is called with consistent NVECTOR implementations. These are currently limited
to: NVECTOR_SERIAL, NVECTOR_OPENMP, and NVECTOR_PTHREADS. As additional compatible
vector implementations are added to SUNDIALS, these will be included within this compatibility
check.

10.3.3 SUNMatrix_Dense Fortran interfaces

The SUNMATRIX_DENSE module provides a FORTRAN 2003 module as well as FORTRAN 77 style inter-
face functions for use from FORTRAN applications.

FORTRAN 2003 interface module

The fsunmatrix_dense mod FORTRAN module defines interfaces to most SUNMATRIX_DENSE C func-
tions using the intrinsic iso_c_binding module which provides a standardized mechanism for interop-
erating with C. As noted in the C function descriptions above, the interface functions are named after
the corresponding C function, but with a leading ‘F’. For example, the function SUNDenseMatrix is
interfaced as FSUNDenseMatrix.

The FORTRAN 2003 SUNMATRIX_DENSE interface module can be accessed with the use statement,
i.e. use fsunmatrix dense_mod, and linking to the library libsundials_fsunmatrixdense mod.lib in
addition to the C library. For details on where the library and module file f sunmatrix_dense_mod.mod
are installed see Appendix A. We note that the module is accessible from the FORTRAN 2003 SUNDIALS
integrators without separately linking to the 1ibsundials_fsunmatrixdense mod library.

FORTRAN 77 interface functions

For solvers that include a FORTRAN interface module, the SUNMATRIX_DENSE module also includes the
FORTRAN-callable function FSUNDenseMatInit (code, M, N, ier) to initialize this SUNMATRIX_DENSE
module for a given SUNDIALS solver. Here code is an integer input solver id (1 for CVODE, 2 for IDA,
3 for KINSOL, 4 for ARKODE); M and N are the corresponding dense matrix construction arguments
(declared to match C type long int); and ier is an error return flag equal to 0 for success and -1
for failure. Both code and ier are declared to match C type int. Additionally, when using ARKODE
with a non-identity mass matrix, the FORTRAN-callable function FSUNDenseMassMatInit (M, N, ier)
initializes this SUNMATRIX_DENSE module for storing the mass matrix.

10.4 The SUNMatrix_Band implementation

The banded implementation of the SUNMATRIX module provided with SUNDIALS, SUNMATRIX_BAND,
defines the content field of SUNMatrix to be the following structure:

struct _SUNMatrixContent_Band {
sunindextype M;
sunindextype N;
sunindextype mu;
sunindextype ml;
sunindextype s_mu;
sunindextype ldim;
realtype *data;
sunindextype ldata;
realtype **cols;

};

A diagram of the underlying data representation in a banded matrix is shown in Figure 10.1. A more
complete description of the parts of this content field is given below:
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- number of rows
- number of columns (N = M)

mu - upper half-bandwidth, 0 < mu < N

ml - lower half-bandwidth, 0 < ml < N

smu - storage upper bandwidth, mu < s.mu < N. The LU decomposition routines in the associated
SUNLINSOL_BAND and SUNLINSOL_LAPACKBAND modules write the LU factors into the storage
for A. The upper triangular factor U, however, may have an upper bandwidth as big as min(N-
1,mu+ml) because of partial pivoting. The s_mu field holds the upper half-bandwidth allocated
for A.

1dim - leading dimension (1dim > s_mu+4ml+1)

data - pointer to a contiguous block of realtype variables. The elements of the banded matrix are

stored columnwise (i.e. columns are stored one on top of the other in memory). Only elements
within the specified half-bandwidths are stored. data is a pointer to 1data contiguous locations
which hold the elements within the band of A.

ldata - length of the data array (= 1dim-N)

cols

- array of pointers. cols[j] is a pointer to the uppermost element within the band in the
j-th column. This pointer may be treated as an array indexed from s mu—mu (to access the
uppermost element within the band in the j-th column) to s.mu+ml (to access the lowest
element within the band in the j-th column). Indices from 0 to s mu—mu—1 give access to extra
storage elements required by the LU decomposition function. Finally, cols[j] [i-j+s_mu] is
the (4, 7)-th element with j—mu < ¢ < j4ml.

The header file to include when using this module is sunmatrix/sunmatrix band.h. The SUNMA-
TRIX_BAND module is accessible from all SUNDIALS solvers without linking to the
libsundials_sunmatrixband module library.

10.4.1 SUNDMatrix_Band accessor macros

The following macros are provided to access the content of a SUNMATRIX_BAND matrix. The prefix
SM_ in the names denotes that these macros are for SUNMatriz implementations, and the suffix B
denotes that these are specific to the banded version.

SM_CONTENT_B
This routine gives access to the contents of the banded SUNMatrix.

The assignment A_cont = SM_CONTENT_B(A) sets A_cont to be a pointer to the banded SUNMatrix
content structure.

Implementation:

#define SM_CONTENT_B(A) ( (SUNMatrixContent_Band) (A->content) )

SM_ROWS_B, SM_COLUMNS_B, SM_UBAND_B, SM_LBAND_B, SM_SUBAND_B, SM_LDIM_B, and SM_LDATA_B

These macros give individual access to various lengths relevant to the content of a banded
SUNMatrix.

These may be used either to retrieve or to set these values. For example, the assignment A_rows
= SM_ROWS_B(A) sets A_rows to be the number of rows in the matrix A. Similarly, the assignment
SM_COLUMNS B(A) = A_cols sets the number of columns in A to equal A_cols.

Implementation:

#define SM_ROWS_B(A) ( SM_CONTENT_B(A)->M )
#define SM_COLUMNS_B(A) ( SM_CONTENT_B(A)->N )
#define SM_UBAND_B(A) ( SM_CONTENT_B(A)->mu )

#define SM_LBAND_B(A) ( SM_CONTENT_B(A)->ml )



10.4 The SUNMatrix_Band implementation 287

:

A R
mu+ml+1
I
.
size data data[0] ®
E} data[1] e—
mu ml smu : 2
SESEEI
dataf[j+1] | & data[j][smu-mu] A(j-mu,j)
A(j—mu-1,j)
data[N-1] ¢ :
datalj][smu] AG.)

data[j][smu+ml] A(j+ml,j)

B

o

Figure 10.1: Diagram of the storage for the SUNMATRIX_BAND module. Here A is an N x N band
matrix with upper and lower half-bandwidths mu and ml, respectively. The rows and columns of A are
numbered from 0 to N — 1 and the (i, j)-th element of A is denoted A(i,j). The greyed out areas of
the underlying component storage are used by the associated SUNLINSOL_BAND linear solver.
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#define SM_SUBAND_B(A) ( SM_CONTENT_B(A)->s_mu )
#define SM_LDIM_B(A) ( SM_CONTENT_B(A)->1dim )
#define SM_LDATA_B(A) ( SM_CONTENT_B(A)->ldata )

SM_DATA B and SM_COLS_B
These macros give access to the data and cols pointers for the matrix entries.

The assignment A_data = SM_DATA_B(A) sets A_data to be a pointer to the first component of
the data array for the banded SUNMatrix A. The assignment SM_DATA B(A) = A_data sets the
data array of A to be A_data by storing the pointer A_data.

Similarly, the assignment A_cols = SM_COLS_B(A) sets A_cols to be a pointer to the array of
column pointers for the banded SUNMatrix A. The assignment SM_COLS_B(A) = A_cols sets the
column pointer array of A to be A_cols by storing the pointer A_cols.

Implementation:
#define SM_DATA_B(A) ( SM_CONTENT_B(A)->data )
#define SM_COLS_B(A) ( SM_CONTENT_B(A)->cols )

SM_COLUMN_B, SM_COLUMN_ELEMENT B, and SM_ELEMENT B

These macros give access to the individual columns and entries of the data array of a banded
SUNMatrix.

The assignments SM_ELEMENT B(A,i,j) = a_ijanda_ij = SM_ELEMENT_B(A,1i, j) reference the
(1,j)-th element of the N x N band matrix A, where 0 < i,j <N — 1. The location (i,j) should
further satisfy j—mu < i < j+ml.

The assignment col_j = SM_COLUMN_B(A, j) sets col_j to be a pointer to the diagonal element
of the j-th column of the N x N band matrix A, 0 < j < N — 1. The type of the expression
SM_COLUMN_B(4A, j) is realtype *. The pointer returned by the call SM_COLUMN_B(4A,j) can be
treated as an array which is indexed from —mu to ml.

The assignments SM_COLUMN_ELEMENT B(col_j,i,j) = a.ij and

a-ij = SM_COLUMN_ELEMENT B(col_j,i,j) reference the (i,j)-th entry of the band matrix A
when used in conjunction with SM_COLUMN_B to reference the j-th column through col_j. The
index (i,j) should satisfy j—mu < i < j+ml.

Implementation:
#define SM_COLUMN_B(A,j) ( ((SM_CONTENT_B(A)->cols) [j])+SM_SUBAND_B(A) )
#define SM_COLUMN_ELEMENT_B(col_j,i,j) (col_jL[(i)-(j01)
#define SM_ELEMENT_B(A,1i,j)
( (SM_CONTENT_B(A)->cols) [j]1 [(i)-(j)+SM_SUBAND_B(A)] )

10.4.2 SUNMatrix_Band functions

The SUNMATRIX_BAND module defines banded implementations of all matrix operations listed in Sec-

tion 10.1.1. Their names are obtained from those in Section 10.1.1 by appending the suffix Band (e.g.

SUNMatCopy_-Band). All the standard matrix operations listed in Section 10.1.1 with the suffix -Band

appended are callable via the FORTRAN 2003 interface by prepending an ‘F’ (e.g. FSUNMatCopy_Band).
The module SUNMATRIX_BAND provides the following additional user-callable routines:

SUNBandMatrix |

Prototype  SUNMatrix SUNBandMatrix(sunindextype N, sunindextype mu, sunindextype ml)
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Description This constructor function creates and allocates memory for a banded SUNMatrix. Its
arguments are the matrix size, N, and the upper and lower half-bandwidths of the matrix,
mu and ml. The stored upper bandwidth is set to mu+ml to accommodate subsequent
factorization in the SUNLINSOL_BAND and SUNLINSOL_LAPACKBAND modules.

F2003 Name This function is callable as FSUNBandMatrix when using the Fortran 2003 interface
module.

SUNBandMatrixStorage

Prototype SUNMatrix SUNBandMatrixStorage(sunindextype N, sunindextype mu,
sunindextype ml, sunindextype smu)

Description This constructor function creates and allocates memory for a banded SUNMatrix. Its
arguments are the matrix size, N, the upper and lower half-bandwidths of the matrix,
mu and ml, and the stored upper bandwidth, smu. When creating a band SUNMatrix,
this value should be

e at least min(N-1,mu+ml) if the matrix will be used by the SUNLINSOL_BAND module;

e exactly equal to mu+ml if the matrix will be used by the SUNLINSOL_LAPACKBAND
module;

e at least mu if used in some other manner.
Note: it is strongly recommended that users call the default constructor, SUNBandMatrix,

in all standard use cases. This advanced constructor is used internally within SUNDIALS
solvers, and is provided to users who require banded matrices for non-default purposes.

SUNBandMatrix Print
Prototype  void SUNBandMatrix_ Print (SUNMatrix A, FILE* outfile)

Description  This function prints the content of a banded SUNMatrix to the output stream specified
by outfile. Note: stdout or stderr may be used as arguments for outfile to print
directly to standard output or standard error, respectively.

SUNBandMatrix_Rows ‘

Prototype  sunindextype SUNBandMatrix Rows(SUNMatrix A)
Description This function returns the number of rows in the banded SUNMatrix.

F2003 Name This function is callable as FSUNBandMatrix_Rows when using the Fortran 2003 interface
module.

SUNBandMatrix Columns |

Prototype  sunindextype SUNBandMatrix_Columns(SUNMatrix A)
Description This function returns the number of columns in the banded SUNMatrix.

F2003 Name This function is callable as FSUNBandMatrix_Columns when using the Fortran 2003 in-
terface module.

| SUNBandMatrix LowerBandwidth |
Prototype  sunindextype SUNBandMatrix_LowerBandwidth(SUNMatrix A)
Description This function returns the lower half-bandwidth of the banded SUNMatrix.

F2003 Name This function is callable as FSUNBandMatrix LowerBandwidth when using the Fortran
2003 interface module.
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SUNBandMatrix UpperBandwidth

Prototype  sunindextype SUNBandMatrix UpperBandwidth(SUNMatrix A)
Description This function returns the upper half-bandwidth of the banded SUNMatrix.

F2003 Name This function is callable as FSUNBandMatrix UpperBandwidth when using the Fortran
2003 interface module.

SUNBandMatrix_StoredUpperBandwidth

Prototype  sunindextype SUNBandMatrix_StoredUpperBandwidth(SUNMatrix A)
Description This function returns the stored upper half-bandwidth of the banded SUNMatrix.

F2003 Name This function is callable as FSUNBandMatrix_StoredUpperBandwidth when using the
Fortran 2003 interface module.

SUNBandMatrix LDim |

Prototype  sunindextype SUNBandMatrix LDim(SUNMatrix A)
Description This function returns the length of the leading dimension of the banded SUNMatrix.

F2003 Name This function is callable as FSUNBandMatrix_LDim when using the Fortran 2003 interface
module.

SUNBandMatrix_Data ‘

Prototype  realtype* SUNBandMatrix Data(SUNMatrix A)
Description This function returns a pointer to the data array for the banded SUNMatrix.

F2003 Name This function is callable as FSUNBandMatrix_Data when using the Fortran 2003 interface
module.

SUNBandMatrix Cols |
Prototype  realtypex* SUNBandMatrix_Cols(SUNMatrix A)

Description This function returns a pointer to the cols array for the banded SUNMatrix.

| SUNBandMatrix_Column |

Prototype  realtype* SUNBandMatrix_Column(SUNMatrix A, sunindextype j)

Description This function returns a pointer to the diagonal entry of the j-th column of the banded
SUNMatrix. The resulting pointer should be indexed over the range —mu to ml.

F2003 Name This function is callable as FSUNBandMatrix_Column when using the Fortran 2003 inter-
face module.

Notes

e When looping over the components of a banded SUNMatrix A, the most efficient approaches are
to:

— First obtain the component array via A_data = SM_DATA B(A) or
A_data = SUNBandMatrix_ Data(A) and then access A_data[i] within the loop.

— First obtain the array of column pointers via A_cols = SM_COLS_B(A) or
A _cols = SUNBandMatrix Cols(A), and then access A_cols[j] [i] within the loop.

— Within a loop over the columns, access the column pointer via
A_colj = SUNBandMatrix_ Column(A,j) and then to access the entries within that column
using SM_COLUMN_ELEMENT B(A_colj,i,j).
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All three of these are more efficient than using SM_ELEMENT B(A,i,j) within a double loop.

e Within the SUNMatMatvec_Band routine, internal consistency checks are performed to ensure
that the matrix is called with consistent NVECTOR implementations. These are currently limited
to: NVECTOR_SERIAL, NVECTOR_OPENMP, and NVECTOR_PTHREADS. As additional compatible
vector implementations are added to SUNDIALS, these will be included within this compatibility
check.

10.4.3 SUNMatrix_Band Fortran interfaces

The SUNMATRIX_BAND module provides a FORTRAN 2003 module as well as FORTRAN 77 style interface
functions for use from FORTRAN applications.

FORTRAN 2003 interface module

The fsunmatrix_band mod FORTRAN module defines interfaces to most SUNMATRIX_BAND C functions
using the intrinsic iso_c_binding module which provides a standardized mechanism for interoperat-
ing with C. As noted in the C function descriptions above, the interface functions are named after
the corresponding C function, but with a leading ‘F’. For example, the function SUNBandMatrix is
interfaced as FSUNBandMatrix.

The FORTRAN 2003 SUNMATRIX_BAND interface module can be accessed with the use statement,
i.e. use fsunmatrix_band mod, and linking to the library libsundials_fsunmatrixband_mod.lib in
addition to the C library. For details on where the library and module file fsunmatrix_band mod.mod
are installed see Appendix A. We note that the module is accessible from the FORTRAN 2003 SUNDIALS
integrators without separately linking to the libsundials_fsunmatrixband mod library.

FORTRAN 77 interface functions

For solvers that include a FORTRAN interface module, the SUNMATRIX_BAND module also includes
the FORTRAN-callable function FSUNBandMatInit(code, N, mu, ml, ier) to initialize this SUNMA-
TRIX_BAND module for a given SUNDIALS solver. Here code is an integer input solver id (1 for CVODE,
2 for IDA, 3 for KINSOL, 4 for ARKODE); N, mu, and m1 are the corresponding band matrix construction
arguments (declared to match C type long int); and ier is an error return flag equal to 0 for success
and -1 for failure. Both code and ier are declared to match C type int. Additionally, when using
ARKODE with a non-identity mass matrix, the FORTRAN-callable function FSUNBandMassMatInit (N,
mu, ml, ier) initializes this SUNMATRIX_BAND module for storing the mass matrix.

10.5 The SUNMatrix_Sparse implementation

The sparse implementation of the SUNMATRIX module provided with SUNDIALS, SUNMATRIX_SPARSE,
is designed to work with either compressed-sparse-column (CSC) or compressed-sparse-row (CSR)
sparse matrix formats. To this end, it defines the content field of SUNMatrix to be the following
structure:

struct _SUNMatrixContent_Sparse {

sunindextype M;
sunindextype N;
sunindextype NNZ;
sunindextype NP;
realtype *data;

int sparsetype;
sunindextype *indexvals;
sunindextype *indexptrs;
/* CSC indices */
sunindextype **rowvals;
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sunindextype **colptrs;
/* CSR indices */

sunindextype **colvals;
sunindextype **rowptrs;

};

A diagram of the underlying data representation for a CSC matrix is shown in Figure 10.2 (the CSR
format is similar). A more complete description of the parts of this content field is given below:
M - number of rows

N - number of columns

NNZ - maximum number of nonzero entries in the matrix (allocated length of data and
indexvals arrays)

NP - number of index pointers (e.g. number of column pointers for CSC matrix). For CSC
matrices NP = N, and for CSR matrices NP = M. This value is set automatically based
the input for sparsetype.

data - pointer to a contiguous block of realtype variables (of length NNZ), containing the
values of the nonzero entries in the matrix

sparsetype - type of the sparse matrix (CSC_MAT or CSR_MAT)

indexvals - pointer to a contiguous block of int variables (of length NNZ), containing the row indices
(if CSC) or column indices (if CSR) of each nonzero matrix entry held in data

indexptrs - pointer to a contiguous block of int variables (of length NP+1). For CSC matrices each
entry provides the index of the first column entry into the data and indexvals arrays,
e.g. if indexptr[3]=7, then the first nonzero entry in the fourth column of the matrix
is located in data[7], and is located in row indexvals[7] of the matrix. The last entry
contains the total number of nonzero values in the matrix and hence points one past the
end of the active data in the data and indexvals arrays. For CSR matrices, each entry
provides the index of the first row entry into the data and indexvals arrays.

The following pointers are added to the S1sMat type for user convenience, to provide a more intuitive

interface to the CSC and CSR sparse matrix data structures. They are set automatically when creating

a sparse SUNMATRIX, based on the sparse matrix storage type.

rowvals - pointer to indexvals when sparsetype is CSC_MAT, otherwise set to NULL.

colptrs - pointer to indexptrs when sparsetype is CSC_MAT, otherwise set to NULL.
colvals - pointer to indexvals when sparsetype is CSR_MAT, otherwise set to NULL.

rowptrs - pointer to indexptrs when sparsetype is CSR_.MAT, otherwise set to NULL.
For example, the 5 x 4 CSC matrix

O = O WwWwo
SO NO W
OO O O
gTO O NO

could be stored in this structure as either

M =
N =
NNZ = 8;
NP = N;
data = {3.0, 1.0, 3.0, 7.0, 1.0, 2.0, 9.0, 5.0};
sparsetype = CSC_MAT;

indexvals = {1, 3, 0, 2, 0, 1, 3, 4};

indexptrs = {0, 2, 4, 5, 8%};

)

’

> o,

or
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M = 5;

N = 4;

NNZ = 10;

NP = N;

data = {3.0, 1.0, 3.0, 7.0, 1.0, 2.0, 9.0, 5.0, *, *};

sparsetype = CSC_MAT;
indexvals = {1, 3, 0, 2, 0, 1, 3, 4, *, *};
indexptrs = {0, 2, 4, 5, 8};

where the first has no unused space, and the second has additional storage (the entries marked with
* may contain any values). Note in both cases that the final value in indexptrs is 8, indicating the
total number of nonzero entries in the matrix.

Similarly, in CSR format, the same matrix could be stored as

’

=2 =
]

’

> o,

NZ
NP = M;

data = {3.0, 1.0, 3.0, 2.0, 7.0, 1.0, 9.0, 5.0};
sparsetype = CSR_MAT;

indexvals = {1, 2, 0, 3, 1, 0, 3, 3};

indexptrs = {0, 2, 4, 5, 7, 8};

=

8;

The header file to include when using this module is sunmatrix/sunmatrix_sparse.h. The SUNMA-
TRIX_SPARSE module is accessible from all SUNDIALS solvers without linking to the
libsundials_sunmatrixsparse module library.

10.5.1 SUNMatrix_Sparse accessor macros

The following macros are provided to access the content of a SUNMATRIX_SPARSE matrix. The prefix
SM_ in the names denotes that these macros are for SUNMatriz implementations, and the suffix _S
denotes that these are specific to the sparse version.
e SM_CONTENT_S
This routine gives access to the contents of the sparse SUNMatrix.

The assignment A_cont = SM_CONTENT_S (A) sets A_cont to be a pointer to the sparse SUNMatrix
content structure.

Implementation:

#define SM_CONTENT_S(A) ( (SUNMatrixContent_Sparse) (A->content) )

e SM_ROWS_S, SM_COLUMNS_S, SM_NNZ_S, SM_NP_S, and SM_SPARSETYPE_S

These macros give individual access to various lengths relevant to the content of a sparse
SUNMatrix.

These may be used either to retrieve or to set these values. For example, the assignment A_rows
= SM_ROWS_S(A) sets A_rows to be the number of rows in the matrix A. Similarly, the assignment
SM_COLUMNS_S(A) = A_cols sets the number of columns in A to equal A_cols.

Implementation:

#define SM_ROWS_S(A) ( SM_CONTENT_S(A)->M )

#define SM_COLUMNS_S(A) ( SM_CONTENT_S(A)->N )

#define SM_NNZ_S(A) ( SM_CONTENT_S(A)->NNZ )
#define SM_NP_S(A) ( SM_CONTENT_S(A)->NP )
#define SM_SPARSETYPE_S(A) ( SM_CONTENT_S(A)->sparsetype )
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Figure 10.2: Diagram of the storage for a compressed-sparse-column matrix. Here A is an M X N sparse
matrix with storage for up to NNZ nonzero entries (the allocated length of both data and indexvals).
The entries in indexvals may assume values from 0 to M — 1, corresponding to the row index (zero-
based) of each nonzero value. The entries in data contain the values of the nonzero entries, with the
row 4, column j entry of A (again, zero-based) denoted as A(i, j). The indexptrs array contains N+ 1
entries; the first N denote the starting index of each column within the indexvals and data arrays,
while the final entry points one past the final nonzero entry. Here, although NNZ values are allocated,
only nz are actually filled in; the greyed-out portions of data and indexvals indicate extra allocated
space.
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e SM_DATA_S, SM_INDEXVALS_S, and SM_INDEXPTRS_S
These macros give access to the data and index arrays for the matrix entries.
The assignment A_data = SM_DATA_S(A) sets A_data to be a pointer to the first component of
the data array for the sparse SUNMatrix A. The assignment SM_DATA_S(A) = A_data sets the
data array of A to be A_data by storing the pointer A_data.
Similarly, the assignment A_indexvals = SM_INDEXVALS_S(A) sets A_indexvals to be a pointer
to the array of index values (i.e. row indices for a CSC matrix, or column indices for a CSR
matrix) for the sparse SUNMatrix A. The assignment A_indexptrs = SM_INDEXPTRS_S(A) sets
A_indexptrs to be a pointer to the array of index pointers (i.e. the starting indices in the
data/indexvals arrays for each row or column in CSR or CSC formats, respectively).

Implementation:

#define SM_DATA_S(A) ( SM_CONTENT_S(A)->data )
#define SM_INDEXVALS_S(A)  ( SM_CONTENT_S(A)->indexvals )
#define SM_INDEXPTRS_S(A)  ( SM_CONTENT_S(A)->indexptrs )

10.5.2 SUNMatrix_Sparse functions

The SUNMATRIX_SPARSE module defines sparse implementations of all matrix operations listed in
Section 10.1.1. Their names are obtained from those in Section 10.1.1 by appending the suffix _Sparse
(e.g. SUNMatCopy_Sparse). All the standard matrix operations listed in Section 10.1.1 with the
suffix _Sparse appended are callable via the FORTRAN 2003 interface by prepending an ‘F’ (e.g.
FSUNMatCopy_-Sparse).

The module SUNMATRIX_SPARSE provides the following additional user-callable routines:

SUNSparseMatrix‘

Prototype = SUNMatrix SUNSparseMatrix(sunindextype M, sunindextype N,
sunindextype NNZ, int sparsetype)

Description This function creates and allocates memory for a sparse SUNMatrix. Its arguments
are the number of rows and columns of the matrix, M and N, the maximum number of
nonzeros to be stored in the matrix, NNZ, and a flag sparsetype indicating whether to
use CSR or CSC format (valid arguments are CSR_MAT or CSC_MAT).

F2003 Name This function is callable as FSUNSparseMatrix when using the Fortran 2003 interface
module.

SUNSparseFromDenseMatrix

Prototype SUNMatrix SUNSparseFromDenseMatrix(SUNMatrix A, realtype droptol,
int sparsetype);

Description This function creates a new sparse matrix from an existing dense matrix by copying all
values with magnitude larger than droptol into the sparse matrix structure.

Requirements:

e A must have type SUNMATRIX DENSE;

e droptol must be non-negative;

e sparsetype must be either CSC_MAT or CSR_MAT.
The function returns NULL if any requirements are violated, or if the matrix storage
request cannot be satisfied.

F2003 Name This function is callable as FSUNSparseFromDenseMatrix when using the Fortran 2003
interface module.
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SUNSparseFromBandMatrix

Prototype SUNMatrix SUNSparseFromBandMatrix(SUNMatrix A, realtype droptol,
int sparsetype);

Description This function creates a new sparse matrix from an existing band matrix by copying all
values with magnitude larger than droptol into the sparse matrix structure.

Requirements:

e A must have type SUNMATRIX_BAND;

e droptol must be non-negative;

e sparsetype must be either CSC_MAT or CSR_MAT.
The function returns NULL if any requirements are violated, or if the matrix storage
request cannot be satisfied.

F2003 Name This function is callable as FSUNSparseFromBandMatrix when using the Fortran 2003
interface module.

SUNSparseMatrix_Realloc

Prototype  int SUNSparseMatrix Realloc(SUNMatrix A)

Description This function reallocates internal storage arrays in a sparse matrix so that the resulting
sparse matrix has no wasted space (i.e. the space allocated for nonzero entries equals
the actual number of nonzeros, indexptrs[NP]). Returns 0 on success and 1 on failure
(e.g. if the input matrix is not sparse).

F2003 Name This function is callable as FSUNSparseMatrix Realloc when using the Fortran 2003
interface module.

SUNSparseMatrix_Reallocate

Prototype  int SUNSparseMatrix_Reallocate(SUNMatrix A, sunindextype NNZ)

Description This function reallocates internal storage arrays in a sparse matrix so that the resulting
sparse matrix has storage for a specified number of nonzeros. Returns 0 on success and
1 on failure (e.g. if the input matrix is not sparse or if NNZ is negative).

F2003 Name This function is callable as FSUNSparseMatrix_Reallocate when using the Fortran 2003
interface module.

SUNSparseMatrix_Print

Prototype  void SUNSparseMatrix Print(SUNMatrix A, FILE* outfile)

Description This function prints the content of a sparse SUNMatrix to the output stream specified
by outfile. Note: stdout or stderr may be used as arguments for outfile to print
directly to standard output or standard error, respectively.

SUNSparseMatrix_Rows

Prototype  sunindextype SUNSparseMatrix Rows(SUNMatrix A)
Description This function returns the number of rows in the sparse SUNMatrix.

F2003 Name This function is callable as FSUNSparseMatrix_Rows when using the Fortran 2003 inter-
face module.



10.5 The SUNMatrix_Sparse implementation 297

SUNSparseMatrix_Columns

Prototype  sunindextype SUNSparseMatrix_Columns(SUNMatrix A)
Description This function returns the number of columns in the sparse SUNMatrix.

F2003 Name This function is callable as FSUNSparseMatrix_Columns when using the Fortran 2003
interface module.

SUNSparseMatrix_NNZ

Prototype  sunindextype SUNSparseMatrix NNZ(SUNMatrix A)

Description This function returns the number of entries allocated for nonzero storage for the sparse
matrix SUNMatrix.

F2003 Name This function is callable as FSUNSparseMatrix NNZ when using the Fortran 2003 inter-
face module.

SUNSparseMatrix_NP

Prototype  sunindextype SUNSparseMatrix NP(SUNMatrix A)

Description  This function returns the number of columns/rows for the sparse SUNMatrix, depending
on whether the matrix uses CSC/CSR, format, respectively. The indexptrs array has
NP+1 entries.

F2003 Name This function is callable as FSUNSparseMatrix NP when using the Fortran 2003 interface
module.

SUNSparseMatrix_SparseType

Prototype  int SUNSparseMatrix_SparseType(SUNMatrix A)
Description This function returns the storage type (CSR.MAT or CSC_MAT) for the sparse SUNMatrix.

F2003 Name This function is callable as FSUNSparseMatrix_SparseType when using the Fortran 2003
interface module.

SUNSparseMatrix Data

Prototype  realtypex SUNSparseMatrix Data(SUNMatrix A)
Description This function returns a pointer to the data array for the sparse SUNMatrix.

F2003 Name This function is callable as FSUNSparseMatrix_Data when using the Fortran 2003 inter-
face module.

SUNSparseMatrix_IndexValues

Prototype  sunindextype* SUNSparseMatrix_IndexValues(SUNMatrix A)

Description This function returns a pointer to index value array for the sparse SUNMatrix: for CSR
format this is the column index for each nonzero entry, for CSC format this is the row
index for each nonzero entry.

F2003 Name This function is callable as FSUNSparseMatrix_IndexValues when using the Fortran
2003 interface module.
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SUNSparseMatrix_IndexPointers

Prototype  sunindextypex SUNSparseMatrix_IndexPointers(SUNMatrix A)

Description This function returns a pointer to the index pointer array for the sparse SUNMatrix:
for CSR format this is the location of the first entry of each row in the data and
indexvalues arrays, for CSC format this is the location of the first entry of each column.

F2003 Name This function is callable as FSUNSparseMatrix_IndexPointers when using the Fortran
2003 interface module.

Within the SUNMatMatvec_Sparse routine, internal consistency checks are performed to ensure that

the matrix is called with consistent NVECTOR implementations. These are currently limited to: NVEC-
TOR_SERIAL, NVECTOR_OPENMP, NVECTOR_PTHREADS, and NVECTOR_CUDA when using managed
memory. As additional compatible vector implementations are added to SUNDIALS, these will be
included within this compatibility check.

10.5.3 SUNMatrix_Sparse Fortran interfaces

The SUNMATRIX_SPARSE module provides a FORTRAN 2003 module as well as FORTRAN 77 style
interface functions for use from FORTRAN applications.

FORTRAN 2003 interface module

The fsunmatrix_sparse_mod FORTRAN module defines interfaces to most SUNMATRIX_SPARSE C func-
tions using the intrinsic iso_c_binding module which provides a standardized mechanism for interop-
erating with C. As noted in the C function descriptions above, the interface functions are named after
the corresponding C function, but with a leading ‘F’. For example, the function SUNSparseMatrix is
interfaced as FSUNSparseMatrix.

The FORTRAN 2003 SUNMATRIX_SPARSE interface module can be accessed with the use statement,
i.e. use fsunmatrix_sparse_mod, and linking to the library libsundials_fsunmatrixsparse_mod.lib
in addition to the C library. For details on where the library and module file f sunmatrix_sparse mod.mod
are installed see Appendix A. We note that the module is accessible from the FORTRAN 2003 SUNDIALS
integrators without separately linking to the 1ibsundials_fsunmatrixsparse_mod library.

FORTRAN 77 interface functions

For solvers that include a Fortran interface module, the SUNMATRIX_SPARSE module also includes
the Fortran-callable function FSUNSparseMatInit(code, M, N, NNZ, sparsetype, ier) to initial-
ize this SUNMATRIX_SPARSE module for a given SUNDIALS solver. Here code is an integer input for the
solver id (1 for CVODE, 2 for IDA, 3 for KINSOL, 4 for ARKODE); M, N and NNZ are the corresponding
sparse matrix construction arguments (declared to match C type long int); sparsetype is an integer
flag indicating the sparse storage type (0 for CSC, 1 for CSR); and ier is an error return flag equal to
0 for success and -1 for failure. Each of code, sparsetype and ier are declared so as to match C type
int. Additionally, when using ARKODE with a non-identity mass matrix, the Fortran-callable function
FSUNSparseMassMatInit(M, N, NNZ, sparsetype, ier) initializes this SUNMATRIX_SPARSE mod-
ule for storing the mass matrix.

10.6 The SUNMatrix SLUNRIloc implementation

The SUNMATRIX_SLUNRLOC implementation of the SUNMATRIX module provided with SUNDIALS is an
adapter for the SuperMatrix structure provided by the SuperLU_DIST sparse matrix factorization
and solver library written by X. Sherry Li [8, 31, 46, 47]. It is designed to be used with the SUNLIN-
SOL_SUPERLUDIST linear solver discussed in Section 11.10. To this end, it defines the content field of
SUNMatrix to be the following structure:
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struct _SUNMatrixContent_SLUNRloc {

booleantype own_data;

gridinfo_t *grid;

sunindextype *row_to_proc;

pdgsmv_comm_t *gsmv_comm;

SuperMatrix  *A_super;

SuperMatrix  *ACS_super;
};

A more complete description of the this content field is given below:

own_data - a flag which indicates if the SUNMatrix is responsible for freeing A_super
grid - pointer to the SuperLU_DIST structure that stores the 2D process grid

row_to_proc - a mapping between the rows in the matrix and the process it resides on; will be NULL
until the SUNMatMatvecSetup routine is called

gsmv_comm - pointer to the SuperLU_DIST structure that stores the communication information
needed for matrix-vector multiplication; will be NULL until the SUNMatMatvecSetup routine is
called

A super - pointer to the underlying SuperLU_DIST SuperMatrix with Stype = SLUNR_loc, Dtype
= SLUD, Mtype = SLU_GE; must have the full diagonal present to be used with SUNMatScaleAddI
routine

ACS_super - a column-sorted version of the matrix needed to perform matrix-vector multiplication;
will be NULL until the routine SUNMatMatvecSetup routine is called

The header file to include when using this module is sunmatrix/sunmatrix_slunrloc.h. The installed
module library to link to is libsundials_sunmatrixslunrloc.l4b where .1%b is typically .so for
shared libraries and .a for static libraries.

10.6.1 SUNMatrix_SLUNRIloc functions

The module SUNMATRIX_SLUNRLOC provides the following user-callable routines:

| SUNMatrix SLUNRloc |

Call A = SUNMatrix_SLUNRloc(Asuper, grid);
Description  The function SUNMatrix_SLUNRloc creates and allocates memory for a SUNMATRIX _SLUNRLOC
object.

Arguments Asuper (SuperMatrix*) a fully-allocated SuperLU_DIST SuperMatrix that the SUN-
Matrix will wrap; must have Stype = SLU_NR_loc, Dtype = SLUD, Mtype = SLUGE
to be compatible

grid (gridinfo_t*) the initialized SuperLU_DIST 2D process grid structure

Return value a SUNMatrix object if Asuper is compatible else NULL
Notes

| SUNMatrix SLUNRloc Print |
Call SUNMatrix_SLUNRloc Print (A, fp);
Description The function SUNMatrix SLUNRloc _Print prints the underlying SuperMatrix content.

Arguments A (SUNMatrix) the matrix to print
fp (FILE) the file pointer used for printing

Return value void
Notes



A

300 Description of the SUNMatrix module

SUNMatrix_SLUNRloc_SuperMatrix

Call Asuper = SUNMatrix_SLUNRloc_SuperMatrix(A);

Description  The function SUNMatrix SLUNRloc_SuperMatrix provides access to the underlying Su-
perLU_DIST SuperMatrix of A.

Arguments A (SUNMatrix) the matrix to access
Return value SuperMatrix*

Notes

’ SUNMatrix_SLUNRloc_ProcessGrid
Call grid = SUNMatrix_SLUNRloc_ProcessGrid(A);

Description  The function SUNMatrix_SLUNRloc_ProcessGrid provides access to the SuperLU_DIST
gridinfo_t structure associated with A.

Arguments A (SUNMatrix) the matrix to access
Return value gridinfo_t*

Notes

[ SUNMatrix SLUNRloc_OwnData
Call does_own_data = SUNMatrix_SLUNRloc_OwnData(A);

Description The function SUNMatrix SLUNRloc_OwnData returns true if the SUNMatrix object is
responsible for freeing A_super, otherwise it returns false.

Arguments A (SUNMatrix) the matrix to access
Return value booleantype
Notes
The SUNMATRIX_SLUNRLOC module defines implementations of all generic SUNMatrix operations
listed in Section 10.1.1:
e SUNMatGetID_SLUNRloc - returns SUNMATRIX_SLUNRLOC

SUNMatClone_SLUNRloc

e SUNMatDestroy_SLUNRloc

e SUNMatSpace_SLUNRloc - this only returns information for the storage within the matrix inter-
face, i.e. storage for row_to_proc

e SUNMatZero_SLUNRloc
e SUNMatCopy_SLUNRloc

e SUNMatScaleAdd _SLUNRloc - performs A = cA + B, but A and B must have the same sparsity
pattern

e SUNMatScaleAddI_SLUNRloc - performs A = cA + I, but the diagonal of A must be present

e SUNMatMatvecSetup_SLUNRloc - initializes the SuperLU_DIST parallel communication struc-
tures needed to perform a matrix-vector product; only needs to be called before the first call to
SUNMatMatvec or if the matrix changed since the last setup

e SUNMatMatvec_SLUNRloc

The SUNMATRIX_SLUNRLOC module requires that the complete diagonal, i.e. nonzeros and zeros,
is present in order to use the SUNMatScaleAddI operation.
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10.7 The SUNMatrix_cuSparse implementation

The SUNMATRIX_CUSPARSE implementation of the SUNMatrix module provided with SUNDIALS, is an
interface to the NVIDIA cuSPARSE matrix for use on NVIDIA GPUs [7]. All data stored by this
matrix implementation resides on the GPU at all times. The implementation currently supports
the cuSPARSE CSR matrix format described in the cuSPARSE documentation as well as a unique
low-storage format for block-diagonal matrices of the form

Ag O 0
0 A, 0
A= .
0 0 - A,

where all the block matrices A; share the same sparsity pattern. We will refer to this format as BCSR
(not to be confused with the canonical BSR format where each block is stored as dense). In this format,
the CSR column indices and row pointers are only stored for the first block and are computed only
as necessary for other blocks. This can drastically reduce the amount of storage required compared
to the regular CSR format when there is a large number of blocks. This format is well-suited for,
and intended to be used with the SUNLinearSolver_cuSolverSp_batchQR linear solver (see Section
11.12).

The header file to include when using this module is sunmatrix/sunmatrix_cusparse.h. The
installed library to link to is 1ibsundials_sunmatrixcusparse. l7b where . 14b is typically .so for
shared libraries and .a for static libraries.

The SUNMatrix_cuSparse module is experimental and subject to change.

10.7.1 SUNMatrix_cuSparse functions

The SUNMATRIX_CUSPARSE module defines GPU-enabled sparse implementations of all matrix opera-
tions listed in Section 10.1.1 except for the SUNMatSpace and SUNMatMatvecSetup operations:

1. SUNMatGetID_cuSparse — returns SUNMATRIX_CUSPARSE
2. SUNMatClone_cuSparse

SUNMatDestroy_cuSparse

=~ W

SUNMatZero_cuSparse
5. SUNMatCopy-_cuSparse

6. SUNMatScaleAdd_cuSparse — performs A = cA+ B, where A and B must have the same sparsity
pattern

7. SUNMatScaleAddI_cuSparse — performs A = cA + I, where the diagonal of A must be present

8. SUNMatMatvec_cuSparse

In addition, the SUNMATRIX_CUSPARSE module defines the following implementation specific
functions:

SUNMatrix_cuSparse_NewCSR

Call A = SUNMatrix_cuSparse NewCSR(M, N, NNZ, cusp)

Description  This constructor function creates and allocates memory for a SUNMATRIX_CUSPARSE
SUNMatrix that uses the CSR storage format.

Arguments M (int) the number of matrix rows
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N (int) the number of matrix columns
NNZ (int) the number of matrix nonzeros

cusp (cusparseHandle_t) a valid cusparseHandle_t

Return value a SUNMatrix object if successful else NULL

SUNMatrix_cuSparse_NewBlockCSR ‘

Call A = SUNMatrix_cuSparse_NewBlockCSR(nblocks, blockrows, blockcols, blocknnz,
cusp)

Description  This constructor function creates and allocates memory for a SUNMATRIX_CUSPARSE
SUNMatrix that leverages the SUNMAT_CUSPARSE_BCSR storage format to store a block
diagonal matrix where each block shares the same sparsity pattern. The blocks must
be square.

Arguments nblocks int) the number of matrix blocks
blockrows

)
int) the number of rows for a block
) the number of columns for a block

(

(
blockcols (int
blocknnz (int) the number of nonzeros in a block

cusp a valid cusparseHandle_t
Return value a SUNMatrix object if successful else NULL

Notes The SUNMAT_CUSPARSE BCSR format currently only supports square matrices.

SUNMatrix_cuSparse_MakeCSR

Call A = SUNMatrix_cuSparse_MakeCSR(mat_descr, M, N, NNZ, rowptrs, colind, data,
cusp)

Description  This constructor function creates and allocates memory for a SUNMATRIX_CUSPARSE
SUNMatrix that uses the CSR storage format from the user provided pointers.

Arguments mat_decsr a valid cusparseMatDescr_t object; must use CUSPARSE_INDEX_BASE_ZERO
indexing

M

N

NNZ

(int) the number of matrix rows
(
(
rowptrs (in
(
(

int) the number of matrix columns
int) the number of matrix nonzeros
*)a contiguous array of the CSR row pointers

t
colind int*) a contiguous array of the CSR column indices

data realtype*) a contiguous array of the nonzero data

cusp (cusparseHandle_t) a valid cusparseHandle_t

Return value a SUNMatrix object if successful else NULL

SUNMatrix_cuSparse_Rows ‘

Call M = SUNMatrix_cuSparse_Rows(A)
Description  This function returns the number of rows in the sparse SUNMatrix.
Arguments A (SUNMatrix)

Return value the number of rows in the sparse SUNMatrix
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SUNMatrix_cuSparse_Columns ‘

Call N = SUNMatrix_cuSparse_Columns (A)
Description  This function returns the number of columns in the sparse SUNMatrix.
Arguments A (SUNMatrix)

Return value the number of columns in the sparse SUNMatrix

SUNMatrix_cuSparse NNZ|

Call nnz = SUNMatrix_cuSparse_NNZ(A)
Description  This function returns the number of nonzeros in the sparse SUNMatrix.
Arguments A (SUNMatrix)

Return value the number of nonzeros in the sparse SUNMatrix

SUNMatrix_cuSparse_SparseType ‘

Call type = SUNMatrix_cuSparse_SparseType(A)

Description  This function returns the sparsity format for the sparse SUNMatrix.
Arguments A (SUNMatrix)

Return value the SUNMAT_CUSPARSE_CSR or SUNMAT_CUSPARSE_BCSR sparsity formats

SUNMatrix_cuSparse_IndexValues ‘

Call colind = SUNMatrix_cuSparse_IndexValues(A)
Description  This function returns a pointer to the index value array for the sparse SUNMatrix.
Arguments A (SUNMatrix)

Return value for the CSR format this is an array of the column indices for each nonzero entry. For
the BCSR format this is an array of the column indices for each nonzero entry in the
first block only.

SUNMatrix_cuSparse_IndexPointers ‘

Call rowptrs = SUNMatrix_cuSparse_IndexPointers(A)
Description  This function returns a pointer to the index pointers array for the sparse SUNMatrix.
Arguments A (SUNMatrix)

Return value for the CSR format this is an array of the locations of the first entry of each row in the
data and indexvalues arrays, for the BCSR format this is an array of the locations of
each row in the data and indexvalues arrays in the first block only.

SUNMatrix_cuSparse_NumBlocks ‘

Call nblocks = SUNMatrix_cuSparse_NumBlocks(A)
Description  This function returns the number of blocks in the sparse SUNMatrix.
Arguments A (SUNMatrix)

Return value the number of matrix blocks
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SUNMatrix_cuSparse_BlockRows ‘

Call blockrows = SUNMatrix_cuSparse_BlockRows(A)
Description This function returns the number of rows of a block of the sparse SUNMatrix.
Arguments A (SUNMatrix)

Return value the number of rows of a block

SUNMatrix_cuSparse_BlockColumns ‘

Call blockrows = SUNMatrix_cuSparse_BlockColumns (A)
Description  This function returns the number of columns of a block of the sparse SUNMatrix.
Arguments A (SUNMatrix)

Return value the number of columns of a block

SUNMatrix_cuSparse_BlockNNZ \

Call blockdim = SUNMatrix_cuSparse BlockNNZ(A)
Description  This function returns the nonzeros of a block of the sparse SUNMatrix.
Arguments A (SUNMatrix)

Return value the number of nonzeros of a block

SUNMatrix_cuSparse_BlockData ‘

Call nzdata = SUNMatrix_cuSparse_BlockData(A, blockidx)

Description  This function returns a pointer to the start of the nonzero values in the data array for
given block index. The first block in the SUNMatrix is index 0, the second block is index
1, and so on.

Arguments A (SUNMatrix)
blockidx (int) the index of the desired block

Return value a pointer to the start of the nonzero values in the data array for given block index

SUNMatrix_cuSparse_CopyToDevice ‘

Call retval = SUNMatrix_cuSparse_CopyToDevice(A, h_data, h_idxptrs, h_idxvals)

Description  This functions copies the matrix information to the GPU device from the provided host
arrays. A user may provide NULL for any of h_data, h_idxptrs, or h_idxvals to avoid
copying that information.

Arguments A (SUNMatrix)

h_data (realtype*) a pointer to an allocated array of at least SUNMatrix_cuSparse_NNZ(A)
* sizeof (realtype) bytes; the nonzero values will be copied from this array
onto the device

h_idxptrs (int*) a pointer to an allocated array of at least (SUNMatrix_cuSparse BlockDim(A)+1)
* sizeof (int) bytes; the index pointers will be copied from this array onto
the device

h_idxvals (int*) a pointer to an allocated array of at least SUNMatrix_cuSparse BlockNNZ (A)
* sizeof (int) bytes; the index values will be copied from this array onto
the device

Return value SUNMAT_SUCCESS if the copy operation(s) were successful, or a nonzero error code oth-
erwise.
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SUNMatrix_cuSparse_CopyFromDevice

Call

Description

Arguments

Return value

retval = SUNMatrix_cuSparse_CopyFromDevice(A, h_data, h_idxptrs, h_idxvals)

This functions copies the matrix information from the GPU device to the provided host
arrays. A user may provide NULL for any of h_data, h_idxptrs, or h_idxvals to avoid
copying that information.

A (SUNMatrix)

h_data (realtype*) a pointer to an allocated array of at least SUNMatrix_cuSparse NNZ(A)

* sizeof (realtype) bytes; the nonzero values will be copied into this array
from the device

h_idxptrs (int*) a pointer to an allocated array of at least (SUNMatrix_cuSparse BlockDim(A)+1)

* sizeof (int) bytes; the index pointers will be copied into this array from
the device

h_idxvals (int*) a pointer to an allocated array of at least SUNMatrix_cuSparse_BlockNNZ (A)

* sizeof (int) bytes; the index values will be copied into this array from
the device

SUNMAT_SUCCESS if the copy operation(s) were successful, or a nonzero error code oth-
erwise.

SUNMatrix_cuSparse_SetKernelExecPolicy ‘

Call

Description

Arguments

Return value

Notes

retval = SUNMatrix_cuSparse_SetKernelExecPolicy(A, exec_policy);

This function sets the execution policies which control the kernel parameters utilized
when launching the CUDA kernels. By default the matrix is setup to use a policy which
tries to leverage the structure of the matrix. See section 9.9.2 for more information
about the SUNCudaExecPolicy class.

A (SUNMatrix)
exec_policy (SUNCudaExecPolicyx)

SUNMAT_SUCCESS if the operation(s) were successful, or a nonzero error code otherwise.

All matrices and vector used in a single instance of a SUNDIALS solver must use the
same CUDA stream, and the CUDA stream must be set prior to solver initialization.

SUNMatrix_cuSparse_SetFixedPattern

Call

Description

Arguments

Return value

retval = SUNMatrix_cuSparse_SetFixedPattern(A, yesno)

This function changes the behavior of the the SUNMatZero operation on the SUNMatrix
object A. By default the matrix sparsity pattern is not considered to be fixed, thus,
the SUNMatZero operation zeros out all data array as well as the indexvalues and
indexpointers arrays. Providing a value of 1 or SUNTRUE for the yesno argument
changes the behavior of SUNMatZero on A so that only the data is zeroed out, but not
the indexvalues or indexpointers arrays. Providing a value of 0 or SUNFALSE for the
yesno argument is equivalent to the default behavior.

A (SUNMatrix)
yesno (booleantype)

SUNMAT_SUCCESS if the operation(s) were successful, or a nonzero error code otherwise.

10.7.2 SUNMatrix_cuSparse Usage Notes

The SUNMATRIX_CUSPARSE module only supports 32-bit indexing, thus SUNDIALS must be built for
32-bit indexing to use this module.
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The SUNMATRIX_CUSPARSE module can be used with CUDA streams by calling the cuSPARSE func-
tion cusparseSetStream on the the cusparseHandle_t that is provided to the SUNMATRIX_CUSPARSE
constructor.

When using the SUNMATRIX_CUSPARSE module with a SUNDIALS package (e.g. CVODE), the stream
given to cuSPARSE should be the same stream used for the NVECTOR object that is provided to the
package, and the NVECTOR object given to the SUNMatvec operation. If different streams are utilized,
synchronization issues may occur.

10.8 The SUNMATRIX MAGMADENSE implementation

The SUNMATRIX MAGMADENSE implementation of the SUNDIALS SUNMatrix API interfaces to the MAGMA
() linear algebra library, and can target NVIDIA’s CUDA programming model or AMD’s HIP pro-
gramming model [55]. All data stored by this matrix implementation resides on the GPU at all times.
The implementation currently supports a standard LAPACK column-major storage format as well as
a low-storage format for block-diagonal matrices

Ag O 0

0 A, 0
A= .

0 0 - A,

This matrix implementation is best paired with the SUNLINEARSOLVER_MAGMADENSE SUNLinearSolver.

The header file to include when using this module is sunmatrix/sunmatrix magmadense.h. The
installed library to link to is 1ibsundials_sunmatrixmagmadense. lib where .14b is typically .so
for shared libraries and .a for static libraries.

The SUNMATRIX_MAGMADENSE module is experimental and subject to change.

10.8.1 SUNMATRIX_MAGMADENSE functions

The SUNMATRIX_MAGMADENSE module defines GPU-enabled implementations of all matrix operations
listed in Section 10.1.1.

1. SUNMatGetID MagmaDense — returns SUNMATRIX_MAGMADENSE
2. SUNMatClone_MagmaDense

3. SUNMatDestroy_MagmaDense

4. SUNMatZero_MagmaDense

5. SUNMatCopy_MagmaDense

6. SUNMatScaleAdd_MagmaDense

7. SUNMatScaleAddI _MagmaDense

8. SUNMatMatvecSetup_-MagmaDense

9. SUNMatMatvec_MagmaDense

10. SUNMatSpace_MagmaDense

In addition, the SUNMATRIX_MAGMADENSE module defines the following implementation spe-
cific functions:


https://icl.utk.edu/magma/

10.8 The SUNMATRIX_MAGMADENSE implementation 307

SUNMatrix MagmaDense

Call

Description

Arguments

Return value

A = SUNMatrix MagmaDense(M, N, memtype, memhelper, queue)

This constructor function creates and allocates memory for an M x N SUNMATRIX_MAGMADENSE
SUNMatrix.

M (sunindextype) the number of matrix rows
N (sunindextype) the number of matrix columns
memtype  (SUNMemoryType) the type of memory to use for the matrix data; can be

SUNMEMTYPE_UVM or SUNMEMTYPE_DEVICE.
memhelper (SUNMemoryHelper) the memory helper used for allocating data
queue a cudaStream_t when using CUDA or a hipStream_t when using HIP

A SUNMatrix object if successful else NULL.

SUNMatrix_MagmaDenseBlock

Call

Description

Arguments

Return value

Notes

A = SUNMatrixJ"[agmaDenseBlock(nblocks, M_block, N_block, memtype, memhelper,
queue)

This constructor function creates and allocates memory for a SUNMATRIX_MAGMADENSE
SUNMatrix that is block diagonal with nblocks blocks of size M x N.

nblocks (sunindextype) the number of matrix blocks

M block  (sunindextype) the number of matrix rows in each block

N_block (sunindextype) the number of matrix columns in each block

memtype  (SUNMemoryType) the type of memory to use for the matrix data; can be
SUNMEMTYPE_UVM or SUNMEMTYPE DEVICE.

memhelper (SUNMemoryHelper) the memory helper used for allocating data
queue a cudaStream_t when using CUDA or a hipStream_t when using HIP

A SUNMatrix object if successful else NULL.

The block diagonal format currently supports square matrices only.

SUNMatrix_MagmaDense_Rows

Call

Description

Arguments

Return value

M = SUNMatrix_MagmaDense Rows (A)

This function returns the rows dimension for the M x N SUNMatrix. For block diagonal
matrices, this is computed as Mo X nblocks.

A (SUNMatrix)

The number of rows in the SUNMatrix.

SUNMatrix_MagmaDense_Columns ‘

Call

Description

Arguments

N = SUNMatrix MagmaDense_Columns (A)

This function returns the columns dimension for the M x N SUNMatrix. For block
diagonal matrices, this is computed as Npjock X nblocks.

A (SUNMatrix)

Return value The number of columns in the SUNMatrix.
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SUNMatrix MagmaDense_BlockRows ‘

Call
Description

Arguments

M = SUNMatrix_MagmaDense BlockRows (A)

This function returns the number of rows in a block of the SUNMatrix.
A (SUNMatrix)

Return value The number of rows in a block of the SUNMatrix.

SUNMatrix_MagmaDense_BlockColumns

Call
Description

Arguments

N = SUNMatrix MagmaDense BlockColumns (A)
This function returns the number of columns in a block of the SUNMatrix.
A (SUNMatrix)

Return value The number of columns in a block of the SUNMatrix.

SUNMatrix MagmaDense_LData ‘

Call
Description

Arguments

ldata = SUNMatrix_MagmaDense_LData(A)
This function returns the length of the data array for the SUNMatrix.
A (SUNMatrix)

Return value The length of the data array for the SUNMatrix.

SUNMatrix_MagmaDense_NumBlocks ‘

Call
Description

Arguments

nblocks = SUNMatrix MagmaDense _NumBlocks (A)

This function returns the number of blocks in the SUNMatrix.
A (SUNMatrix)

Return value The number of matrix blocks.

SUNMatrix_MagmaDense Data ‘

Call
Description

Arguments

data = SUNMatrix_MagmaDense Data(A)
This function returns the SUNMatrix data array.
A (SUNMatrix)

Return value An array of pointers to the data arrays for each block in the SUNMatrix.

SUNMatrix_MagmaDense_BlockData ‘

Call

Description

Arguments

data = SUNMatrix MagmaDense BlockData(A)

This function returns an array of pointers that point to the start of the data array for
each block.

A (SUNMatrix)

Return value An array of pointers to the data arrays for each block in the SUNMatrix.

SUNMatrix MagmaDense_Block ‘

Call
Description

Arguments

data = SUNMatrix_MagmaDense Block(A, k)
This function returns a pointer to the data for block k.
A (SUNMatrix)

Return value A pointer to the start of the data array for block k£ in the SUNMatrix.

Notes

No bounds-checking is performed, & should be stricly less than nblocks.
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SUNMatrix_MagmaDense_Column ‘

Call data = SUNMatrix_MagmaDense_Column(4, j)

Description  This function returns a pointer to the data for column j of the matrix.
Arguments A (SUNMatrix)

Return value A pointer to the start of the data array for column j of the SUNMatrix.

Notes No bounds-checking is performed, j should be stricly less than nblocks % Npjock-

SUNMatrix_MagmaDense_BlockColumn ‘

Call data = SUNMatrix MagmaDense_Column(A, k, j)

Description  This function returns a pointer to the data for column j of block k.

Arguments A (SUNMatrix)

Return value A pointer to the start of the data array for column j of block k in the SUNMatrix.

Notes No bounds-checking is performed.

SUNMatrix_MagmaDense_CopyToDevice

Call retval = SUNMatrix MagmaDense_CopyToDevice(A, h_data)
Description  This functions copies the matrix data to the GPU device from the provided host array.

Arguments A (SUNMatrix)
h data (realtypex)

Return value SUNMAT_SUCCESS if the copy operation was successful, or a nonzero error code otherwise

SUNMatrix_MagmaDense_CopyFromDevice ‘

Call retval = SUNMatrix_MagmaDense_CopyFromDevice(A, h_data)
Description  This functions copies the matrix data from the GPU device to the provided host array.

Arguments A (SUNMatrix)
h data (realtypex*)

Return value SUNMAT_SUCCESS if the copy operation was successful, or a nonzero error code otherwise

10.8.2 SUNMATRIX_MAGMADENSE Usage Notes

When using the SUNMATRIX _MAGMADENSE module with a SUNDIALS package (e.g. CVODE), the stream
given to matrix should be the same stream used for the NVECTOR object that is provided to the
package, and the NVECTOR object given to the SUNMatvec operation. If different streams are utilized,
synchronization issues may occur.

A






Chapter 11

Description of the
SUNLinearSolver module

For problems that involve the solution of linear systems of equations, the SUNDIALS packages oper-
ate using generic linear solver modules defined through the SUNLINSOL API. This allows SUNDIALS
packages to utilize any valid SUNLINSOL implementation that provides a set of required functions.
These functions can be divided into three categories. The first are the core linear solver functions.
The second group consists of “set” routines to supply the linear solver object with functions provided
by the SUNDIALS package, or for modification of solver parameters. The last group consists of “get”
routines for retrieving artifacts (statistics, residual vectors, etc.) from the linear solver. All of these
functions are defined in the header file sundials/sundials_linearsolver.h.

The implementations provided with SUNDIALS work in coordination with the SUNDIALS generic
NVECTOR and SUNMATRIX modules to provide a set of compatible data structures and solvers for the
solution of linear systems using direct or iterative (matrix-based or matrix-free) methods. Moreover,
advanced users can provide a customized SUNLinearSolver implementation to any SUNDIALS package,
particularly in cases where they provide their own NVECTOR and/or SUNMATRIX modules.

Historically, the SUNDIALS packages have been designed to specifically leverage the use of either
direct linear solvers or matrix-free, scaled, preconditioned, iterative linear solvers. However, matrix-
based iterative linear solvers are also supported.

The iterative linear solvers packaged with SUNDIALS leverage scaling and preconditioning, as ap-
plicable, to balance error between solution components and to accelerate convergence of the linear
solver. To this end, instead of solving the linear system Ax = b directly, these apply the underlying
iterative algorithm to the transformed system

Ai=b (11.1)
where
A= 8P AP ST
b= S P 'b, (11.2)
T = SQPQLL‘,
and where

e P is the left preconditioner,
e P, is the right preconditioner,
e S is a diagonal matrix of scale factors for P, Lp,

e S5 is a diagonal matrix of scale factors for Psx.
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The scaling matrices are chosen so that Sy P, 'p and S, Pz have dimensionless components. If pre-
conditioning is done on the left only (P, = I), by a matrix P, then Ss must be a scaling for x, while
S is a scaling for P~1'b, and so may also be taken as a scaling for z. Similarly, if preconditioning is
done on the right only (P, = I and P, = P), then S; must be a scaling for b, while S is a scaling for
Pz, and may also be taken as a scaling for b.

SUNDIALS packages request that iterative linear solvers stop based on the 2-norm of the scaled
preconditioned residual meeting a prescribed tolerance

o ], <ol

When provided an iterative SUNLINSOL implementation that does not support the scaling matrices
S7 and Ss, SUNDIALS’ packages will adjust the value of tol accordingly (see §11.4.2 for more details).
In this case, they instead request that iterative linear solvers stop based on the criteria

| Py to — Pt Az ||, < tol.

We note that the corresponding adjustments to tol in this case are non-optimal, in that they cannot
balance error between specific entries of the solution z, only the aggregate error in the overall solution
vector.

We further note that not all of the SUNDIALS-provided iterative linear solvers support the full
range of the above options (e.g., separate left /right preconditioning), and that some of the SUNDIALS
packages only utilize a subset of these options. Further details on these exceptions are described in
the documentation for each SUNLINSOL implementation, or for each SUNDIALS package.

For users interested in providing their own SUNLINSOL module, the following section presents
the SUNLINSOL API and its implementation beginning with the definition of SUNLINSOL functions in
sections 11.1.1 — 11.1.3. This is followed by the definition of functions supplied to a linear solver
implementation in section 11.1.4. A table of linear solver return codes is given in section 11.1.5. The
SUNLinearSolver type and the generic SUNLINSOL module are defined in section 11.1.6. The section
11.2 discusses compatibility between the SUNDIALS-provided SUNLINSOL modules and SUNMATRIX
modules. Section 11.3 lists the requirements for supplying a custom SUNLINSOL module and discusses
some intended use cases. Users wishing to supply their own SUNLINSOL module are encouraged to use
the SUNLINSOL implementations provided with SUNDIALS as a template for supplying custom linear
solver modules. The SUNLINSOL functions required by this SUNDIALS package as well as other package
specific details are given in section 11.4. The remaining sections of this chapter present the SUNLINSOL
modules provided with SUNDIALS.

11.1 The SUNLinearSolver API

The SUNLINSOL API defines several linear solver operations that enable SUNDIALS packages to utilize
any SUNLINSOL implementation that provides the required functions. These functions can be divided
into three categories. The first are the core linear solver functions. The second group of functions con-
sists of set routines to supply the linear solver with functions provided by the SUNDIALS time integrators
and to modify solver parameters. The final group consists of get routines for retrieving linear solver
statistics. All of these functions are defined in the header file sundials/sundials_linearsolver.h.

11.1.1 SUNLinearSolver core functions

The core linear solver functions consist of two required functions to get the linear solver type
(SUNLinSolGetType) and solve the linear system Az = b (SUNLinSolSolve). The remaining functions
are for getting the solver ID (SUNLinSolGetID), initializing the linear solver object once all solver-
specific options have been set (SUNLinSolInitialize), setting up the linear solver object to utilize
an updated matrix A (SUNLinSolSetup), and for destroying the linear solver object (SUNLinSolFree)
are optional.
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SUNLinSolGetType

Call type

= SUNLinSolGetType(LS);

Description  The required function SUNLinSolGetType returns the type identifier for the linear solver
LS. It is used to determine the solver type (direct, iterative, or matrix-iterative) from
the abstract SUNLinearSolver interface.

Arguments LS (SUNLinearSolver) a SUNLINSOL object.

Return value The return value type (of type int) will be one of the following;:

e SUNLINEARSOLVER_DIRECT — 0, the SUNLINSOL module requires a matrix, and com-

putes an ‘exact’ solution to the linear system defined by that matrix.

SUNLINEARSOLVER_ITERATIVE — 1, the SUNLINSOL module does not require a matrix
(though one may be provided), and computes an inexact solution to the linear
system using a matrix-free iterative algorithm. That is it solves the linear system
defined by the package-supplied ATimes routine (see SUNLinSolSetATimes below),
even if that linear system differs from the one encoded in the matrix object (if one
is provided). As the solver computes the solution only inexactly (or may diverge),
the linear solver should check for solution convergence/accuracy as appropriate.

SUNLINEARSOLVER MATRIX_ITERATIVE — 2, the SUNLINSOL module requires a ma-
trix, and computes an inexact solution to the linear system defined by that matrix
using an iterative algorithm. That is it solves the linear system defined by the
matrix object even if that linear system differs from that encoded by the package-
supplied ATimes routine. As the solver computes the solution only inexactly (or
may diverge), the linear solver should check for solution convergence/accuracy as
appropriate.

Notes See section 11.3.1 for more information on intended use cases corresponding to the linear
solver type.

F2003 Name FSUNLinSolGetType

[ SUNLinSolGetID

Call id =

SUNLinSolGetID(LS);

Description The optional function SUNLinSo0lGetID returns the identifier for the linear solver LS.

Arguments LS (SUNLinearSolver) a SUNLINSOL object.

Return value The return value id (of type int) will be a non-negative value defined by the enumer-
ation SUNLinearSolver _ID.

Notes It is recommended that a user-supplied SUNLinearSolver return the
SUNLINEARSOLVER_CUSTOM identifier.

F2003 Name FSUNLinSolGetID

| SUNLinSolInitialize]

Call retval = SUNLinSolInitialize(LS);

Description  The optional function SUNLinSolInitialize performs linear solver initialization (as-
suming that all solver-specific options have been set).

Arguments LS (SUNLinearSolver) a SUNLINSOL object.

Return value This should return zero for a successful call, and a negative value for a failure, ideally
returning one of the generic error codes listed in Table 11.1.

F2003 Name FSUNLinSolInitialize
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SUNLinSolSetup

Call retval = SUNLinSolSetup(LS, A);

Description  The optional function SUNLinSolSetup performs any linear solver setup needed, based
on an updated system SUNMATRIX A. This may be called frequently (e.g., with a full
Newton method) or infrequently (for a modified Newton method), based on the type of
integrator and/or nonlinear solver requesting the solves.

Arguments LS (SUNLinearSolver) a SUNLINSOL object.

Return value

F2003 Name

A (SUNMatrix) a SUNMATRIX object.

This should return zero for a successful call, a positive value for a recoverable failure
and a negative value for an unrecoverable failure, ideally returning one of the generic
error codes listed in Table 11.1.

FSUNLinSolSetup

| SUNLinSolSolve

Call
Description

Arguments

Return value

retval = SUNLinSolSolve(LS, A, x, b, tol);
The required function SUNLinSolSolve solves a linear system Ax = b.

LS (SUNLinearSolver) a SUNLINSOL object.
A (SUNMatrix) a SUNMATRIX object.

x  (N_Vector) a NVECTOR object containing the initial guess for the solution of the
linear system, and the solution to the linear system upon return.

b  (N_Vector) a NVECTOR object containing the linear system right-hand side.
tol (realtype) the desired linear solver tolerance.
This should return zero for a successful call, a positive value for a recoverable failure

and a negative value for an unrecoverable failure, ideally returning one of the generic
error codes listed in Table 11.1.

Notes Direct solvers: can ignore the tol argument.
Matrix-free solvers: (those that identify as SUNLINEARSOLVER_ITERATIVE) can ignore
the SUNMATRIX input A, and should instead rely on the matrix-vector product function
supplied through the routine SUNLinSolSetATimes.
Iterative solvers: (those that identify as SUNLINEARSOLVER_ITERATIVE or
SUNLINEARSOLVER MATRIX_ITERATIVE) should attempt to solve to the specified toler-
ance tol in a weighted 2-norm. If the solver does not support scaling then it should
just use a 2-norm.

F2003 Name FSUNLinSolSolve

[ SUNLinSolFree

Call retval = SUNLinSolFree(LS);

Description  The optional function SUNLinSolFree frees memory allocated by the linear solver.

Arguments LS (SUNLinearSolver) a SUNLINSOL object.

Return value

F2003 Name

This should return zero for a successful call and a negative value for a failure.

FSUNLinSolFree
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11.1.2 SUNLinearSolver set functions

The following set functions are used to supply linear solver modules with functions defined by the
SUNDIALS packages and to modify solver parameters. Only the routine for setting the matrix-vector
product routine is required, and that is only for matrix-free linear solver modules. Otherwise, all other
set functions are optional. SUNLINSOL implementations that do not provide the functionality for any
optional routine should leave the corresponding function pointer NULL instead of supplying a dummy
routine.

[ SUNLinSolSetATimes |
Call retval = SUNLinSolSetATimes(LS, A_data, ATimes);

Description The function SUNLinSolSetATimes is required for matriz-free linear solvers; otherwise
it is optional.

This routine provides an ATimesFn function pointer, as well as a void* pointer to a

data structure used by this routine, to a linear solver object. SUNDIALS packages will

call this function to set the matrix-vector product function to either a solver-provided

difference-quotient via vector operations or a user-supplied solver-specific routine.
Arguments LS (SUNLinearSolver) a SUNLINSOL object.

A data (voidx*) data structure passed to ATimes.

ATimes (ATimesFn) function pointer implementing the matrix-vector product routine.

Return value This routine should return zero for a successful call, and a negative value for a failure,
ideally returning one of the generic error codes listed in Table 11.1.

F2003 Name FSUNLinSolSetATimes

| SUNLinSolSetPreconditioner |
Call retval = SUNLinSolSetPreconditioner (LS, Pdata, Pset, Psol);

Description  The optional function SUNLinSolSetPreconditioner provides PSetupFn and PSolveFn
function pointers that implement the preconditioner solves P, L and P{l from equations
(11.1)-(11.2). This routine will be called by a SUNDIALS package, which will provide
translation between the generic Pset and Psol calls and the package- or user-supplied
routines.

Arguments LS (SUNLinearSolver) a SUNLINSOL object.
Pdata (void#) data structure passed to both Pset and Psol.
Pset (PSetupFn) function pointer implementing the preconditioner setup.
Psol (PSolveFn) function pointer implementing the preconditioner solve.

Return value This routine should return zero for a successful call, and a negative value for a failure,
ideally returning one of the generic error codes listed in Table 11.1.

F2003 Name FSUNLinSolSetPreconditioner

SUNLinSolSetScalingVectors

Call retval = SUNLinSolSetScalingVectors(LS, sl1, s2);

Description The optional function SUNLinSolSetScalingVectors provides left/right scaling vec-
tors for the linear system solve. Here, s1 and s2 are NVECTOR of positive scale factors
containing the diagonal of the matrices S; and Sy from equations (11.1)-(11.2), respec-
tively. Neither of these vectors need to be tested for positivity, and a NULL argument
for either indicates that the corresponding scaling matrix is the identity.

Arguments LS (SUNLinearSolver) a SUNLINSOL object.
sl (N_Vector) diagonal of the matrix S;
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Return value

F2003 Name

s2 (N_Vector) diagonal of the matrix Sy

This routine should return zero for a successful call, and a negative value for a failure,
ideally returning one of the generic error codes listed in Table 11.1.

FSUNLinSolSetScalingVectors

11.1.3 SUNLinearSolver get functions

The following get functions allow SUNDIALS packages to retrieve results from a linear solve. All routines

are optional.

’SUNLinSolNumIters‘

Call

Description

Arguments

Return value

its = SUNLinSolNumIters(LS);

The optional function SUNLinSolNumIters should return the number of linear iterations
performed in the last ‘solve’ call.

LS (SUNLinearSolver) a SUNLINSOL object.

int containing the number of iterations

F2003 Name FSUNLinSolNumIters

| SUNLinSolResNorm

Call rnorm = SUNLinSolResNorm(LS);

Description The optional function SUNLinSolResNorm should return the final residual norm from
the last ‘solve’ call.

Arguments LS (SUNLinearSolver) a SUNLINSOL object.

Return value

realtype containing the final residual norm

F2003 Name FSUNLinSolResNorm

| SUNLinSolResid

Call rvec = SUNLinSolResid(LS);

Description If an iterative method computes the preconditioned initial residual and returns with
a successful solve without performing any iterations (i.e., either the initial guess or
the preconditioner is sufficiently accurate), then this optional routine may be called
by the SUNDIALS package. This routine should return the NVECTOR containing the
preconditioned initial residual vector.

Arguments LS (SUNLinearSolver) a SUNLINSOL object.

Return value

Notes

F2003 Name

N_Vector containing the final residual vector

Since N_Vector is actually a pointer, and the results are not modified, this routine
should not require additional memory allocation. If the SUNLINSOL object does not
retain a vector for this purpose, then this function pointer should be set to NULL in the
implementation.

FSUNLinSolResid

SUNLinSolLastFlag

Call

Description

1flag = SUNLinSolLastFlag(LS);

The optional function SUNLinSolLastFlag should return the last error flag encountered
within the linear solver. This is not called by the SUNDIALS packages directly; it allows
the user to investigate linear solver issues after a failed solve.
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Arguments LS (SUNLinearSolver) a SUNLINSOL object.
Return value sunindextype containing the most recent error flag

F2003 Name FSUNLinSolLastFlag

SUNLinSolSpace

Call retval = SUNLinSolSpace(LS, &lrw, &liw);

Description  The optional function SUNLinSolSpace should return the storage requirements for the
linear solver LS.

Arguments LS (SUNLinearSolver) a SUNLINSOL object.
lrw (long int*) the number of realtype words stored by the linear solver.

liw (long int*) the number of integer words stored by the linear solver.

Return value This should return zero for a successful call, and a negative value for a failure, ideally
returning one of the generic error codes listed in Table 11.1.

Notes This function is advisory only, for use in determining a user’s total space requirements.

F2003 Name FSUNLinSolSpace

11.1.4 Functions provided by SUNDIALS packages

To interface with the SUNLINSOL modules, the SUNDIALS packages supply a variety of routines for
evaluating the matrix-vector product, and setting up and applying the preconditioner. These package-
provided routines translate between the user-supplied ODE, DAE, or nonlinear systems and the generic
interfaces to the linear systems of equations that result in their solution. The types for functions
provided to a SUNLINSOL module are defined in the header file sundials/sundials_iterative.h,
and are described below.

Definition typedef int (*ATimesFn) (void *A_data, N_Vector v, N_Vector z);

Purpose These functions compute the action of a matrix on a vector, performing the operation
z = Av. Memory for z should already be allocted prior to calling this function. The
vector v should be left unchanged.

Arguments A_data is a pointer to client data, the same as that supplied to SUNLinSolSetATimes.
v is the input vector to multiply.

z is the output vector computed.

Return value This routine should return 0 if successful and a non-zero value if unsuccessful.

Definition typedef int (*PSetupFn) (void *P_data)

Purpose These functions set up any requisite problem data in preparation for calls to the corre-
sponding PSolveFn.

Arguments P_data is a pointer to client data, the same pointer as that supplied to the routine
SUNLinSolSetPreconditioner.

Return value This routine should return 0 if successful and a non-zero value if unsuccessful.
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Definition

Purpose

Arguments

Return value

typedef int (*¥PSolveFn) (void *P_data, N_Vector r, N Vector z,
realtype tol, int 1lr)

These functions solve the preconditioner equation Pz = r for the vector z. Memory for
z should already be allocted prior to calling this function. The parameter P_data is a
pointer to any information about P which the function needs in order to do its job (set
up by the corresponding PSetupFn). The parameter 1r is input, and indicates whether
P is to be taken as the left preconditioner or the right preconditioner: 1r = 1 for left
and 1r = 2 for right. If preconditioning is on one side only, 1r can be ignored. If the
preconditioner is iterative, then it should strive to solve the preconditioner equation so
that
1Pz — 7||wrms < tol

where the weight vector for the WRMS norm may be accessed from the main package
memory structure. The vector r should not be modified by the PSolveFn.

P_data is a pointer to client data, the same pointer as that supplied to the routine
SUNLinSolSetPreconditioner.

r is the right-hand side vector for the preconditioner system.
z is the solution vector for the preconditioner system.
tol is the desired tolerance for an iterative preconditioner.

1r is flag indicating whether the routine should perform left (1) or right (2) pre-
conditioning.

This routine should return 0 if successful and a non-zero value if unsuccessful. On a
failure, a negative return value indicates an unrecoverable condition, while a positive
value indicates a recoverable one, in which the calling routine may reattempt the solution
after updating preconditioner data.

11.1.5 SUNLinearSolver return codes

The functions provided to SUNLINSOL modules by each SUNDIALS package, and functions within the
SUNDIALS-provided SUNLINSOL implementations utilize a common set of return codes, shown in Table
11.1. These adhere to a common pattern: 0 indicates success, a postitive value corresponds to a
recoverable failure, and a negative value indicates a non-recoverable failure. Aside from this pattern,
the actual values of each error code are primarily to provide additional information to the user in case
of a linear solver failure.

Table 11.1: Description of the SUNLinearSolver error codes

Name Value | Description
SUNLS_SUCCESS 0 successful call or converged solve
SUNLS_MEM_NULL -801 the memory argument to the function is NULL
SUNLS_ILL_INPUT -802 an illegal input has been provided to the function
SUNLS_MEM_FAIL -803 failed memory access or allocation
SUNLS_ATIMES NULL -804 | the Atimes function is NULL

continued on next page
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Name Value | Description

SUNLS_ATIMES FAIL_UNREC -805 an unrecoverable failure occurred in the ATimes routine

SUNLS_PSET_FAIL UNREC -806 an unrecoverable failure occurred in the Pset routine

SUNLS_PSOLVE_NULL -807 | the preconditioner solve function is NULL

SUNLS_PSOLVE_FAIL_UNREC -808 an unrecoverable failure occurred in the Psolve routine

SUNLS_PACKAGE_FAIL _UNREC | -809 an unrecoverable failure occurred in an external linear
solver package

SUNLS_GS_FAIL -810 | a failure occurred during Gram-Schmidt orthogonalization
(SUNLINSOL_SPGMR/SUNLINSOL_SPFGMR)

SUNLS_QRSOL_FAIL -811 a singular R matrix was encountered in a QR factorization
(SUNLINSOL_SPGMR/SUNLINSOL_SPFGMR)

SUNLS_VECTOROP_ERR -812 a vector operation error occurred

SUNLS_RES_REDUCED 801 an iterative solver reduced the residual, but did not con-
verge to the desired tolerance

SUNLS_CONV_FAIL 802 an iterative solver did not converge (and the residual was
not reduced)

SUNLS_ATIMES_FAIL REC 803 a recoverable failure occurred in the ATimes routine

SUNLS_PSET_FAIL REC 804 a recoverable failure occurred in the Pset routine

SUNLS_PSOLVE_FAIL REC 805 a recoverable failure occurred in the Psolve routine

SUNLS_PACKAGE _FAIL REC 806 a recoverable failure occurred in an external linear solver
package

SUNLS_QRFACT_FAIL 807 a singular matrix was encountered during a QR factoriza-
tion (SUNLINSOL_SPGMR/SUNLINSOL_SPFGMR)

SUNLS_LUFACT_FAIL 808 a singular matrix was encountered during a LU factorization
(SUNLINSOL_DENSE/SUNLINSOL_BAND)

11.1.6 The generic SUNLinearSolver module

SUNDIALS packages interact with specific SUNLINSOL implementations through the generic SUNLINSOL
module on which all other SUNLINSOL iplementations are built. The SUNLinearSolver type is a
pointer to a structure containing an implementation-dependent content field, and an ops field. The
type SUNLinearSolver is defined as

typedef struct _generic_SUNLinearSolver *SUNLinearSolver;

struct _generic_SUNLinearSolver {
void *content;
struct _generic_SUNLinearSolver_0Ops *ops;

};

where the _generic_SUNLinearSolver Ops structure is a list of pointers to the various actual lin-
ear solver operations provided by a specific implementation. The _generic_SUNLinearSolver_Ops
structure is defined as

struct _generic_SUNLinearSolver_Ops {
SUNLinearSolver_Type (*gettype) (SUNLinearSolver) ;
SUNLinearSolver_ID  (xgetid) (SUNLinearSolver) ;
int (*setatimes) (SUNLinearSolver, void*, ATimesFn);
int (*setpreconditioner) (SUNLinearSolver, voidx,
PSetupFn, PSolveFn);
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int (*setscalingvectors) (SUNLinearSolver,
N_Vector, N_Vector);

int (*initialize) (SUNLinearSolver);

int (*setup) (SUNLinearSolver, SUNMatrix);

int (*solve) (SUNLinearSolver, SUNMatrix, N_Vector,
N_Vector, realtype);

int (*numiters) (SUNLinearSolver) ;

realtype (*resnorm) (SUNLinearSolver) ;

sunindxetype (*lastflag) (SUNLinearSolver) ;

int (*space) (SUNLinearSolver, long int*, long intx*);

N_Vector (*resid) (SUNLinearSolver);

int (xfree) (SUNLinearSolver) ;

};

The generic SUNLINSOL module defines and implements the linear solver operations defined in
Sections 11.1.1-11.1.3. These routines are in fact only wrappers to the linear solver operations de-
fined by a particular SUNLINSOL implementation, which are accessed through the ops field of the
SUNLinearSolver structure. To illustrate this point we show below the implementation of a typical
linear solver operation from the generic SUNLINSOL module, namely SUNLinSolInitialize, which
initializes a SUNLINSOL object for use after it has been created and configured, and returns a flag
denoting a successful/failed operation:

int SUNLinSolInitialize(SUNLinearSolver S)
{
return ((int) S->ops->initialize(S));

}

The Fortran 2003 interface provides a bind(C) derived-type for the _generic_SUNLinearSolver
and the _generic _SUNLinearSolver Ops structures. Their definition is given below.

type, bind(C), public :: SUNLinearSolver
type (C_PTR), public :: content

type (C_PTR), public :: ops

end type SUNLinearSolver

type, bind(C), public :: SUNLinearSolver_Ops
type (C_FUNPTR), public :: gettype

type (C_FUNPTR), public :: setatimes

type (C_FUNPTR), public :: setpreconditioner
type (C_FUNPTR), public :: setscalingvectors
type (C_FUNPTR), public :: initialize

type (C_FUNPTR), public :: setup

type (C_FUNPTR), public :: solve

type (C_FUNPTR), public :: numiters

type (C_FUNPTR), public :: resnorm

type (C_FUNPTR), public :: lastflag

type (C_FUNPTR), public :: space

type (C_FUNPTR), public :: resid

type (C_FUNPTR), public :: free

end type SUNLinearSolver_Ops

11.2 Compatibility of SUNLinearSolver modules

We note that not all SUNLINSOL types are compatible with all SUNMATRIX and NVECTOR types provided
with SUNDIALS. In Table 11.2 we show the matrix-based linear solvers available as SUNLINSOL modules,
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and the compatible matrix implementations. Recall that Table 4.1 shows the compatibility between
all SUNLINSOL modules and vector implementations.

Table 11.2: SUNDIALS matrix-based linear solvers and matrix implementations that can be used for
each.

Linear Solver Dense Banded | Sparse SLUNRIod User
Interface Matrix Matrix Matrix Matrix Supplied
Dense v v
Band v v
LapackDense v v
LapackBand v v
KLU v v
SuperLU_DIST N NV
SUPERLUMT v v
User supplied v N v v v

11.3 Implementing a custom SUNLinearSolver module
A particular implementation of the SUNLINSOL module must:
e Specify the content field of the SUNLinearSolver object.

e Define and implement a minimal subset of the linear solver operations. See the section 11.4 to
determine which SUNLINSOL operations are required for this SUNDIALS package.

Note that the names of these routines should be unique to that implementation in order to
permit using more than one SUNLINSOL module (each with different SUNLinearSolver internal
data representations) in the same code.

e Define and implement user-callable constructor and destructor routines to create and free a
SUNLinearSolver with the new content field and with ops pointing to the new linear solver
operations.

We note that the function pointers for all unsupported optional routines should be set to NULL in
the ops structure. This allows the SUNDIALS package that is using the SUNLINSOL object to know that
the associated functionality is not supported.

To aid in the creation of custom SUNLINSOL modules the generic SUNLINSOL module provides the
utility functions SUNLinSolNewEmpty and SUNLinSolFreeEmpty. When used in custom SUNLINSOL
constructors the