Homomorphisms of rings#
We give a large number of examples of ring homomorphisms.
EXAMPLES:
Natural inclusion \(\ZZ \hookrightarrow \QQ\):
sage: H = Hom(ZZ, QQ)
sage: phi = H([1])
sage: phi(10)
10
sage: phi(3/1)
3
sage: phi(2/3)
Traceback (most recent call last):
...
TypeError: 2/3 fails to convert into the map's domain Integer Ring,
but a `pushforward` method is not properly implemented
There is no homomorphism in the other direction:
sage: H = Hom(QQ, ZZ)
sage: H([1])
Traceback (most recent call last):
...
ValueError: relations do not all (canonically) map to 0
under map determined by images of generators
EXAMPLES:
Reduction to finite field:
sage: H = Hom(ZZ, GF(9, 'a')) # optional - sage.rings.finite_rings
sage: phi = H([1]) # optional - sage.rings.finite_rings
sage: phi(5) # optional - sage.rings.finite_rings
2
sage: psi = H([4]) # optional - sage.rings.finite_rings
sage: psi(5) # optional - sage.rings.finite_rings
2
Map from single variable polynomial ring:
sage: R.<x> = ZZ[]
sage: phi = R.hom([2], GF(5)) # optional - sage.rings.finite_rings
sage: phi # optional - sage.rings.finite_rings
Ring morphism:
From: Univariate Polynomial Ring in x over Integer Ring
To: Finite Field of size 5
Defn: x |--> 2
sage: phi(x + 12) # optional - sage.rings.finite_rings
4
Identity map on the real numbers:
sage: f = RR.hom([RR(1)]); f
Ring endomorphism of Real Field with 53 bits of precision
Defn: 1.00000000000000 |--> 1.00000000000000
sage: f(2.5)
2.50000000000000
sage: f = RR.hom( [2.0] )
Traceback (most recent call last):
...
ValueError: relations do not all (canonically) map to 0
under map determined by images of generators
Homomorphism from one precision of field to another.
From smaller to bigger doesn’t make sense:
sage: R200 = RealField(200)
sage: f = RR.hom( R200 )
Traceback (most recent call last):
...
TypeError: natural coercion morphism from Real Field with 53 bits of precision
to Real Field with 200 bits of precision not defined
From bigger to small does:
sage: f = RR.hom( RealField(15) )
sage: f(2.5)
2.500
sage: f(RR.pi())
3.142
Inclusion map from the reals to the complexes:
sage: i = RR.hom([CC(1)]); i
Ring morphism:
From: Real Field with 53 bits of precision
To: Complex Field with 53 bits of precision
Defn: 1.00000000000000 |--> 1.00000000000000
sage: i(RR('3.1'))
3.10000000000000
A map from a multivariate polynomial ring to itself:
sage: R.<x,y,z> = PolynomialRing(QQ,3)
sage: phi = R.hom([y,z,x^2]); phi
Ring endomorphism of Multivariate Polynomial Ring in x, y, z over Rational Field
Defn: x |--> y
y |--> z
z |--> x^2
sage: phi(x+y+z)
x^2 + y + z
An endomorphism of a quotient of a multi-variate polynomial ring:
sage: R.<x,y> = PolynomialRing(QQ)
sage: S.<a,b> = quo(R, ideal(1 + y^2))
sage: phi = S.hom([a^2, -b])
sage: phi
Ring endomorphism of Quotient of Multivariate Polynomial Ring in x, y
over Rational Field by the ideal (y^2 + 1)
Defn: a |--> a^2
b |--> -b
sage: phi(b)
-b
sage: phi(a^2 + b^2)
a^4 - 1
The reduction map from the integers to the integers modulo 8, viewed as a quotient ring:
sage: R = ZZ.quo(8*ZZ)
sage: pi = R.cover()
sage: pi
Ring morphism:
From: Integer Ring
To: Ring of integers modulo 8
Defn: Natural quotient map
sage: pi.domain()
Integer Ring
sage: pi.codomain()
Ring of integers modulo 8
sage: pi(10)
2
sage: pi.lift()
Set-theoretic ring morphism:
From: Ring of integers modulo 8
To: Integer Ring
Defn: Choice of lifting map
sage: pi.lift(13)
5
Inclusion of GF(2)
into GF(4,'a')
:
sage: k = GF(2) # optional - sage.rings.finite_rings
sage: i = k.hom(GF(4, 'a')) # optional - sage.rings.finite_rings
sage: i # optional - sage.rings.finite_rings
Ring morphism:
From: Finite Field of size 2
To: Finite Field in a of size 2^2
Defn: 1 |--> 1
sage: i(0) # optional - sage.rings.finite_rings
0
sage: a = i(1); a.parent() # optional - sage.rings.finite_rings
Finite Field in a of size 2^2
We next compose the inclusion with reduction from the integers to
GF(2)
:
sage: pi = ZZ.hom(k) # optional - sage.rings.finite_rings
sage: pi # optional - sage.rings.finite_rings
Natural morphism:
From: Integer Ring
To: Finite Field of size 2
sage: f = i * pi # optional - sage.rings.finite_rings
sage: f # optional - sage.rings.finite_rings
Composite map:
From: Integer Ring
To: Finite Field in a of size 2^2
Defn: Natural morphism:
From: Integer Ring
To: Finite Field of size 2
then
Ring morphism:
From: Finite Field of size 2
To: Finite Field in a of size 2^2
Defn: 1 |--> 1
sage: a = f(5); a # optional - sage.rings.finite_rings
1
sage: a.parent() # optional - sage.rings.finite_rings
Finite Field in a of size 2^2
Inclusion from \(\QQ\) to the 3-adic field:
sage: phi = QQ.hom(Qp(3, print_mode='series')) # optional - sage.rings.padics
sage: phi # optional - sage.rings.padics
Ring morphism:
From: Rational Field
To: 3-adic Field with capped relative precision 20
sage: phi.codomain() # optional - sage.rings.padics
3-adic Field with capped relative precision 20
sage: phi(394) # optional - sage.rings.padics
1 + 2*3 + 3^2 + 2*3^3 + 3^4 + 3^5 + O(3^20)
An automorphism of a quotient of a univariate polynomial ring:
sage: R.<x> = PolynomialRing(QQ)
sage: S.<sqrt2> = R.quo(x^2 - 2)
sage: sqrt2^2
2
sage: (3+sqrt2)^10
993054*sqrt2 + 1404491
sage: c = S.hom([-sqrt2])
sage: c(1+sqrt2)
-sqrt2 + 1
Note that Sage verifies that the morphism is valid:
sage: (1 - sqrt2)^2
-2*sqrt2 + 3
sage: c = S.hom([1-sqrt2]) # this is not valid
Traceback (most recent call last):
...
ValueError: relations do not all (canonically) map to 0 under map determined by images of generators
Endomorphism of power series ring:
sage: R.<t> = PowerSeriesRing(QQ, default_prec=10); R
Power Series Ring in t over Rational Field
sage: f = R.hom([t^2]); f
Ring endomorphism of Power Series Ring in t over Rational Field
Defn: t |--> t^2
sage: s = 1/(1 + t); s
1 - t + t^2 - t^3 + t^4 - t^5 + t^6 - t^7 + t^8 - t^9 + O(t^10)
sage: f(s)
1 - t^2 + t^4 - t^6 + t^8 - t^10 + t^12 - t^14 + t^16 - t^18 + O(t^20)
Frobenius on a power series ring over a finite field:
sage: R.<t> = PowerSeriesRing(GF(5)) # optional - sage.rings.finite_rings
sage: f = R.hom([t^5]); f # optional - sage.rings.finite_rings
Ring endomorphism of Power Series Ring in t over Finite Field of size 5
Defn: t |--> t^5
sage: a = 2 + t + 3*t^2 + 4*t^3 + O(t^4) # optional - sage.rings.finite_rings
sage: b = 1 + t + 2*t^2 + t^3 + O(t^5) # optional - sage.rings.finite_rings
sage: f(a) # optional - sage.rings.finite_rings
2 + t^5 + 3*t^10 + 4*t^15 + O(t^20)
sage: f(b) # optional - sage.rings.finite_rings
1 + t^5 + 2*t^10 + t^15 + O(t^25)
sage: f(a*b) # optional - sage.rings.finite_rings
2 + 3*t^5 + 3*t^10 + t^15 + O(t^20)
sage: f(a)*f(b) # optional - sage.rings.finite_rings
2 + 3*t^5 + 3*t^10 + t^15 + O(t^20)
Homomorphism of Laurent series ring:
sage: R.<t> = LaurentSeriesRing(QQ, 10)
sage: f = R.hom([t^3 + t]); f
Ring endomorphism of Laurent Series Ring in t over Rational Field
Defn: t |--> t + t^3
sage: s = 2/t^2 + 1/(1 + t); s
2*t^-2 + 1 - t + t^2 - t^3 + t^4 - t^5 + t^6 - t^7 + t^8 - t^9 + O(t^10)
sage: f(s)
2*t^-2 - 3 - t + 7*t^2 - 2*t^3 - 5*t^4 - 4*t^5 + 16*t^6 - 9*t^7 + O(t^8)
sage: f = R.hom([t^3]); f
Ring endomorphism of Laurent Series Ring in t over Rational Field
Defn: t |--> t^3
sage: f(s)
2*t^-6 + 1 - t^3 + t^6 - t^9 + t^12 - t^15 + t^18 - t^21 + t^24 - t^27 + O(t^30)
Note that the homomorphism must result in a converging Laurent series, so the valuation of the image of the generator must be positive:
sage: R.hom([1/t])
Traceback (most recent call last):
...
ValueError: relations do not all (canonically) map to 0 under map determined by images of generators
sage: R.hom([1])
Traceback (most recent call last):
...
ValueError: relations do not all (canonically) map to 0 under map determined by images of generators
Complex conjugation on cyclotomic fields:
sage: K.<zeta7> = CyclotomicField(7)
sage: c = K.hom([1/zeta7]); c
Ring endomorphism of Cyclotomic Field of order 7 and degree 6
Defn: zeta7 |--> -zeta7^5 - zeta7^4 - zeta7^3 - zeta7^2 - zeta7 - 1
sage: a = (1+zeta7)^5; a
zeta7^5 + 5*zeta7^4 + 10*zeta7^3 + 10*zeta7^2 + 5*zeta7 + 1
sage: c(a)
5*zeta7^5 + 5*zeta7^4 - 4*zeta7^2 - 5*zeta7 - 4
sage: c(zeta7 + 1/zeta7) # this element is obviously fixed by inversion
-zeta7^5 - zeta7^4 - zeta7^3 - zeta7^2 - 1
sage: zeta7 + 1/zeta7
-zeta7^5 - zeta7^4 - zeta7^3 - zeta7^2 - 1
Embedding a number field into the reals:
sage: R.<x> = PolynomialRing(QQ)
sage: K.<beta> = NumberField(x^3 - 2)
sage: alpha = RR(2)^(1/3); alpha
1.25992104989487
sage: i = K.hom([alpha],check=False); i
Ring morphism:
From: Number Field in beta with defining polynomial x^3 - 2
To: Real Field with 53 bits of precision
Defn: beta |--> 1.25992104989487
sage: i(beta)
1.25992104989487
sage: i(beta^3)
2.00000000000000
sage: i(beta^2 + 1)
2.58740105196820
An example from Jim Carlson:
sage: K = QQ # by the way :-)
sage: R.<a,b,c,d> = K[]; R
Multivariate Polynomial Ring in a, b, c, d over Rational Field
sage: S.<u> = K[]; S
Univariate Polynomial Ring in u over Rational Field
sage: f = R.hom([0,0,0,u], S); f
Ring morphism:
From: Multivariate Polynomial Ring in a, b, c, d over Rational Field
To: Univariate Polynomial Ring in u over Rational Field
Defn: a |--> 0
b |--> 0
c |--> 0
d |--> u
sage: f(a+b+c+d)
u
sage: f( (a+b+c+d)^2 )
u^2
- class sage.rings.morphism.FrobeniusEndomorphism_generic#
Bases:
RingHomomorphism
A class implementing Frobenius endomorphisms on rings of prime characteristic.
- power()#
Return an integer \(n\) such that this endomorphism is the \(n\)-th power of the absolute (arithmetic) Frobenius.
EXAMPLES:
sage: K.<u> = PowerSeriesRing(GF(5)) # optional - sage.rings.finite_rings sage: Frob = K.frobenius_endomorphism() # optional - sage.rings.finite_rings sage: Frob.power() # optional - sage.rings.finite_rings 1 sage: (Frob^9).power() # optional - sage.rings.finite_rings 9
- class sage.rings.morphism.RingHomomorphism#
Bases:
RingMap
Homomorphism of rings.
- inverse()#
Return the inverse of this ring homomorphism if it exists.
Raises a
ZeroDivisionError
if the inverse does not exist.ALGORITHM:
By default, this computes a Gröbner basis of the ideal corresponding to the graph of the ring homomorphism.
EXAMPLES:
sage: R.<t> = QQ[] sage: f = R.hom([2*t - 1], R) sage: f.inverse() # optional - sage.libs.singular Ring endomorphism of Univariate Polynomial Ring in t over Rational Field Defn: t |--> 1/2*t + 1/2
The following non-linear homomorphism is not invertible, but it induces an isomorphism on a quotient ring:
sage: R.<x,y,z> = QQ[] sage: f = R.hom([y*z, x*z, x*y], R) sage: f.inverse() # optional - sage.libs.singular Traceback (most recent call last): ... ZeroDivisionError: ring homomorphism not surjective sage: f.is_injective() # optional - sage.libs.singular True sage: Q.<x,y,z> = R.quotient(x*y*z - 1) # optional - sage.libs.singular sage: g = Q.hom([y*z, x*z, x*y], Q) # optional - sage.libs.singular sage: g.inverse() # optional - sage.libs.singular Ring endomorphism of Quotient of Multivariate Polynomial Ring in x, y, z over Rational Field by the ideal (x*y*z - 1) Defn: x |--> y*z y |--> x*z z |--> x*y
Homomorphisms over the integers are supported:
sage: S.<x,y> = ZZ[] sage: f = S.hom([x + 2*y, x + 3*y], S) sage: f.inverse() # optional - sage.libs.singular Ring endomorphism of Multivariate Polynomial Ring in x, y over Integer Ring Defn: x |--> 3*x - 2*y y |--> -x + y sage: (f.inverse() * f).is_identity() # optional - sage.libs.singular True
The following homomorphism is invertible over the rationals, but not over the integers:
sage: g = S.hom([x + y, x - y - 2], S) sage: g.inverse() # optional - sage.libs.singular Traceback (most recent call last): ... ZeroDivisionError: ring homomorphism not surjective sage: R.<x,y> = QQ[x,y] sage: h = R.hom([x + y, x - y - 2], R) sage: (h.inverse() * h).is_identity() # optional - sage.libs.singular True
This example by M. Nagata is a wild automorphism:
sage: R.<x,y,z> = QQ[] sage: sigma = R.hom([x - 2*y*(z*x+y^2) - z*(z*x+y^2)^2, ....: y + z*(z*x+y^2), z], R) sage: tau = sigma.inverse(); tau # optional - sage.libs.singular Ring endomorphism of Multivariate Polynomial Ring in x, y, z over Rational Field Defn: x |--> -y^4*z - 2*x*y^2*z^2 - x^2*z^3 + 2*y^3 + 2*x*y*z + x y |--> -y^2*z - x*z^2 + y z |--> z sage: (tau * sigma).is_identity() # optional - sage.libs.singular True
We compute the triangular automorphism that converts moments to cumulants, as well as its inverse, using the moment generating function. The choice of a term ordering can have a great impact on the computation time of a Gröbner basis, so here we choose a weighted ordering such that the images of the generators are homogeneous polynomials.
sage: d = 12 sage: T = TermOrder('wdegrevlex', [1..d]) sage: R = PolynomialRing(QQ, ['x%s' % j for j in (1..d)], order=T) sage: S.<t> = PowerSeriesRing(R) sage: egf = S([0] + list(R.gens())).ogf_to_egf().exp(prec=d+1) sage: phi = R.hom(egf.egf_to_ogf().list()[1:], R) sage: phi.im_gens()[:5] [x1, x1^2 + x2, x1^3 + 3*x1*x2 + x3, x1^4 + 6*x1^2*x2 + 3*x2^2 + 4*x1*x3 + x4, x1^5 + 10*x1^3*x2 + 15*x1*x2^2 + 10*x1^2*x3 + 10*x2*x3 + 5*x1*x4 + x5] sage: all(p.is_homogeneous() for p in phi.im_gens()) True sage: phi.inverse().im_gens()[:5] # optional - sage.libs.singular [x1, -x1^2 + x2, 2*x1^3 - 3*x1*x2 + x3, -6*x1^4 + 12*x1^2*x2 - 3*x2^2 - 4*x1*x3 + x4, 24*x1^5 - 60*x1^3*x2 + 30*x1*x2^2 + 20*x1^2*x3 - 10*x2*x3 - 5*x1*x4 + x5] sage: (phi.inverse() * phi).is_identity() # optional - sage.libs.singular True
Automorphisms of number fields as well as Galois fields are supported:
sage: K.<zeta7> = CyclotomicField(7) # optional - sage.rings.number_field sage: c = K.hom([1/zeta7]) # optional - sage.rings.number_field sage: (c.inverse() * c).is_identity() # optional - sage.rings.number_field True sage: F.<t> = GF(7^3) # optional - sage.rings.finite_rings sage: f = F.hom(t^7, F) # optional - sage.rings.finite_rings sage: (f.inverse() * f).is_identity() # optional - sage.rings.finite_rings True
An isomorphism between the algebraic torus and the circle over a number field:
sage: K.<i> = QuadraticField(-1) # optional - sage.rings.number_field sage: A.<z,w> = K['z,w'].quotient('z*w - 1') # optional - sage.rings.number_field sage: B.<x,y> = K['x,y'].quotient('x^2 + y^2 - 1') # optional - sage.rings.number_field sage: f = A.hom([x + i*y, x - i*y], B) # optional - sage.rings.number_field sage: g = f.inverse() # optional - sage.rings.number_field sage: g.morphism_from_cover().im_gens() # optional - sage.rings.number_field [1/2*z + 1/2*w, (-1/2*i)*z + (1/2*i)*w] sage: all(g(f(z)) == z for z in A.gens()) # optional - sage.rings.number_field True
- inverse_image(I)#
Return the inverse image of an ideal or an element in the codomain of this ring homomorphism.
INPUT:
I
– an ideal or element in the codomain
OUTPUT:
For an ideal \(I\) in the codomain, this returns the largest ideal in the domain whose image is contained in \(I\).
Given an element \(b\) in the codomain, this returns an arbitrary element \(a\) in the domain such that
self(a) = b
if one such exists. The element \(a\) is unique if this ring homomorphism is injective.EXAMPLES:
sage: R.<x,y,z> = QQ[] sage: S.<u,v> = QQ[] sage: f = R.hom([u^2, u*v, v^2], S) sage: I = S.ideal([u^6, u^5*v, u^4*v^2, u^3*v^3]) sage: J = f.inverse_image(I); J # optional - sage.libs.singular Ideal (y^2 - x*z, x*y*z, x^2*z, x^2*y, x^3) of Multivariate Polynomial Ring in x, y, z over Rational Field sage: f(J) == I # optional - sage.libs.singular True
Under the above homomorphism, there exists an inverse image for every element that only involves monomials of even degree:
sage: [f.inverse_image(p) for p in [u^2, u^4, u*v + u^3*v^3]] # optional - sage.libs.singular [x, x^2, x*y*z + y] sage: f.inverse_image(u*v^2) # optional - sage.libs.singular Traceback (most recent call last): ... ValueError: element u*v^2 does not have preimage
The image of the inverse image ideal can be strictly smaller than the original ideal:
sage: S.<u,v> = QQ['u,v'].quotient('v^2 - 2') # optional - sage.libs.singular sage: f = QuadraticField(2).hom([v], S) # optional - sage.libs.singular sage.rings.number_field sage: I = S.ideal(u + v) # optional - sage.libs.singular sage.rings.number_field sage: J = f.inverse_image(I) # optional - sage.libs.singular sage.rings.number_field sage: J.is_zero() # optional - sage.libs.singular sage.rings.number_field True sage: f(J) < I # optional - sage.libs.singular sage.rings.number_field True
Fractional ideals are not yet fully supported:
sage: K.<a> = NumberField(QQ['x']('x^2+2')) # optional - sage.rings.number_field sage: f = K.hom([-a], K) # optional - sage.rings.number_field sage: I = K.ideal([a + 1]) # optional - sage.rings.number_field sage: f.inverse_image(I) # optional - sage.rings.number_field Traceback (most recent call last): ... NotImplementedError: inverse image not implemented... sage: f.inverse_image(K.ideal(0)).is_zero() # optional - sage.rings.number_field True sage: f.inverse()(I) # optional - sage.rings.number_field Fractional ideal (-a + 1)
ALGORITHM:
By default, this computes a Gröbner basis of an ideal related to the graph of the ring homomorphism.
REFERENCES:
Proposition 2.5.12 [DS2009]
- is_invertible()#
Return whether this ring homomorphism is bijective.
EXAMPLES:
sage: R.<x,y,z> = QQ[] sage: R.hom([y*z, x*z, x*y], R).is_invertible() # optional - sage.libs.singular False sage: Q.<x,y,z> = R.quotient(x*y*z - 1) # optional - sage.libs.singular sage: Q.hom([y*z, x*z, x*y], Q).is_invertible() # optional - sage.libs.singular True
ALGORITHM:
By default, this requires the computation of a Gröbner basis.
- is_surjective()#
Return whether this ring homomorphism is surjective.
EXAMPLES:
sage: R.<x,y,z> = QQ[] sage: R.hom([y*z, x*z, x*y], R).is_surjective() # optional - sage.libs.singular False sage: Q.<x,y,z> = R.quotient(x*y*z - 1) # optional - sage.libs.singular sage: R.hom([y*z, x*z, x*y], Q).is_surjective() # optional - sage.libs.singular True
ALGORITHM:
By default, this requires the computation of a Gröbner basis.
- kernel()#
Return the kernel ideal of this ring homomorphism.
EXAMPLES:
sage: A.<x,y> = QQ[] sage: B.<t> = QQ[] sage: f = A.hom([t^4, t^3 - t^2], B) sage: f.kernel() # optional - sage.libs.singular Ideal (y^4 - x^3 + 4*x^2*y - 2*x*y^2 + x^2) of Multivariate Polynomial Ring in x, y over Rational Field
We express a Veronese subring of a polynomial ring as a quotient ring:
sage: A.<a,b,c,d> = QQ[] sage: B.<u,v> = QQ[] sage: f = A.hom([u^3, u^2*v, u*v^2, v^3], B) sage: f.kernel() == A.ideal(matrix.hankel([a, b, c], [d]).minors(2)) # optional - sage.libs.singular True sage: Q = A.quotient(f.kernel()) # optional - sage.libs.singular sage: Q.hom(f.im_gens(), B).is_injective() # optional - sage.libs.singular True
The Steiner-Roman surface:
sage: R.<x,y,z> = QQ[] sage: S = R.quotient(x^2 + y^2 + z^2 - 1) # optional - sage.libs.singular sage: f = R.hom([x*y, x*z, y*z], S) # optional - sage.libs.singular sage: f.kernel() # optional - sage.libs.singular Ideal (x^2*y^2 + x^2*z^2 + y^2*z^2 - x*y*z) of Multivariate Polynomial Ring in x, y, z over Rational Field
- lift(x=None)#
Return a lifting map associated to this homomorphism, if it has been defined.
If
x
is notNone
, return the value of the lift morphism onx
.EXAMPLES:
sage: R.<x,y> = QQ[] sage: f = R.hom([x,x]) sage: f(x+y) 2*x sage: f.lift() Traceback (most recent call last): ... ValueError: no lift map defined sage: g = R.hom(R) sage: f._set_lift(g) sage: f.lift() == g True sage: f.lift(x) x
- pushforward(I)#
Returns the pushforward of the ideal \(I\) under this ring homomorphism.
EXAMPLES:
sage: R.<x,y> = QQ[]; S.<xx,yy> = R.quo([x^2, y^2]); f = S.cover() # optional - sage.libs.singular sage: f.pushforward(R.ideal([x, 3*x + x*y + y^2])) # optional - sage.libs.singular Ideal (xx, xx*yy + 3*xx) of Quotient of Multivariate Polynomial Ring in x, y over Rational Field by the ideal (x^2, y^2)
- class sage.rings.morphism.RingHomomorphism_coercion#
Bases:
RingHomomorphism
A ring homomorphism that is a coercion.
Warning
This class is obsolete. Set the category of your morphism to a subcategory of
Rings
instead.
- class sage.rings.morphism.RingHomomorphism_cover#
Bases:
RingHomomorphism
A homomorphism induced by quotienting a ring out by an ideal.
EXAMPLES:
sage: R.<x,y> = PolynomialRing(QQ, 2) sage: S.<a,b> = R.quo(x^2 + y^2) # optional - sage.libs.singular sage: phi = S.cover(); phi # optional - sage.libs.singular Ring morphism: From: Multivariate Polynomial Ring in x, y over Rational Field To: Quotient of Multivariate Polynomial Ring in x, y over Rational Field by the ideal (x^2 + y^2) Defn: Natural quotient map sage: phi(x + y) # optional - sage.libs.singular a + b
- kernel()#
Return the kernel of this covering morphism, which is the ideal that was quotiented out by.
EXAMPLES:
sage: f = Zmod(6).cover() sage: f.kernel() Principal ideal (6) of Integer Ring
- class sage.rings.morphism.RingHomomorphism_from_base#
Bases:
RingHomomorphism
A ring homomorphism determined by a ring homomorphism of the base ring.
AUTHOR:
Simon King (initial version, 2010-04-30)
EXAMPLES:
We define two polynomial rings and a ring homomorphism:
sage: R.<x,y> = QQ[] sage: S.<z> = QQ[] sage: f = R.hom([2*z,3*z],S)
Now we construct polynomial rings based on
R
andS
, and letf
act on the coefficients:sage: PR.<t> = R[] sage: PS = S['t'] sage: Pf = PR.hom(f,PS) sage: Pf Ring morphism: From: Univariate Polynomial Ring in t over Multivariate Polynomial Ring in x, y over Rational Field To: Univariate Polynomial Ring in t over Univariate Polynomial Ring in z over Rational Field Defn: Induced from base ring by Ring morphism: From: Multivariate Polynomial Ring in x, y over Rational Field To: Univariate Polynomial Ring in z over Rational Field Defn: x |--> 2*z y |--> 3*z sage: p = (x - 4*y + 1/13)*t^2 + (1/2*x^2 - 1/3*y^2)*t + 2*y^2 + x sage: Pf(p) (-10*z + 1/13)*t^2 - z^2*t + 18*z^2 + 2*z
Similarly, we can construct the induced homomorphism on a matrix ring over our polynomial rings:
sage: MR = MatrixSpace(R, 2, 2) # optional - sage.modules sage: MS = MatrixSpace(S, 2, 2) # optional - sage.modules sage: M = MR([x^2 + 1/7*x*y - y^2, -1/2*y^2 + 2*y + 1/6, # optional - sage.modules ....: 4*x^2 - 14*x, 1/2*y^2 + 13/4*x - 2/11*y]) sage: Mf = MR.hom(f, MS) # optional - sage.modules sage: Mf # optional - sage.modules Ring morphism: From: Full MatrixSpace of 2 by 2 dense matrices over Multivariate Polynomial Ring in x, y over Rational Field To: Full MatrixSpace of 2 by 2 dense matrices over Univariate Polynomial Ring in z over Rational Field Defn: Induced from base ring by Ring morphism: From: Multivariate Polynomial Ring in x, y over Rational Field To: Univariate Polynomial Ring in z over Rational Field Defn: x |--> 2*z y |--> 3*z sage: Mf(M) # optional - sage.modules [ -29/7*z^2 -9/2*z^2 + 6*z + 1/6] [ 16*z^2 - 28*z 9/2*z^2 + 131/22*z]
The construction of induced homomorphisms is recursive, and so we have:
sage: MPR = MatrixSpace(PR, 2) # optional - sage.modules sage: MPS = MatrixSpace(PS, 2) # optional - sage.modules sage: M = MPR([(-x + y)*t^2 + 58*t - 3*x^2 + x*y, # optional - sage.modules ....: (- 1/7*x*y - 1/40*x)*t^2 + (5*x^2 + y^2)*t + 2*y, ....: (- 1/3*y + 1)*t^2 + 1/3*x*y + y^2 + 5/2*y + 1/4, ....: (x + 6*y + 1)*t^2]) sage: MPf = MPR.hom(f, MPS); MPf # optional - sage.modules Ring morphism: From: Full MatrixSpace of 2 by 2 dense matrices over Univariate Polynomial Ring in t over Multivariate Polynomial Ring in x, y over Rational Field To: Full MatrixSpace of 2 by 2 dense matrices over Univariate Polynomial Ring in t over Univariate Polynomial Ring in z over Rational Field Defn: Induced from base ring by Ring morphism: From: Univariate Polynomial Ring in t over Multivariate Polynomial Ring in x, y over Rational Field To: Univariate Polynomial Ring in t over Univariate Polynomial Ring in z over Rational Field Defn: Induced from base ring by Ring morphism: From: Multivariate Polynomial Ring in x, y over Rational Field To: Univariate Polynomial Ring in z over Rational Field Defn: x |--> 2*z y |--> 3*z sage: MPf(M) # optional - sage.modules [ z*t^2 + 58*t - 6*z^2 (-6/7*z^2 - 1/20*z)*t^2 + 29*z^2*t + 6*z] [ (-z + 1)*t^2 + 11*z^2 + 15/2*z + 1/4 (20*z + 1)*t^2]
- inverse()#
Return the inverse of this ring homomorphism if the underlying homomorphism of the base ring is invertible.
EXAMPLES:
sage: R.<x,y> = QQ[] sage: S.<a,b> = QQ[] sage: f = R.hom([a + b, a - b], S) # optional - sage.libs.singular sage: PR.<t> = R[] sage: PS = S['t'] sage: Pf = PR.hom(f, PS) # optional - sage.libs.singular sage: Pf.inverse() # optional - sage.libs.singular Ring morphism: From: Univariate Polynomial Ring in t over Multivariate Polynomial Ring in a, b over Rational Field To: Univariate Polynomial Ring in t over Multivariate Polynomial Ring in x, y over Rational Field Defn: Induced from base ring by Ring morphism: From: Multivariate Polynomial Ring in a, b over Rational Field To: Multivariate Polynomial Ring in x, y over Rational Field Defn: a |--> 1/2*x + 1/2*y b |--> 1/2*x - 1/2*y sage: Pf.inverse()(Pf(x*t^2 + y*t)) # optional - sage.libs.singular x*t^2 + y*t
- underlying_map()#
Return the underlying homomorphism of the base ring.
EXAMPLES:
sage: R.<x,y> = QQ[] sage: S.<z> = QQ[] sage: f = R.hom([2*z, 3*z], S) sage: MR = MatrixSpace(R, 2) # optional - sage.modules sage: MS = MatrixSpace(S, 2) # optional - sage.modules sage: g = MR.hom(f, MS) # optional - sage.modules sage: g.underlying_map() == f # optional - sage.modules True
- class sage.rings.morphism.RingHomomorphism_from_fraction_field#
Bases:
RingHomomorphism
Morphisms between fraction fields.
- inverse()#
Return the inverse of this ring homomorphism if it exists.
EXAMPLES:
sage: S.<x> = QQ[] sage: f = S.hom([2*x - 1]) sage: g = f.extend_to_fraction_field() # optional - sage.libs.singular sage: g.inverse() # optional - sage.libs.singular Ring endomorphism of Fraction Field of Univariate Polynomial Ring in x over Rational Field Defn: x |--> 1/2*x + 1/2
- class sage.rings.morphism.RingHomomorphism_from_quotient#
Bases:
RingHomomorphism
A ring homomorphism with domain a generic quotient ring.
INPUT:
parent
– a ring homsetHom(R,S)
phi
– a ring homomorphismC --> S
, whereC
is the domain ofR.cover()
OUTPUT: a ring homomorphism
The domain \(R\) is a quotient object \(C \to R\), and
R.cover()
is the ring homomorphism \(\varphi: C \to R\). The condition on the elementsim_gens
of \(S\) is that they define a homomorphism \(C \to S\) such that each generator of the kernel of \(\varphi\) maps to \(0\).EXAMPLES:
sage: R.<x, y, z> = PolynomialRing(QQ, 3) sage: S.<a, b, c> = R.quo(x^3 + y^3 + z^3) # optional - sage.libs.singular sage: phi = S.hom([b, c, a]); phi # optional - sage.libs.singular Ring endomorphism of Quotient of Multivariate Polynomial Ring in x, y, z over Rational Field by the ideal (x^3 + y^3 + z^3) Defn: a |--> b b |--> c c |--> a sage: phi(a + b + c) # optional - sage.libs.singular a + b + c sage: loads(dumps(phi)) == phi # optional - sage.libs.singular True
Validity of the homomorphism is determined, when possible, and a
TypeError
is raised if there is no homomorphism sending the generators to the given images:sage: S.hom([b^2, c^2, a^2]) # optional - sage.libs.singular Traceback (most recent call last): ... ValueError: relations do not all (canonically) map to 0 under map determined by images of generators
- morphism_from_cover()#
Underlying morphism used to define this quotient map, i.e., the morphism from the cover of the domain.
EXAMPLES:
sage: R.<x,y> = QQ[]; S.<xx,yy> = R.quo([x^2, y^2]) # optional - sage.libs.singular sage: S.hom([yy,xx]).morphism_from_cover() # optional - sage.libs.singular Ring morphism: From: Multivariate Polynomial Ring in x, y over Rational Field To: Quotient of Multivariate Polynomial Ring in x, y over Rational Field by the ideal (x^2, y^2) Defn: x |--> yy y |--> xx
- class sage.rings.morphism.RingHomomorphism_im_gens#
Bases:
RingHomomorphism
A ring homomorphism determined by the images of generators.
- base_map()#
Return the map on the base ring that is part of the defining data for this morphism. May return
None
if a coercion is used.EXAMPLES:
sage: R.<x> = ZZ[] sage: K.<i> = NumberField(x^2 + 1) # optional - sage.rings.number_field sage: cc = K.hom([-i]) # optional - sage.rings.number_field sage: S.<y> = K[] # optional - sage.rings.number_field sage: phi = S.hom([y^2], base_map=cc) # optional - sage.rings.number_field sage: phi # optional - sage.rings.number_field Ring endomorphism of Univariate Polynomial Ring in y over Number Field in i with defining polynomial x^2 + 1 Defn: y |--> y^2 with map of base ring sage: phi(y) # optional - sage.rings.number_field y^2 sage: phi(i*y) # optional - sage.rings.number_field -i*y^2 sage: phi.base_map() # optional - sage.rings.number_field Composite map: From: Number Field in i with defining polynomial x^2 + 1 To: Univariate Polynomial Ring in y over Number Field in i with defining polynomial x^2 + 1 Defn: Ring endomorphism of Number Field in i with defining polynomial x^2 + 1 Defn: i |--> -i then Polynomial base injection morphism: From: Number Field in i with defining polynomial x^2 + 1 To: Univariate Polynomial Ring in y over Number Field in i with defining polynomial x^2 + 1
- im_gens()#
Return the images of the generators of the domain.
OUTPUT:
list
– a copy of the list of gens (it is safe to change this)
EXAMPLES:
sage: R.<x,y> = QQ[] sage: f = R.hom([x, x + y]) sage: f.im_gens() [x, x + y]
We verify that the returned list of images of gens is a copy, so changing it doesn’t change
f
:sage: f.im_gens()[0] = 5 sage: f.im_gens() [x, x + y]
- class sage.rings.morphism.RingMap_lift#
Bases:
RingMap
Given rings \(R\) and \(S\) such that for any \(x \in R\) the function
x.lift()
is an element that naturally coerces to \(S\), this returns the set-theoretic ring map \(R \to S\) sending \(x\) tox.lift()
.EXAMPLES:
sage: R.<x,y> = QQ[] sage: S.<xbar,ybar> = R.quo( (x^2 + y^2, y) ) # optional - sage.libs.singular sage: S.lift() # optional - sage.libs.singular Set-theoretic ring morphism: From: Quotient of Multivariate Polynomial Ring in x, y over Rational Field by the ideal (x^2 + y^2, y) To: Multivariate Polynomial Ring in x, y over Rational Field Defn: Choice of lifting map sage: S.lift() == 0 # optional - sage.libs.singular False
Since github issue #11068, it is possible to create quotient rings of non-commutative rings by two-sided ideals. It was needed to modify
RingMap_lift
so that rings can be accepted that are no instances ofsage.rings.ring.Ring
, as in the following example:sage: MS = MatrixSpace(GF(5), 2, 2) # optional - sage.modules sage.rings.finite_rings sage: I = MS * [MS.0*MS.1, MS.2+MS.3] * MS # optional - sage.modules sage.rings.finite_rings sage: Q = MS.quo(I) # optional - sage.modules sage.rings.finite_rings sage: Q.0*Q.1 # indirect doctest # optional - sage.modules sage.rings.finite_rings [0 1] [0 0]
- sage.rings.morphism.is_RingHomomorphism(phi)#
Return
True
ifphi
is of typeRingHomomorphism
.EXAMPLES:
sage: f = Zmod(8).cover() sage: sage.rings.morphism.is_RingHomomorphism(f) doctest:warning ... DeprecationWarning: is_RingHomomorphism() should not be used anymore. Check whether the category_for() your morphism is a subcategory of Rings() instead. See https://github.com/sagemath/sage/issues/23204 for details. True sage: sage.rings.morphism.is_RingHomomorphism(2/3) False