{-# LANGUAGE NoImplicitPrelude, UnicodeSyntax #-}

module Control.Monad.Unicode ( (≫=), (≫), (=≪), (↣), (↢) ) where

-------------------------------------------------------------------------------
-- Imports
-------------------------------------------------------------------------------

-- from base:
import Control.Monad ( Monad, (>>=), (>>), (=<<), (>=>), (<=<) )


-------------------------------------------------------------------------------
-- Fixities
-------------------------------------------------------------------------------

infixl 1 ≫=
infixl 1 
infixr 1 =≪
infixl 1 
infixr 1 



-------------------------------------------------------------------------------
-- Symbols
-------------------------------------------------------------------------------

{-|
(&#x226B;=) = ('>>=')

(U+226B, MUCH GREATER-THAN) + (U+3D, EQUALS SIGN)
-}
(≫=)  Monad m  m α  (α  m β)  m β
≫= :: forall (m :: * -> *) α β. Monad m => m α -> (α -> m β) -> m β
(≫=) = m α -> (α -> m β) -> m β
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
(>>=)
{-# INLINE (≫=) #-}

{-|
(&#x226B;) = ('>>')

U+226B, MUCH GREATER-THAN
-}
(≫)  Monad m  m α  m β  m β
≫ :: forall (m :: * -> *) α β. Monad m => m α -> m β -> m β
(≫) = m α -> m β -> m β
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
(>>)
{-# INLINE () #-}

{-|
(=&#x226A;) = ('=<<')

(U+3D, EQUALS SIGN) + (U+226A, MUCH LESS-THAN)
-}
(=≪)  Monad m  (α  m β)  m α  m β
=≪ :: forall (m :: * -> *) α β. Monad m => (α -> m β) -> m α -> m β
(=≪) = (α -> m β) -> m α -> m β
forall (m :: * -> *) α β. Monad m => (α -> m β) -> m α -> m β
(=<<)
{-# INLINE (=≪) #-}

{-|
(&#x21a3;) = ('>=>')

(U+21A3, RIGHTWARDS ARROW WITH TAIL)
-}
(↣)  Monad μ  (α  μ β)  (β  μ γ)  α  μ γ
↣ :: forall (μ :: * -> *) α β γ.
Monad μ =>
(α -> μ β) -> (β -> μ γ) -> α -> μ γ
(↣) = (α -> μ β) -> (β -> μ γ) -> α -> μ γ
forall (μ :: * -> *) α β γ.
Monad μ =>
(α -> μ β) -> (β -> μ γ) -> α -> μ γ
(>=>)
{-# INLINE () #-}

{-|
(&#x21a2;) = ('<=<')

(U+21A2, LEFTWARDS ARROW WITH TAIL)
-}
(↢)  Monad μ  (β  μ γ)  (α  μ β)  α  μ γ
↢ :: forall (μ :: * -> *) β γ α.
Monad μ =>
(β -> μ γ) -> (α -> μ β) -> α -> μ γ
(↢) = (β -> μ γ) -> (α -> μ β) -> α -> μ γ
forall (μ :: * -> *) β γ α.
Monad μ =>
(β -> μ γ) -> (α -> μ β) -> α -> μ γ
(<=<)
{-# INLINE () #-}