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1 Preface

SINGULAR version 4.3.2
University of Kaiserslautern
Department of Mathematics and Centre for Computer Algebra
Authors: W. Decker, G.-M. Greuel, G. Pfister, H. Schoenemann
Copyright (©) 1986-2023

NOTICE

This program is free software; you can redistribute it and /or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation (version 2 or version 3 of the
License).

Some single files have a copyright given within the file: Singular/links/ndbm.* (BSD)

The following software modules shipped with SINGULAR have their own copyright: the omalloc
library, the readline library, the GNU Multiple Precision Library (GMP), NTL: A Library for doing
Number Theory (NTL), Flint: Fast Library for Number Theory, the Singular-Factory library, the
Singular-Factory library, the Singular-libfac library, surfex, and, for the Windows distributions, the
Cygwin DLL and the Cygwin tools (Cygwin), and the XEmacs editor (XEmacs).

Their copyrights and licenses can be found in the accompanying files COPYING which are dis-
tributed along with these packages. (Since version 3-0-3 of SINGULAR, all parts have GPL or
LGPL as (one of) their licences.)

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;

without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not,
write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
USA (see GPL)

Please send any comments or bug reports to singular@mathematik.uni-k1.de.

If you want to be informed of new releases, please register as a SINGULAR user by sending an
email to singular@mathematik.uni-kl.de with subject line register and body containing the
following data: your name, email address, organisation, country and platform(s).

For information on how to cite SINGULAR see
https://www.singular.uni-kl.de/index.php/how-to-cite-singular.

You can also support SINGULAR by informing us about your result obtained by using SINGULAR.

Availability

The latest information regarding the status of SINGULAR 1is always available from
https://www.singular.uni-k1.de. The program SINGULAR and the above mentioned parts are
available via anonymous ftp through the following addresses:

GMP, libreadline
© Free Software Foundation
https://gmplib.org

NTL (© Victor Shoup
http://www.shoup.net/ntl


https://www.uni-kl.de/
https://www.mathematik.uni-kl.de/
https://www.singular.uni-kl.de/zca/
http://www.gnu.org/copyleft/gpl.html
mailto:singular@mathematik.uni-kl.de
mailto:singular@mathematik.uni-kl.de
https://www.singular.uni-kl.de/index.php/how-to-cite-singular
https://www.singular.uni-kl.de
https://gmplib.org
http://www.shoup.net/ntl
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cdd (C implementation of the Double Description Method of Motzkin et al)
(© Komei Fukuda
http://www-oldurls.inf.ethz.ch/personal/fukudak/cdd_home/

FLINT (© Bill Hart, Sebastian Pancratz, Fredrik Johansson
http://www.flintlib.org

gfanlib (© Anders Jensen
https://users-math.au.dk/"~ jensen/software/gfan/gfan.html

Singular-Factory
© Gert-Martin Greuel/Riidiger Stobbe/Martin Lee, University of Kaiserslautern:
https://www.singular.uni-kl.de/ftp/pub/Math/Singular/Factory

Singular-libfac
(© Messollen, University of Saarbriicken:
ftp://jim.mathematik.uni-kl.de/pub/Math/Singular/Libfac/

SINGULAR binaries and sources
ftp://jim.mathematik.uni-k1.de/pub/Math/Singular/ or via a WWW browser
from https://www.singular.uni-k1l.de/ftp/pub/Math/Singular/

Cygwin https://www.cygwin.com/

Xemacs https://www.xemacs.org
Some external programs are optional:

4ti2 (used by sing4ti2.lib, see Section D.4.35 [sing4ti2_lib], page 1374)
https://4ti2.github.io

gfan (used by tropical.lib, see Section D.13.6 [tropical_lib], page 2094)
https://users-math.au.dk/” jensen/software/gfan/gfan.html

graphviz (used by resgraph.lib, see Section D.5.13 [resgraph_lib], page 1504)
https://www.graphviz.org/

normaliz (used by normaliz.lib, see Section D.4.26 [normaliz_lib], page 1207)
(© Winfried Bruns and Bogdan Ichim
https://www.normaliz.uni-osnabrueck.de

surf (used by surf.lib, see Section D.9.3 [surf_lib], page 1874)
(© Stephan Endrass
http://surf.sf.net

surfer (used by surf.lib, see Section D.9.3 [surf_lib], page 1874)
https://imaginary.org/program/surfer

surfex (used by surfex.lib, see Section 1D.9.4 [surfex_lib], page 1875)
© Oliver Labs (2001-2008), Stephan Holzer (2004-2005)
https://github.com/Singular/Singular/tree/spielwiese/Singular/LIB/surfex

TOPCOM (used by polymake.lib, see Section D.13.4 [polymake_lib], page 2085)
(© Jorg Rambau
http://www.rambau.wm.uni-bayreuth.de/TOPCOM/


http://www-oldurls.inf.ethz.ch/personal/fukudak/cdd_home/
http://www.flintlib.org
https://users-math.au.dk/~jensen/software/gfan/gfan.html
https://www.singular.uni-kl.de/ftp/pub/Math/Singular/Factory
ftp://jim.mathematik.uni-kl.de/pub/Math/Singular/Libfac/
ftp://jim.mathematik.uni-kl.de/pub/Math/Singular/
https://www.singular.uni-kl.de/ftp/pub/Math/Singular/
https://www.cygwin.com/
https://www.xemacs.org
https://4ti2.github.io
https://users-math.au.dk/~jensen/software/gfan/gfan.html
https://www.graphviz.org/
https://www.normaliz.uni-osnabrueck.de
http://surf.sf.net
https://imaginary.org/program/surfer
https://github.com/Singular/Singular/tree/spielwiese/Singular/LIB/surfex
http://www.rambau.wm.uni-bayreuth.de/TOPCOM/
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2 Introduction

2.1 Background

SINGULAR is a Computer Algebra system for polynomial computations with emphasis on the special
needs of commutative algebra, algebraic geometry, and singularity theory.

SINGULAR’s main computational objects are ideals and modules over a large variety of baserings.
The baserings are polynomial rings or localizations thereof over a field (e.g., finite fields, the ratio-
nals, floats, algebraic extensions, transcendental extensions) or over a limited set of rings, or over
quotient rings with respect to an ideal.

SINGULAR features one of the fastest and most general implementations of various algorithms for
computing Groebner resp. standard bases. The implementation includes Buchberger’s algorithm
(if the ordering is a wellordering) and Mora’s algorithm (if the ordering is a tangent cone ordering)
as special cases. Furthermore, it provides polynomial factorization, resultant, characteristic set and
gced computations, syzygy and free-resolution computations, and many more related functionalities.

Based on an easy-to-use interactive shell and a C-like programming language, SINGULAR’s internal
functionality is augmented and user-extendible by libraries written in the SINGULAR programming
language. A general and efficient implementation of communication links allows SINGULAR to make
its functionality available to other programs.

SINGULAR’s development started in 1984 with an implementation of Mora’s Tangent Cone algo-
rithm in Modula-2 on an Atari computer (K.P. Neuendorf, G. Pfister, H. Schénemann; Humboldt-
Universitét zu Berlin). The need for a new system arose from the investigation of mathematical
problems coming from singularity theory which none of the existing systems was able to handle.

In the early 1990s SINGULAR’s "home-town" moved to Kaiserslautern, a general standard basis
algorithm was implemented in C and SINGULAR was ported to Unix, MS-DOS, Windows NT, and
MacOS.

Continuous extensions (like polynomial factorization, gcd computations, links) and refinements led
in 1997 to the release of SINGULAR version 1.0 and in 1998 to the release of version 1.2 (with a
much faster standard and Groebner bases computation based on Hilbert series and on an improved
implementation of the core algorithms, libraries for primary decomposition, ring normalization,
etc.)

For the highlights of the new SINGULAR version 4.3.2, see Section 8.1 [News and changes|, page 2489.
2.2 How to use this manual

For the impatient user

In Section 2.3 [Getting started], page 6, some simple examples explain how to use SINGULAR in a
step-by-step manner.

Appendix A [Examples|, page 695 should come next for real learning-by-doing or to quickly solve
some given mathematical problem without dwelling too deeply into SINGULAR. This chapter con-
tains a lot of real-life examples and detailed instructions and explanations on how to solve mathe-
matical problems using SINGULAR.
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For the systematic user

In Chapter 3 [General concepts|, page 15, all basic concepts which are important to use and to
understand SINGULAR are developed. But even for users preferring the systematic approach it will
be helpful to take a look at the examples in Section 2.3 [Getting started|, page 6, every now and
then. The topics in the chapter are organized more or less in the natural order in which the novice
user is expected to have to deal with them.

e In Section 3.1 [Interactive use|, page 15, and its subsections there are some words on entering
and exiting SINGULAR, followed by a number of other aspects concerning the interactive user-
interface.

e To do anything more than trivial integer computations, one needs to define a basering in
SINGULAR. This is explained in detail in Section 3.3 [Rings and orderings|, page 30.

e An overview of the algorithms implemented in the kernel of SINGULAR is given in Section 3.4
[Implemented algorithms]|, page 37.

e In Section 3.5 [The SINGULAR languagel|, page 41, language specific concepts are introduced,
such as the notions of names and objects, data types and conversion between them, etc.

e In Section 3.6 [Input and output], page 48, SINGULAR’s mechanisms to store and retrieve data
are discussed.

e The more complex concepts of procedures and libraries as well as tools for debugging them are
considered in the following sections: Section 3.7 [Procedures|, page 50, Section 3.8 [Libraries],
page 55, and Section 3.9 [Debugging tools], page 68.

Chapter 4 [Data types|, page 73, is a complete treatment of SINGULAR’s data types in alphabetical
order, where each section corresponds to one data type. For each data type, its purpose is explained,
the syntax of its declaration is given, related operations and functions are listed, and one or more
examples illustrate its usage.

Chapter 5 [Functions and system variables|, page 154, is an alphabetically ordered reference list
of all of SINGULAR’s functions, control structures, and system variables. Each entry includes a
description of the syntax and semantics of the item being explained as well as one or more examples
on how to use it.

Miscellaneous

Chapter 6 [Tricks and pitfalls], page 306, is a loose collection of limitations and features which
may be unexpected by those who expect the SINCULAR language to be an exact copy of the C
programming language or of some other Computer Algebra system’s language. Additionally, some
mathematical hints are collected there.

Appendix C [Mathematical background|, page 771, introduces some of the mathematical notions
and definitions used throughout this manual. For example, if in doubt what exactly a “negative
degree reverse lexicographical ordering” is in SINGULAR, one should refer to this chapter.

Appendix D [SINGULAR libraries|, page 790, lists the libraries which come with SINGULAR, and
all functions contained in them.

Typographical conventions

Throughout this manual, the following typographical conventions are adopted:
e text in typewriter denotes SINGULAR input and output as well as reserved names:
The basering can, e.g., be set using the command setring.
e the arrow — denotes SINGULAR output:
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poly p=x+y+z;
P*p;
= X2+42xy+y2+2xz+2yz+z2
e square brackets are used to denote parts of syntax descriptions which are optional:
[optional_text] required_text
e keys are denoted using typewriter, for example:
N (press the key N to get to the next node in help mode)
RETURN (press RETURN to finish an input line)
CTRL-P (press the control key together with the key P to get the previous input line)

2.3 Getting started

SINGULAR is a special purpose system for polynomial computations. Hence, most of the powerful
computations in SINGULAR require the prior definition of a ring. Most important rings are poly-
nomial rings over a field, localizations thereof, or quotient rings of such rings modulo an ideal.
However, some simple computations with integers (machine integers of limited size) and manipu-
lations of strings can be carried out without the prior definition of a ring.

2.3.1 First steps

Once SINGULAR is started, it awaits an input after the prompt >. Every statement has to be
terminated by ; .

37+5;

— 42
All objects have a type, e.g., integer variables are defined by the word int. An assignment is made
using the symbol = .

int k = 2;
Test for equality resp. inequality is done using == resp. != (or <>), where 0 represents the boolean
value FALSE, and any other value represents TRUE.

k == 2;

= 1

k 1= 2;

= 0
The value of an object is displayed by simply typing its name.

k;

= 2
On the other hand, the output is suppressed if an assignment is made.

int j;

j = k+1;
The last displayed (!) result can be retrieved via the special symbol _ .

2%_; // the value from k displayed above

= 4
Text starting with // denotes a comment and is ignored in calculations, as seen in the previous
example. Furthermore SINGULAR maintains a history of the previous lines of input, which may be
accessed by CTRL-P (previous) and CTRL-N (next) or the arrows on the keyboard.
The whole manual is available online by typing the command help; . Documentation on single
topics, e.g., on intmat, which defines a matrix of integers, is obtained by
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help intmat;
This will display the text of Section 4.7 [intmat|, page 89, in the printed manual.

Next, we define a 3 x 3 matrix of integers and initialize it with some values, row by row from left
to right:
intmat m([3]([3] = 1,2,3,4,5,6,7,8,9;
m;
A single matrix entry may be selected and changed using square brackets [ and ].
m[1,2]=0;
m;
—

=
—

,0,3,
,9,6,
,8,9
To calculate the trace of this matrix, we use a for loop. The curly brackets { and } denote the
beginning resp. end of a block. If you define a variable without giving an initial value, as the
variable tr in the example below, SINGULAR assigns a default value for the specific type. In this
case, the default value for integers is 0. Note that the integer variable j has already been defined
above.

~N -

int tr;

for ( j=1; j <= 3; j++ ) { tr=tr + m[j,jl; }
tr;

— 15

Variables of type string can also be defined and used without having an active ring. Strings are
delimited by " (double quotes). They may be used to comment the output of a computation or
to give it a nice format. If a string contains valid SINGULAR commands, it can be executed using
the function execute. The result is the same as if the commands would have been written on the
command line. This feature is especially useful to define new rings inside procedures.

"example for strings:";

— example for strings:

string s="The element of m ";

s = s + "at position [2,3] is:"; // concatenation of strings by +
s , m[2,3] , ".";

+ The element of m at position [2,3] is: 6 .
s="m[2,1]=0; m;";

execute(s);

— 1,0,3,

— 0,5,6,

= 7,8,9

This example shows that expressions can be separated by , (comma) giving a list of expressions.
SINGULAR evaluates each expression in this list and prints all results separated by spaces.

2.3.2 Rings and standard bases

In order to compute with objects such as ideals, matrices, modules, and polynomial vectors, a ring
has to be defined first.
ring r = 0,(x,y,z),dp;

The definition of a ring consists of three parts: the first part determines the ground field, the
second part determines the names of the ring variables, and the third part determines the monomial
ordering to be used. Thus, the above example declares a polynomial ring called r with a ground
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field of characteristic 0 (i.e., the rational numbers) and ring variables called x, y, and z. The dp at
the end determines that the degree reverse lexicographical ordering will be used.

Other ring declarations:

ring r1=32003, (x,y,z) ,dp;
characteristic 32003, variables x, y, and z and ordering dp.

ring r2=32003, (a,b,c,d),1p;
characteristic 32003, variable names a, b, c, d and lexicographical ordering.

ring r3=7,(x(1..10)) ,ds;
characteristic 7, variable names x(1),. . .,x(10), negative degree reverse lexicographical
ordering (ds).

ring r4=(0,a), (mu,nu) ,1p;
transcendental extension of () by a , variable names mu and nu, lexicographical ordering.

ring rb=real, (a,b),1lp;
floating point numbers (single machine precision), variable names a and b.

ring r6=(real,50), (a,b),1lp;
floating point numbers with precision extended to 50 digits, variable names a and b.

ring r7=(complex,50,i), (a,b),1lp;
complex floating point numbers with precision extended to 50 digits and imaginary
unit i, variable names a and b.

ring r8=integer, (a,b),1lp;
the ring of integers (see Section 3.3.4 [Coeflicient rings|, page 37), variable names a and
b.

ring r9=(integer, 60), (a,b),1lp;
the ring of integers modulo 60 (see Section 3.3.4 [Coefficient rings|, page 37), variable
names a and b.

ring r10=(integer, 2, 10),(a,b),1lp;
the ring of integers modulo 2710 (see Section 3.3.4 [Coefficient rings|, page 37), variable
names a and b.

Typing the name of a ring prints its definition. The example below shows that the default ring in
SINGULAR is Z/32003[x, y, z] with degree reverse lexicographical ordering:

ring riil;

rll;

— // coefficients: ZZ/32003

— // number of vars : 3

= // block 1 : ordering dp

= // ! names Xy z

= // block 2 : ordering C
Defining a ring makes this ring the current active basering, so each ring definition above switches
to a new basering. The concept of rings in SINGULAR is discussed in detail in Section 3.3 [Rings
and orderings|, page 30.
The basering is now r11. Since we want to calculate in the ring r, which we defined first, we need
to switch back to it. This can be done using the function setring:

setring r;
Once a ring is active, we can define polynomials. A monomial, say z®, may be entered in two
ways: either using the power operator ~, writing x~3, or in short-hand notation without operator,
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writing x3. Note that the short-hand notation is forbidden if a name of the ring variable(s) consists
of more than one character(see Section 6.4 [Miscellaneous oddities|, page 310 for details). Note,
that SINGULAR always expands brackets and automatically sorts the terms with respect to the
monomial ordering of the basering.

poly f = x3+y3+(x-y)*x2y2+z2;

£

= x3y2-x2y3+x3+y3+z2
The command size retrieves in general the number of entries in an object. In particular, for
polynomials, size returns the number of monomials.

size(f);

= 5

A natural question is to ask if a point, e.g., (x,y,2z)=(1,2,0), lies on the variety defined by the
polynomials £ and g. For this we define an ideal generated by both polynomials, substitute the
coordinates of the point for the ring variables, and check if the result is zero:

poly g = £°2 *x(2x-y);

ideal I = f,g;

ideal J = subst(I,var(1),1);

J = subst(J,var(2),2);

J = subst(J,var(3),0);

J;

— J[1]=5

— J[2]=0

Since the result is not zero, the point (1,2,0) does not lie on the variety V(£,g).

Another question is to decide whether some function vanishes on a variety, or in algebraic terms,
if a polynomial is contained in a given ideal. For this we calculate a standard basis using the
command groebner and afterwards reduce the polynomial with respect to this standard basis.

ideal sI = groebner(f);
reduce(g,sI);
= 0

As the result is 0 the polynomial g belongs to the ideal defined by f£.

The function groebner, like many other functions in SINGULAR, prints a protocol during calcu-
lations, if desired. The command option(prot); enables protocolling whereas option(noprot) ;
turns it off. Section 5.1.110 [option], page 231, explains the meaning of the different symbols printed
during calculations.

The command kbase calculates a basis of the polynomial ring modulo an ideal, if the quotient ring
is finite dimensional. As an example we calculate the Milnor number of a hypersurface singularity
in the global and local case. This is the vector space dimension of the polynomial ring modulo the
Jacobian ideal in the global case resp. of the power series ring modulo the Jacobian ideal in the
local case. See Section A.4.2 [Critical points|, page 733, for a detailed explanation.
The Jacobian ideal is obtained with the command jacob.

ideal J = jacob(f);

= // ** redefining J #*x*

J;

— J[1]=3x2y2-2xy3+3x2

> J[2]=2x3y-3x2y2+3y2

— J[3]=2z

SINGULAR prints the line // ** redefining J **. This indicates that we had previously defined a
variable with name J of type ideal (see above).
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To obtain a representing set of the quotient vector space we first calculate a standard basis, and
then apply the function kbase to this standard basis.

J = groebner(J);
ideal K = kbase(J);

K[1]=y4
K[2]=xy3
K[3]=y3
K[4]=xy2
K[5]=y2
K[6]=x2y
K[7]=xy
K[8]=y
K[9]=x3
K[10]=x2
K[11]=x
K[12]=1

111311131111

Then

size(K);
— 12

gives the desired vector space dimension K|x,y, z]/jacob(f). As in SINGULAR the functions may
take the input directly from earlier calculations, the whole sequence of commands may be written
in one single statement.

size (kbase(groebner (jacob(£))));
= 12

When we are not interested in a basis of the quotient vector space, but only in the resulting
dimension we may even use the command vdim and write:

vdim(groebner (jacob(£)));
= 12

2.3.3 Procedures and libraries

SINGULAR offers a comfortable programming language, with a syntax close to C. So it is possible
to define procedures which bind a sequence of several commands in a new one. Procedures are
defined using the keyword proc followed by a name and an optional parameter list with specified
types. Finally, a procedure may return a value using the command return.

We may e.g. define the following procedure called Milnor: (Here the parameter list is (poly h)
meaning that Milnor must be called with one argument which can be assigned to the type poly
and is referred to by the name h.)

proc Milnor (poly h)
{
return(vdim(groebner (jacob(h))));

3

Note: if you have entered the first line of the procedure and pressed RETURN, SINGULAR prints
the prompt . (dot) instead of the usual prompt > . This shows that the input is incomplete and
SINGULAR expects more lines. After typing the closing curly bracket, SINGULAR prints the usual
prompt indicating that the input is now complete.

Then we can call the procedure:
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Milnor(f);
— 12

Note that the result may depend on the basering as we will see in the next chapter.

The distribution of SINGULAR contains several libraries, each of which is a collection of useful
procedures based on the kernel commands, which extend the functionality of SINGULAR. The
command listvar (package); list all currently loaded libraries. The command LIB "all.lib";
loads all libraries.

One of these libraries is sing.1ib which already contains a procedure called milnor to calculate the
Milnor number not only for hypersurfaces but more generally for complete intersection singularities.

Libraries are loaded using the command LIB. Some additional information during the process of
loading is displayed on the screen, which we omit here.

LIB "sing.lib";
As all input in SINGULAR is case sensitive, there is no conflict with the previously defined procedure
Milnor, but the result is the same.

milnor (f);
— 12

The procedures in a library have a help part which is displayed by typing
help milnor;

as well as some examples, which are executed by
example milnor;

Likewise, the library itself has a help part, to show a list of all the functions available for the user
which are contained in the library.
help sing.1lib;

The output of the help commands is omitted here.

2.3.4 Change of rings

To calculate the local Milnor number we have to do the calculation with the same commands in a
ring with local ordering. We can define the localization of the polynomial ring at the origin (see
Appendix B [Polynomial data], page 764, and Appendix C [Mathematical background], page 771).
ring rl = 0,(x,y,2),ds;
The ordering directly affects the standard basis which will be calculated. Fetching the polynomial
defined in the ring r into this new ring, helps us to avoid retyping previous input.
poly f = fetch(r,f);
5
= z2+x3+y3+x3y2-x2y3
Instead of fetch we can use the function imap which is more general but less efficient. The
most general way to fetch data from one ring to another is to use maps, this will be explained in
Section 4.11 [map]|, page 104.
In this ring the terms are ordered by increasing exponents. The local Milnor number is now
Milnor (f);
— 4
This shows that £ has outside the origin in affine 3-space singularities with local Milnor number
adding up to 12 — 4 = 8. Using global and local orderings as above is a convenient way to check
whether a variety has singularities outside the origin.

The command jacob applied twice gives the Hessian of £, in our example a 3x3 - matrix.
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matrix H = jacob(jacob(f));
H;
— H[1,1]=6x+6xy2-2y3
— H[1,2]=6x2y-6xy2
— H[1,3]=0
— H[2,1]=6x2y-6xy2
— H[2,2]=6y+2x3-6x2y
— H[2,3]=0
— H[3,1]=0
— H[3,2]=0
— H[3,3]=2
The print command displays the matrix in a nicer format.
print (H);

— 6x+6xy2-2y3,6x2y-6xy2, O,
— 6x2y-6xy2, 6y+2x3-6x2y,0,

— 0, 0, 2
We may calculate the determinant and (the ideal generated by all) minors of a given size.
det (H) ;

= 72xy+24x4-T72x3y+72xy3-24y4-48x4y2+64x3y3-48x2y4

minor(H,1); // the 1x1 - minors

= _[1]=2

= _[2]=6y+2x3-6x2y

— _[3]=6x2y-6xy2

— _[4]=6x2y-6xy2

— _[5]=6x+6xy2-2y3
The algorithm of the standard basis computation may be affected by the command option. For
example, a reduced standard basis of the ideal generated by the 1 x 1-minors of H is obtained in
the following way:

option(redSB);

groebner (minor(H,1));

= _[1]=1
This shows that 1 is contained in the ideal of the 1 x 1-minors, hence the corresponding variety is
empty.

2.3.5 Modules and their annihilator

Now we shall give three more advanced examples.

SINGULAR is able to handle modules over all the rings, which can be defined as a basering. A free
module of rank n is defined as follows:

ring rr;

int n = 4;

freemodule (4);

— _[1]=gen(1)

= _[2]=gen(2)

— _[3]=gen(3)

— _[4]=gen(4)

typeof (_);

— module

print (freemodule(4));

— 1,0,0,0,

— 0,1,0,0,
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— 0,0,1,0,
— 0,0,0,1

To define a module, we provide a list of vectors generating a submodule of a free module. Then
this set of vectors may be identified with the columns of a matrix. For that reason in SINGULAR
matrices and modules may be interchanged. However, the representation is different (modules may
be considered as sparse matrices).

ring r =0, (x,y,2),dp;

module MD = [x,0,x],[y,z,-y],[0,z,-2y];

matrix MM = MD;

print (MM) ;

— x,y,0,

— 0,z,z,

= X,-y,"2y
However the submodule M D may also be considered as the module of relations of the factor module
r3/MD. In this way, SINGULAR can treat arbitrary finitely generated modules over the basering
(see Section B.1 [Representation of mathematical objects|, page 764).
In order to get the module of relations of M D |, we use the command syz.

syz (MD) ;
— _[1]=x*gen(3)-x*gen(2)+y*gen (1)

We want to calculate, as an application, the annihilator of a given module. Let M = r3/U, where
U is our defining module of relations for the module M.

module U = [z3,xy2,x3], [yz2,1,xy5z+z3], [y2z,0,x3], [xyz+x2,y2,0], [xyz,x2y,1];
Then, by definition, the annihilator of M is the ideal ann(M) = {a | aM = 0} which is, by definition
of M, the same as {a | ar® € U}. Hence we have to calculate the quotient U: r*. The rank of the free

module is determined by the choice of U and is the number of rows of the corresponding matrix.
This may be retrieved by the function nrows. All we have to do now is the following:

quotient (U,freemodule (nrows(U)));

The result is too big to be shown here.

2.3.6 Resolution

There are several commands in SINGULAR for computing free resolutions. The most general com-
mand is res(... ,n) which determines heuristically what method to use for the given problem. It
computes the free resolution up to the length n , where n = 0 corresponds to the full resolution.

Here we use the possibility to inspect the calculation process using the option prot.

ring R; // the default ring in char 32003

R;

— //  characteristic : 32003

— // number of vars : 3

= // block 1 : ordering dp

= // ! names Xy z

= // block 2 : ordering C

ideal I = x4+x3y+x2yz,x2y2+xy2z+y2z2,x222+2x23,2x222+xy22;
option(prot);

resolution rs = res(I,0);
— using lres
— 4(m0)4(m1) .5(m1)g.g6(ml)...6(m2)..

Disable this protocol with
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option(noprot) ;
When we enter the name of the calculated resolution, we get a pictorial description of the minimized
resolution where the exponents denote the rank of the free modules. Note that the calculated
resolution itself may not yet be minimal.

rs;
— 1 4 5 2 0
R <-- R <-- R <--R <--R
’_>

—0 1 2 3 4
print(betti(rs),"betti");

— 0 1 2 3
'% ______________________________
—> 0: - - -
> 1: - - - -
—> 2: - - - -
— 3: - 1 -
— 4: - - 1 -
— 5: - - 3 2
'_> ______________________________
— total 1 4 5 2

In order to minimize the resolution, that is to calculate the maps of the minimal free resolution,
we use the command minres:

rs=minres(rs);

A single module in this resolution is obtained (as usual) with the brackets [ and ]. The print
command can be used to display a module in a more readable format:
print(rs([3]);
z3, -xXyz-y2z-4xz2+16z3,
0, -y2,
-y+4z,48z,
x+2z, 48z,
0, X+y-z

11111

In this case, the output is to be interpreted as follows: the 3rd syzygy module of R/I, rs[3], is
the rank-2-submodule of R® generated by the vectors (z*,0, —y + 4z, + 22,0) and (—zyz — y*z —
dxz? + 1623, —y?,482,482, 0 + y — 2).
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3 General concepts

3.1 Interactive use

In this section, aspects of interactive use are discussed. This includes how to enter and exit
SINGULAR, how to interpret its prompt, how to get online help, and so on.

There are a few important notes which one should not forget:
e every command has to be terminated by a ; (semicolon) followed by a

e the online help is accessible by means of the help function

3.1.1 How to enter and exit

SINGULAR can either be run in an ASCII-terminal or within Emacs.

To start SINGULAR in its ASCII-terminal user interface, enter Singular at the system prompt.
The SINGULAR banner appears which, among other data, reports the version and the compilation
date.

To start SINGULAR in its Emacs user interface, either enter ESingular at the system prompt, or
type M-x singular within a running Emacs (provided you have loaded the file singular.el in
your running Emacs, see Section 3.2.2 [Running SINGULAR under Emacs|, page 25 for details).

Generally, we recommend to use SINGULAR in its Emacs interface, since this offers many more
features and is more convenient to use than the ASCII-terminal interface (see Section 3.2 [Emacs
user interface|, page 22).

To exit SINGULAR type quit;, exit; or $ (or, when running within Emacs preferably type C-c $).

SINGULAR and ESingular may also be started with command line options and with filenames as
arguments. More generally, the startup syntax is

Singular [options] [filel [file2 ...]]

ESingular [options] [filel [file2 ...]]
See Section 3.1.6 [Command line options|, page 19, Section 3.1.7 [Startup sequence|, page 22,
Section 3.2.2 [Running SINGULAR under Emacs], page 25.

3.1.2 The SINGULAR prompt

The SINGULAR prompt > (larger than) asks the user for input of commands. The “continuation”
prompt . (period) asks the user for input of missing parts of a command (e.g. the semicolon at the
end of every command).

SINGULAR does not interpret the semicolon as the end of a command if it occurs inside a string.
Also, SINGULAR waits for blocks (sequences of commands enclosed in curly brackets) to be closed
before prompting with > for more commands. Thus, if SINGULAR does not respond with its regular
prompt after typing a semicolon it may wait for a " or a } first.

Additional semicolons will not harm SINGULAR since they are interpreted as empty statements.

3.1.3 The online help system

The online help system is invoked by the help command. 7 may be used as a synonym for help.
Simply typing help; displays the “top” of the help system (i.e., the title page of the SINGULAR
manual) which offers a short table of contents. Typing help topic; shows the available documen-
tation on the respective topic. Here, topic may be either a function name or, more generally, any
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index entry of the SINGULAR manual. Furthermore, topic may contain wildcard characters. See
Section 5.1.54 [help|, page 191, for more information.

Online help information can be displayed in various help browsers. The following table lists a
summary of the browsers which are always present. Usually, external browsers are much more
convenient: A complete, customizable list can be found in the file LIB/help.cnf.

Browser Platform Description

html Windows displays a html version of the manual in your default html
browser

builtin all simply outputs the help information in plain ASCII for-
mat

emacs Unix, Windows  when running SINGULAR within (X)emacs, displays help

inside the (X)emacs info buffer.

dummy all displays an error message due to the non-availability of
a help browser

External browsers depend on your system and the contents of LIB/help.cnf, the default includes:

htmlview (displays HTML help pages via htlmview),

mac (displays HTML help pages via open),

mac-net (displays HTML help pages via open),

mozilla (displays HTML help pages via mozilla),

firefox (displays HTML help pages via firefox),

konqueror (displays HTML help pages via konqueror),

galeon (displays HTML help pages via galeon),

netscape (displays HTML help pages via netscape),

safari (displays HTML help pages on MacOsX via safari),

tkinfo (displays INFO help pages via tkinfo),

xinfo (displays INFO help pages via info),

info (displays INFO help pages via info),

lynx (displays HTML help pages via lynx).

The browser which is used to display the help information, can be either set at startup time with

the command line option (see Section 3.1.6 [Command line options|, page 19)
--browser=<browser>

or with the SINGULAR command (see Section 5.1.153 [system], page 271)
system("--browser", "<browser>");

The SINGULAR command
system("browsers") ;

lists all available browsers and the command
system("--browser") ;

returns the currently used browser.

If no browser is explicitly set by the user, then the first available browser (w.r.t. the order of the
browsers in the file LIB/help.cnf) is chosen.

The .singularrc (see Section 3.1.7 [Startup sequencel|, page 22) file is a good place to set your
default browser. Recall that if a file $HOME/ . singularrc exists on your system, then the content
of this file is executed before the first user input. Hence, putting
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if (! system("--emacs"))

{
// only set help browser if not running within emacs
system("--browser", "info");

}

// if help browser is later on set to a web browser,
// allow it to fetch HTML pages from the net
system("--allow-net", 1);

in your file $HOME/ . singularrc sets your default browser to info, unless SINGULAR is run within
emacs (in which case the default browser is automatically set to emacs).

Obviously, certain external files and programs are required for the SINGULAR help system to work
correctly. If something is not available or goes wrong, here are some tips for troubleshooting the
help system:

e Under Unix, the environment variable DISPLAY has to be set for all X11 browsers to work.

e The help browsers are only available if the respective programs are installed on your system
(for xinfo, the programs xterm and info are necessary). You can explicitly specify which
program to use, by changing the entry in LIB/help.cnf

e If the help browser cannot find the local html pages of the SINGULAR manual (which it
will look for at $RootDir/html — see Section 3.8.11 [Loading a library|, page 66 for more
info on $RootDir) and the (command-line) option --allow-net has explicitly been set (see
Section 3.1.6 [Command line options], page 19 and Section 5.1.153 [system|, page 271 for
more info on setting values of command-line options), then it dispatches the html pages from
https://www.singular.uni-k1l.de/Manual. (Note that the non-local net-access of HTML
pages is disabled, by default.)

An alternative location of a local directory where the html pages reside can be specified by
setting the environment variable SINGULAR_HTML_DIR.

e The info based help browsers tkinfo, xinfo, info, and builtin need the (info) file
singular.info which will be looked for at $RootDir/info/singular.info (see Section 3.8.11
Loading a library|, page 66 for more info on $RootDir). An alternative location of the info
file of the manual can be specified by setting the environment variable SINGULAR_INFO_FILE.

Section 3.1.6 [Command line options|, page 19

Info help browsers

The help browsers tkinfo, xinfo and info (so-called info help browsers) are based on the info
program from the GNU texinfo package. See section “Getting started” in The Info Manual, for
more information.

For info help browsers, the online manual is decomposed into “nodes” of information, closely related
to the division of the printed manual into sections and subsections. A node contains text describing
a specific topic at a specific level of detail. The top line of a node is its “header”. The node’s header
tells the name of the current node (Node:), the name of the next node (Next:), the name of the
previous node (Prev:), and the name of the upper node (Up:).

To move within info, type commands consisting of single characters. Do not type RETURN. Do
not use cursor keys, either. Using some of the cursor keys by accident might pop to some totally
different node. Type 1 to return to the original node. Some of the info commands read input from
the command line at the bottom. The TAB key may be used to complete partially entered input.

The most important commands are:

q leaves the online help system
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n goes to the next node

P goes to the previous node

u goes to the upper node

m picks a menu item specified by name

f follows a cross reference

1 goes to the previously visited node

b goes to the beginning of the current node

e goes to the end of the current node

SPACE scrolls forward a page

DEL scrolls backward a page

h invokes info tutorial (use 1 to return to the manual or CTRL-X O to remove extra
window)

CTRL-H shows a short overview over the online help system (use 1 to return to the manual or
CTRL-X O to remove extra window)

s searches through the manual for a specific string, and selects the node in which the
next occurrence is found

1, ...,9 picks i-th subtopic from a menu

3.1.4 Interrupting SINGULAR

On Unix-like operating systems and on Windows NT, typing CTRL-C (or, alternatively C-c C-c,
when running within Emacs), interrupts SINGULAR. SINGULAR prints the current command and
the current line and prompts for further action. The following choices are available:

a returns to the top level after finishing the current (kernel) command. Notice that
commands of the SINGULAR kernel (like std) cannot be aborted, i.e. (a)bort only
happens whenever the interpreter is active.

c continues

q quits SINGULAR

3.1.5 Editing input

The following keys can be used for editing the input and retrieving previous input lines:
TAB provides command line completion for function names and file names
CTRL-B moves cursor to the left

CTRL-F moves cursor to the right

CTRL-A moves cursor to the beginning of the line
CTRL-E moves cursor to the end of the line
CTRL-D deletes the character under the cursor

Warning: on an empty line, CTRL-D is interpreted as the EOF character which immedi-
ately terminates SINGULAR.
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BACKSPACE
DELETE
CTRL-H deletes the character before the cursor

CTRL-K kills from cursor to the end of the line

CTRL-U kills from cursor to the beginning of the line

CTRL-N saves the current line to history and gives the next line
CTRL-P saves the current line to history and gives the previous line

RETURN saves the current line to the history and sends it to the SINGULAR parser for interpre-
tation

When run under a Unix-like operating system and in its ASCII-terminal user interface, SINGULAR
tries to dynamically link at runtime with the GNU Readline library. See section “Command Line
Editing” in The GNU Readline Library Manual, for more information. If a shared version of
this library can be found on your machine, then additional command-line editing features like
history completion are available. In particuliar, if SINGULAR is able to load that library the input
history is stored across sessions using the file given in the environment variable SINGULARHIST. If
SINGULARHIST is not set .singularhistory is used. Otherwise, i.e., if the environment variable
SINGULARHIST is set to the empty string, the history of the last inputs is only available for previous
commands of the current session.

3.1.6 Command line options

The startup syntax is

Singular [options] [filel [file2 ...]]

ESingular [options] [filel [file2 ...]]
Options can be given in both their long and short format. The following options control the general
behaviour of SINGULAR:

-d, --sdb Enable the use of the source code debugger. See Section 3.9.3 [Source code debugger],
page 69.

-e, ——echo [=VAL]
Set value of variable echo to VAL (integer in the range 0, . .., 9). Without an argument,
echo is set to 1, which echoes all input coming from a file. By default, the value of
echo is 0. See Section 5.3.2 [echol, page 299.

-h, --help
Print a one-line description of each command line option and exit.

-—allow-net
Allow the help browsers based on a web browser to fetch HTTML manual pages over
the net from the WWW home-site of SINGULAR. See Section 3.1.3 [The online help
system], page 15, for more info.

--browser="VAL"

Use VAL as browser for the SINGULAR online manual.

VAL may be one of the browsers mentioned in LIB/help.cnf, for example html (Win-
dows only), mozilla, firefox, konqueror, galeon, netscape, safari (OsX only),
xinfo, tkinfo, info, builtin, or emacs. Depending on your platform and local in-
stallation, only some browsers might be available. The default browser is html for
Windows and one based on a web browser for Unix platforms. See Section 3.1.3 [The
online help system|, page 15, for more info.
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--no-rc Do not execute the .singularrc file on start-up. By default, this file is executed on
start-up. See Section 3.1.7 [Startup sequence|, page 22.

--no-stdlib
Do not load the library standard.lib on start-up. By default, this library is loaded
on start-up. See Section 3.1.7 [Startup sequence], page 22.

--no-warn
Do not display warning messages.

--no-out Suppress display of all output.

-—-no-shell
Runs Singular in restricted mode to disallow shell escape commands. Objects of type
link will also be unable to use.

-t, ——no-tty
Do not redefine the characteristics of the terminal. This option should be used for
batch processes.

-q, ——quiet
Do not print the start-up banner and messages when loading libraries. Furthermore,
redirect stderr (all error messages) to stdout (normal output channel). This option
should be used if SINGULAR’s output is redirected to a file.

-v Print extended information about the version and configuration of SINGULAR (used
optional parts, compilation date, start of random generator etc.). This information
should be included if a user reports an error to the authors.

It also list all the used directories/files (see Section 8.5 [Used environment variables]
page 2500).

The following command line options allow manipulations of the timer and the pseudo random
generator and enable the passing of commands and strings to SINGULAR:

-c, ——execute=STRING
Execute STRING as (a sequence of) SINGULAR commands on start-up after the
.singularrc file is executed, but prior to executing the files given on the command line.
E.g., Singular -c "help all.lib; quit;" shows the help for the library all.1lib and
exits.

-u, ——user-option=STRING
Returns STRING on system("--user-option"). This is useful for passing arbitrary
arguments from the command line to the SINGULAR interpreter. E.g.,
Singular -u "xxx.dump" -c ’getdump (system("--user-option"))’ reads the file
xxx.dump at start-up and allows the user to start working with all the objects de-
fined in a previous session.

-r, ——random=SEED
Seed (i.e., set the initial value of) the pseudo random generator with integer SEED. If
this option is not given, then the random generator is seeded with a time-based SEED
(the number of seconds since January, 1, 1970, on Unix-like operating systems, to be
precise).

--min-time=SECS
If the timer (see Section 5.3.8 [timer|, page 302), resp. rtimer (see Section 5.3.10
rtimer|, page 304) , variable is set, report only times larger than SECS seconds (SECS
needs to be a floating point number greater than 0). By default, this value is set to 0.5
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(i.e., half a second). E.g., the option --min-time=0.01 forces SINGULAR to report all
times larger than 1/100 of a second.

--ticks-per-sec=TICKS
Set unit of timer to TICKS ticks per second (i.e., the value reported by the timer and
rtimer variable divided by TICKS gives the time in seconds). By default, this value is
1.

--cpus=CPUs
set the maximal number of CPUs to use.

-—cntrlc=C
set the default answer for interrupt signals to C which should be a for abort, ¢ for
continue or q for quit.

The next three options are of interest for the use with ssi links:

-b, —-batch
Run in batch mode. Opens a TCP/IP connection with host specified by --MPhost
at the port specified by —-MPport. Input is read from and output is written to this
connection in the format given by --1link. See Section 4.9.5 [Ssi links|, page 97.

——-MPport=PORT
Use PORT as default port number for connections (whenever not further specified). This
option is mandatory when the --batch option is given. See Section 4.9.5 [Ssi links],
page 97.

--MPhost=HOST
Use HOST as default host for connections (whenever not further specified). This option
is mandatory when the —-batch option is given. See Section 4.9.5 [Ssi links|, page 97.

Finally, the following options are only available when running ESingular (see Section 3.2.2 [Run-
ning SINGULAR under Emacs], page 25 for details).

—--emacs=EMACS
Use EMACS as Emacs program to run the SINGULAR Emacs interface, where EMACS may
e.g. be emacs or xemacs.

—--emacs—-dir=DIR
Set the singular-emacs-home-directory, which is the directory where singular.el can be
found, to DIR.

-—emacs-load=FILE
Load FILE on Emacs start-up, instead of the default load file.

--singular=PROG
Start PROG as SINGULAR program within Emacs

The value of options given to SINGULAR (resp. their default values, if an option was not given),
can be checked with the command system("--long_option_name"). See Section 5.1.153 [system],
page 271.

system("--quiet"); // if ‘‘quiet’’ 1, otherwise 0
=1

system("--min-time"); // minimal reported time
— 0.5

system("--random"); // seed of the random generator

— 12345678
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Furthermore, the value of options (e.g., ——browser) can be re-defined while SINGULAR is run-
ning using the command system("--long_option_name_string ", expression). See Section 5.1.153
[system], page 271.

system("--browser", "builtin"); // sets browser to ’builtin’
system("--ticks-per-sec", 100); // sets timer resolution to 100

3.1.7 Startup sequence

On start-up, SINGULAR
1. loads the library standard.lib (provided the --no-stdlib option was not given),

2. searches the current directory and then the home directory of the user, and then all directories
contained in the library SearchPath (see Section 3.8.11 [Loading a library|, page 66 for more
info on SearchPath) for a file named .singularrc and executes it, if found (provided the
--no-rc option was not given),

3. executes the string specified with the ——execute command line option,

4. executes the files filel, file2 ... (given on the command line) in that order.
Note: .singularrc file(s) are an appropriate place for setting some default values of (command-
line) options.

For example, a system administrator might remove the locally installed HTML version of the
manual and put a .singularrc file with the following content

if (system("version") >= 1306) // assure backwards-compatibility

{
system("--allow-net", 1);
}; // the last semicolon is important: otherwise no ">", but "." prompt

in the directory containing the SINGULAR libraries, thereby allowing to fetch the HTML on-line
help from the WWW home-site of SINGULAR.

On the other hand, a single user might put a .singularrc with the following content

if (system("version") >= 1306) // assure backwards-compatibility

{
if (! system("--emacs"))
{
// set default browser to info, unless we run within emacs
system("--browser", "info");
}
}; // the last semicolon is important: otherwise no ">", but "." prompt

in his home directory, which sets the default help browser to info (unless SINGULAR is run within
emacs) and thereby prevents the execution of the"global" .singularrc file installed by the system
administrator (since the .singularrc file of the user is found before the "global" .singularrc file
installed by the system administrator).

3.2 Emacs user interface

Besides running SINGULAR in an ASCII-terminal, SINGULAR might also be run within Emacs.
Emacs (or, XEmacs which is very similar) is a powerful and freely available text editor, which,
among others, provides a framework for the implementation of interactive user interfaces. Starting
from version 1.3.6, SINGULAR provides such an implementation, the so-called SINGULAR Emacs
mode, or Emacs user interface.
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Generally, we recommend to use the Emacs interface, instead of the ASCII-terminal interface: The
Emacs interface does not only provide everything the ASCII-terminal interface provides, but offers
much more. Among others, it offers

color highlighting

e truncation of long lines

e folding of input and output

e TAB-completion for help topics

e highlighting of matching parentheses

e key-bindings and interactive menus for most user interface commands and for basic SINGULAR
commands (such as loading of libraries and files)

e a mode for running interactive SINGULAR demonstrations
e convenient ways to edit SINGULAR input files

e interactive customization of nearly all aspects of the user-interface.

In order to use the SINGULAR-Emacs interface you need to have Emacs version 20
or higher, or XEmacs version 20.3 or higher installed on your system. These edi-
tors can be downloaded for most hard- and software platforms, sources from either
http://www.gnu.org/software/emacs/emacs.html (Emacs), or from http://www.xemacs.org
(XEmacs). (Download of binaries depend on your OS). The differences between Emacs and
XEmacs w.r.t. the SINGULAR-Emacs interface are marginal — which editor to use is mainly a
matter of personal preferences.

The simplest way to start-up SINGULAR in its Emacs interface is by running the program ESingular
which is contained in the Singular distribution. Alternatively, SINGULAR can be started within an
already running Emacs — see Section 3.2.2 [Running SINGULAR under Emacs|, page 25 for details.

The next section gives a tutorial-like introduction to Emacs. This introductory section is followed
by sections which explain the functionality of various aspects of the Emacs user interface in more
detail: how to start/restart/kill SINGULAR within Emacs, how to run an interactive demonstration,
how to customize the Emacs user interface, etc. Finally, the 20 most important commands of the
Emacs interface together with their key bindings are listed.

3.2.1 A quick guide to Emacs

This section gives a tutorial-like introduction to Emacs. Especially to users who are not familiar
with Emacs, we recommend that they go through this section and try out the described features.
Emacs commands generally involve the CONTROL key (sometimes labeled CTRL or CTL) or the META
key. On some keyboards, the META key is labeled ALT or EDIT or something else (for example, on
Sun keyboards, the diamond key to the left of the space-bar is META). If there is no META key, the
ESC key can be used, instead. Rather than writing out META or CONTROL each time we want to
prefix a character, we will use the following abbreviations:

C-<chr> means hold the key while typing the character <chr>. Thus, C-f
would be: hold the key and type £.
M-<chr> means hold the key down while typing <chr>. If there is no

key, type (ESC), release it, then type the character <chr>.
For users new to Emacs, we highly recommend that they go through the interactive Emacs tutorial:
type C-h t to start it.

For others, it is important to understand the following Emacs concepts:

window In Emacs terminology, a window refers to separate panes within the same window of
the window system, and not to overlapping, separate windows. When using SINGULAR


http://www.gnu.org/software/emacs/emacs.html
http://www.xemacs.org
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within Emacs, extra windows may appear which display help or output from certain
commands. The most important window commands are:

C-x 1 File->Un-Split Un-Split window (i.e., kill other windows)

C-xo0 Goto other window, i.e. move cursor into other window.

cursor and point
The location of the cursor in the text is also called "point". To paraphrase, the cursor
shows on the screen where point is located in the text. Here is a summary of simple
cursor-moving operations:

C-f Move forward a character
C-b Move backward a character
M-f Move forward a word

M-b Move backward a word

C-a Move to the beginning of line
C-e Move to the end of line

buffer Any text you see in an Emacs window is always part of some buffer. For example, each
file you are editing with Emacs is stored inside a buffer, but also SINGULAR is running
inside an Emacs buffer. Each buffer has a name: for example, the buffer of a file you
edit usually has the same name as the file, SINGULAR is running in a buffer which has
the name *singular* (or, *singular<2>*, *singular<3>*, etc., if you have multiple
SINGULAR sessions within the same Emacs).

When you are asked for input to an Emacs command, the cursor moves to the bottom
line of Emacs, i.e., to a special buffer, called the "minibuffer". Typing within
the minibuffer, ends the input, typing within the minibuffer, lists all possible
input values to the interactive Emacs command.

The most important buffer commands are

C-xb Switch buffer
C-xk Kill current buffer

Alternatively, you can switch to or kill buffers using the Buffer menu.

Executing commands
Emacs commands are executed by typing M-x <command-name> (remember that
completes partial command names). Important and frequently used commands have
short-cuts for their execution: Key bindings or even menu entries. For example, a file
can be loaded with M-x load-file, or C-x C-f, or with the File->0Open menu.

How to exit
To end the Emacs (and, SINGULAR) session, type C-x C-c (two characters), or use the
File -> Exit menu.

When Emacs hangs
If Emacs stops responding to your commands, you can stop it safely by typing C-g, or,
if this fails, by typing C-].

More help Nearly all aspects of Emacs are very well documented: type C-h and then a charac-
ter saying what kind of help you want. For example, typing C-h i enters the Info
documentation browser.

Using the mouse
Emacs is fully integrated with the mouse. In particular, clicking the right mouse button
brings up a pop-up menu which usually contains a few commonly used commands.
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3.2.2 Running SINGULAR under Emacs

There are two ways to start the SINGULAR Emacs interface: Typing ESingular instead of Singular
on the command shell launches a new Emacs process, initializes the interface and runs SINGULAR
within Emacs. The other way is to start the interface in an already running Emacs, by typing
M-x singular inside Emacs. This initializes the interface and runs SINGULAR within Emacs. Both
ways are described in more detail below.

Note: To properly run the Emacs interface, several files are needed which usually reside in the emacs
subdirectory of your SINGULAR distribution. This directory is called singular-emacs-home-directory
in the following.

Starting the interface using ESingular

As mentioned above, ESingular is an "out-of-the-box" solution: You don’t have to add special
things to your .emacs startup file to initialize the interface; everything is done for you in a special
file called .emacs-singular (which comes along with the SINGULAR distribution and resides in the
singular-emacs-home-directory) which is automatically loaded on Emacs startup (and the loading
of the .emacs file is automatically suppressed).

The customizable variables of the SINGULAR Emacs interface are set to defaults which give the
novice user a very shell like feeling of the interface. Nevertheless, these default settings can be
changed, see Section 3.2.4 [Customization of the Emacs interface|, page 27. Besides other Emacs
initializations, such as fontification or blinking parentheses, a new menu item called Singular is
added to the main menu, providing menu items for starting SINGULAR. On XEmacs, a button
starting SINGULAR is added to the main toolbar.

The SINGULAR interface is started automatically; once you see a buffer called *singular* and the
SINGULAR prompt, you are ready to start your SINGULAR session.

ESingular inherits all Singular options. For a description of all these options, see Section 3.1.6
[Command line options|, page 19. Additionally there are the following options which are special to
ESingular:

command-line option / functionality

environment variable )
--emacs=EMACS Use EMACS as Emacs program to run the SINGULAR Emacs inter-
ESINGULAR_EMACS face, where EMACS may e.g. be emacs or xemacs.
--emacs-dir=DIR Set the singular-emacs-home-directory, which is the directory
ESINGULAR_EMACS_DIR where singular.el can be found, to DIR.

--emacs-load=FILE Load FILE on Emacs start-up, instead of the default load file.
ESINGULAR_EMACS_LOAD

--singular=PROG Start PROG as SINGULAR program within Emacs

ESINGULAR_SINGULAR

Notice that values of these options can also be given by setting the above mentioned environ-
ment variables (where values given as command-line arguments take priority over values given by
environment variables).

Starting the interface within a running Emacs

If you are a more experienced Emacs user and you already have your own local .emacs startup file,
you might want to start the interface out of your running Emacs without using ESingular. For
this, you should add the following lisp code to your .emacs file:
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(setq load-path (cons "<singular-emacs-home-directory>" load-path))
(autoload ’singular "singular"

"Start Singular using default values." t)
(autoload ’singular-other "singular"

"Ask for arguments and start Singular." t)

Then typing M-x singular in a running Emacs session initializes the interface in a new buffer and
launches a SINGULAR process. The SINGULAR prompt comes up and you are ready to start your
SINGULAR session.

It is a good idea to take a look at the (well documented) file . emacs-singular in the singular-emacs-
home-directory, which comes along with the distribution. In it you find some useful initializations
of the SINGULAR interface as well as some lisp code, which, for example, adds a button to the
XEmacs toolbar. Some of this code might be useful for your .emacs file, too. And if you are an
Emacs wizard, it is of course a good idea to take a look at singular.el in the singular-emacs-
home-directory.

CYGWIN and ESingular

X11 server install xlaunch, emacs-X11, xterm and all dependencies. Create with xlaunch
a startup file for the X-server which also starts the client xterm. From that one can start
ESingular.

fork problems The simplest way to overcome fork problem is to run /usr/bin/rebase-
trigger full, then stop all Cygwin processes and services, and then run setup-x86.exe.
The _autorebase postinstall script will then take care of the rebase. Occasionally it is neces-
sary to reboot the computer before doing this.

Starting, interrupting and stopping SINGULAR

There are the following commands to start and stop SINGULAR:
e singular-other (or menu Singular, item Start...)
Starts a SINGULAR process and asks for the following four parameters in the minibuffer area:

1. The SINGULAR executable. This can either be a file name with complete path, e.g.,
/local/bin/Singular. Then exactly this executable is started. The path may contain the
character = denoting your home directory. Or it can be the name of a command without
path, e.g., Singular. Then the executable is searched for in your $PATH environment
variable.

2. The default working directory. This is the path to an existing directory, e.g., ~/work. The
current directory is set to this directory before SINGULAR is started.

3. Command line options. You can set any SINGULAR command line option (see Section 3.1.6
[Command line options], page 19).

4. The buffer name. You can specify the name of the buffer the interface is running in.
e singular (or menu Singular, item Start default)

Starts SINGULAR with default settings for the executable, the working directory, command
line switches, and the buffer name. You can customize this default settings, see Section 3.2.4
[Customization of the Emacs interface|, page 27.

e singular-exit-singular (bound to C-c $ or menu Singular, item Exit)

Kills the running SINGULAR process of the current buffer (but does not kill the buffer). Once
you have killed a SINGULAR process you can start a new one in the same buffer with the
command singular (or select the item Start default of the Singular menu).
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e singular-restart (bound to C-c C-r or menu Singular, item Restart)

Kills the running SINGULAR process of the current buffer and starts a new process in the same
buffer with exactly the same command line arguments as before.

e singular-control-c (bound to C-c C-c or menu Singular, item Interrupt)

Interrupt the SINGULAR process running in the current buffer. Asks whether to (a)bort the
current SINGULAR command, (q)uit or (r)estart the current SINGULAR process, or (c)ontinue
without doing anything (default).

Whenever a SINGULAR process is started within the Emacs interface, the contents of a special
startup file (by default ~/.emacs-singularrc) is pasted as input to SINGULAR at the very end of
the usual startup sequence (see Section 3.1.7 [Startup sequencel, page 22). The name of the startup
file can be changed, see Section 3.2.4 [Customization of the Emacs interface|, page 27.

3.2.3 Demo mode

The Emacs interface can be used to run interactive SINGULAR demonstrations. A demonstration is
started by loading a so-called SINGULAR demo file with the Emacs command singular-demo-load,
bound to C-c C-d, or with the menu Commands->Load Demo.

A SINGULAR demo file should consist of SINGULAR commands separated by blank lines. When
running a demo, the input up to the next blank line is echoed to the screen. Hitting
executes the echoed commands and shows their output. Hitting again, echos the next
commands to the screen, and so on, until all commands of the demo file are executed. While
running a demo, you can execute other commands on the SINGULAR prompt: the next input from
the demo file is then echoed again, if you hit on an empty input line.

A SINGULAR demo can prematurely be exited by either starting another demo, or by executing the
Emacs command singular-demo-exit (menu: Commands->Exit Demo).

Some aspects of running SINGULAR demos can be customized. See Section 3.2.4 [Customization of
the Emacs interface|, page 27, for more info.

3.2.4 Customization of the Emacs interface

Emacs provides a convenient interface to customize the behavior of Emacs and the SINGULAR
Emacs interface for your own needs. You enter the customize environment by either calling M-x
customize (on XEmacs you afterwards have to enter emacs in the minibuffer area) or by se-
lecting the menu item Options->Customize->Emacs... for XEmacs, and the menu item Help-
>Customize->Toplevel Customization Group for Emacs, resp. A brief introduction to the cus-
tomization mode comes up with the customization buffer. All customizable parameters are hi-
erarchically grouped and you can browse through all these groups and change the values of the
parameters using the mouse. At the end you can safe your settings to a file making your changes
permanent.

To change the settings of the SINGULAR Emacs interface you can either select the item Preferences
of the Singular menu, call M-x customize-group and give the argument singular-interactive
in the minibuffer area, or browse from the top-level customization group through the path
External->Singular->Singular interactive.

The SINGULAR interface customization buffer is divided into four groups:
e Singular Faces

Here you can specify various faces used if font-lock-mode is enabled (which, by default, is).
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e Singular Sections And Foldings

Here you can specify special faces for SINGULAR input and output and change the text used
as replacement for folded sections.

For doing this, you also might find handy the function customize-face-at-point, which lets
you customize the face at the current position of point. This function is automatically defined
if you run ESingular). Otherwise, you should add its definition (see below) to your personal
.emacs file.

e Singular Interactive Miscellaneous

Here you can specify various things such as the behavior of the cursor keys, the name of the
special SINGULAR startup file, the appearance of the help window, or the default values for
the singular command.

e Singular Demo Mode

Here you can specify how chunks of the demo file are divided, or specify a default directory
for demo files.

When you run ESingular, the settings of customized variables are saved in the file $HOME/ . emacs-
singular-cust. Otherwise, the settings are appended to your .emacs file. Among others, this
means that the customized settings of ESingular are not automatically taken over by a "normal"
Emacs, and vice versa.

3.2.5 Editing SINGULAR input files with Emacs

Since SINGULAR’s programming language is similar to C, you should use the Emacs C/C++-mode
to edit SINGULAR input files and SINGULAR libraries. Among others, this Emacs mode provides
automatic indentation, line-breaking and keyword highlighting.

When running ESingular, the C/C++mode is automatically turned on whenever a file with the
suffix .sing, or .1ib is loaded.

For Emacs sessions which were not started by ESingular, you should add the following to your
.emacs file:

;3 turn on c++-mode for files ending in ".sing" and ".lib"
(setq auto-mode-alist (comns ’("\\.sing\\’" . c++-mode) auto-mode-alist))
(setq auto-mode-alist (cons ’("\\.1ib\\’" . c++-mode) auto-mode-alist))
;; turn-on fontification for c++-mode
(add-hook ’c++-mode-hook
(function (lambda () (font-lock-mode 1))))
;; turn on aut-new line and hungry-delete
(add-hook ’c++-mode-hook
(function (lambda () (c-toggle-auto-hungry-state 1))))
;5 a handy function for customization
(defun customize-face-at-point ()
"Customize face which point is at."
(interactive)
(let ((face (get-text-property (point) ’face)))
(if face
(customize-face face)
(message "No face defined at point"))))

Notice that you can change the default settings for source-code highlighting (colors, fonts, etc.) by
customizing the respective faces using the Customize feature of Emacs. For doing this, you might
find handy the above given function customize-face-at-point, which lets you customize the face
of the current position of point (this function is automatically defined if you run ESingular).
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3.2.6 Top 20 Emacs commands

Here is a list of the 20 probably most useful commands when using the SINGULAR Emacs interface.

Starting and stopping of SINGULAR:

singular (menu Singular->Start Default...): starts SINGULAR using default arguments.

singular-other (menu Singular->Start): starts SINGULAR asking for several arguments in
the minibuffer area.

singular-exit (key C-c $ or menu Singular->Exit): kills the SINGULAR process running in
the current buffer (but does not kill the buffer).

singular-restart (key C-c C-r or menu Singular->Restart): kills the SINGULAR process
running in the current buffer and starts a new SINGULAR process with exactly the same argu-
ments as before.

Editing input and output:

singular-beginning-of-line (key C-a): moves point to beginning of line, then skips past
the SINGULAR prompt, if any.

singular-toggle-truncate-lines (key C-c C-t or menu Commands->Truncate lines): tog-
gles whether long lines should be truncated or not. If lines are not truncated, the commands
singular-scroll-left and singular-scroll-right are useful to scroll left and right, resp.

singular-dynamic-complete (key TAB): performs context specific completion. If point is
inside a string, file name completion is done. If point is at the end of a help command (i.e.,
help or ?), completion on SINGULAR help topics is done. If point is at the end of an example
command (i.e., example), completion is done on SINGULAR examples. In all other cases,
completion on SINGULAR commands is done.

singular-folding-toggle-fold-latest-output (key C-c C-o or menu Commands->Fold/
Unfold Latest Output): toggles folding of the latest output section. If your last SINGULAR
command produced a huge output, simply type C-c C-o and it will be replaced by a single
line.

singular-folding-toggle-fold-at-point (key C-c C-f or menu Commands->Fold/Unfold
At Point): toggles folding of the section the point currently is in.
singular-folding-fold-all-output (menu Commands->Fold A1l Output): folds all SINGU-
LAR output, replacing each output section by a single line.

singular-folding-unfold-all-output (menu Commands->Unfold All Output): unfolds all
SINGULAR output sections showing their true contents.

Loading of files and SINGULAR demo mode:

singular-load-library (key C-c C-1 or menu Commands->Libraries->other...): asks for
a standard library name or a library file in the minibuffer (hit TAB for completion) and loads
the library into SINGULAR. The submenu Libraries of the Commands menu also provides a
separate menu item for each standard library.

singular-load-file (key C-c < or menu Commands->Load File...): asks for a file name in
the minibuffer (which is expanded using expand-file-name if given a prefix argument) and
loads the file into SINGULAR.

singular-demo-load (key C-c C-d or menu Commands->Load Demo. ..): asks for a file name
of a SINGULAR demo file in the minibuffer area (hit SPACE for completion) and enters the
SINGULAR demo mode showing the first chunk of the demo.

singular-demo-exit (menu Commands->Exit Demo): exits from SINGULAR demo mode and
cleans up everything that is left from the demo.
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Help and Customization:

e singular-help (key C-h C-s or menu Singular->Singular Help): asks for a SINGULAR help
topic in the minibuffer (hit TAB for completion) and shows the help text in a separate buffer.

e singular-example (key C-c C-e or menu Singular->Singular Example): asks for a SINGU-
LAR command in the minibuffer (hit TAB for completion) and executes the example of this
command in the current SINGULAR buffer.

e customize-group (menu Singular->Preferences): enters the customization group of the
SINGULAR Emacs interface. (If called via M-x customize-group give argument singular-
interactive in the minibuffer area.)

3.3 Rings and orderings

All non-trivial algorithms in SINGULAR require the prior definition of a ring. Such a ring can be
1. a polynomial ring over a field,
2. a polynomial ring over a ring
3. a localization of 1.
4. a quotient ring by an ideal of 1. or 2.,
5. a tensor product of 1. or 2.
Except for quotient rings, all of these rings are realized by choosing a coefficient field, ring variables,
and an appropriate global or local monomial ordering on the ring variables. See Section 3.3.3 [Term
orderings|, page 34, Appendix C [Mathematical background], page 771.
The coefficient field of the rings may be
1. the field of rational numbers @ (QQ),
finite fields Z/p, p a prime < 2147483647,
finite fields GF(p™) with p™ elements, p a prime, p™ < 216,
transcendental extension of @ or Z/p ,
simple algebraic extension of @ or Z/p ,

the field of real numbers represented by floating point numbers of a user defined precision,

No Ok N

the field of complex numbers represented by (pairs of) floating point numbers of a user defined
precision,
8. the ring of integers (ZZ),
9. finite rings Z/m with m € Z .
In case of coefficient rings, which are not fields (i.e. Z and Z/ma ), only the following functions
are guaranteed to work:
- basic polynomial arithmetic, i.e. addition, multiplication, exponentiation
- std, i.e. computing standard bases (and related: syz, etc.)
- interred

reduce

Throughout this manual, the current active ring in SINGULAR is called basering. The reserved
name basering in SINGULAR is an alias for the current active ring. The basering can be set by
declaring a new ring as described in the following subsections or by using the commands setring
and keepring. See Section 5.2.11 [keepring], page 295, Section 5.1.139 [setring], page 256.

Objects of ring dependent types are local to a ring. To access them after a change of the basering
they have to be mapped using map or by the functions imap or fetch. See Section 3.5.4 [Objects|,
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page 46, Section 5.1.38 [fetch], page 180, Section 5.1.59 [imap|, page 196, Section 4.11 [map],
page 104.

All changes of the basering in a procedure are local to this procedure unless a keepring command
is used as the last statement of the procedure. See Section 3.7 [Procedures|, page 50, Section 5.2.11
[keepring], page 295.

3.3.1 Examples of ring declarations

The exact syntax of a ring declaration is given in the next two subsections; this subsection lists
some examples first. Note that the chosen ordering implies that a unit-elements of the ring will be
among the elements with leading monomial 1. For more information, see Section B.2 [Monomial
orderings|, page 765.

Every floating point number in a ring consists of two parts, which may be chosen by the user. The
leading part represents the number and the rest is for numerical stability. Two numbers with a

difference only in the rest will be regarded equal.

e the ring Z/32003[z, y, z] with degree reverse lexicographical ordering. The exact ring declara-
tion may be omitted in the first example since this is the default ring:

ring ril;

ring r2 = 32003, (x,y,2),dp;

ring r3=(ZZ/32003) [x,y,2];

ring r4 = (ZZ/32003), (x,y,z),dp;

e similar examples with indexed variables. The ring variables of rl1 are going to be x(1)..x(10);
in 12 they will be x(1)(1), x(1)(2), ..., x(1)(8), x(2)(1), ..., x(5)(8):

ring rl = 32003, (x(1..10)),dp;

ring r2 = 32003, (x(1..5)(1..8)),dp;

ring r3 = (ZZ/32003) [x(1..5)(1..8)1;

ring r4 = (ZZ/32003),(x(1..5)(1..8)),dp;
e the ring Qla, b, ¢, d] with lexicographical ordering:

ring r1 = 0,(a,b,c,d),1lp;

ring r2 = QQ, (a,b,c,d),1lp;

e the ring Z/7[x,y, z] with local degree reverse lexicographical ordering. The non-prime 10 is
converted to the next lower prime in the second example:

ring r1 = 7,(x,y,2) ,ds;
ring r2 = 10,(x,y,z) ,ds;
ring r3 (zz/7),(x,y,2),ds;

e the ring Z/7[xy,...,xs] with lexicographical ordering for x;, x5, x3 and degree reverse lexico-

graphical ordering for x4, x5, z4:
ring r1 = 7,(x(1..6)),(1p(3),dp);
ring r2 = (ZZ/7),(x(1..6)),(1p(3),dp);

e the localization of (Q[a, b, c])[x,y, z] at the maximal ideal

(z,y,2) :
ring r1 = 0,(x,y,z,a,b,c),(ds(3), dp(3));
ring r2 = QQ, (x,y,z,a,b,c),(ds(3), dp(3));

e the ring Q[z,y, z] with weighted reverse lexicographical ordering. The variables = , y , and
z have the weights 2, 1, and 3, respectively, and vectors are first ordered by components (in
descending order) and then by monomials:

ring r1 = 0,(x,y,2), (c,wp(2,1,3));
ring r2 = QQ, (x,y,2),(c,wp(2,1,3));
For ascending component order, the component ordering C has to be used.
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e the ring Klz,y,z| , where K = Z/7(a,b, c) denotes the transcendental extension of Z/7 by a ,
b and c with degree lexicographical ordering:
ring r = (7,a,b,c), (x,y,2),Dp;
e the ring K|z, y, z] , where K = Z/7[a] denotes the algebraic extension of degree 2 of Z/7 by a.
In other words, K is the finite field with 49 elements. In the first case, a denotes an algebraic
element over Z/7 with minimal polynomial p, = a® + a + 3, in the second case, a

refers to some generator of the cyclic group of units of K :

ring r = (7,a),(x,y,2),dp; minpoly = a"2+a+3;
ring r = (7°2,2),(x,y,2) ,dp;
e the ring R[z,y, z] , where R denotes the field of real numbers represented by simple precision
floating point numbers. This is a special case:
ring r = real,(x,y,z),dp;
e the ring R[z,y,z] , where R denotes the field of real numbers represented by floating point
numbers of 50 valid decimal digits and the same number of digits for the rest:
ring r = (real,50), (x,y,z),dp;
e the ring R[x,y, 2] , where R denotes the field of real numbers represented by floating point
numbers of 10 valid decimal digits and with 50 digits for the rest:
ring r = (real,10,50), (x,y,z),dp;
e the ring R(j)[z,vy, 2] , where R denotes the field of real numbers represented by floating point
numbers of 30 valid decimal digits and the same number for the rest. j denotes the imaginary
unit.

ring r = (complex,30,j),(x,y,2),dp;

e the ring R(i)[z,y, z] , where R denotes the field of real numbers represented by floating point
numbers of 6 valid decimal digits and the same number for the rest. ¢ is the default for the
imaginary unit.

ring r = complex, (x,y,2z),dp;
e the quotient ring Z/7[z,y, 2] modulo the square of the maximal ideal (x,y, z) :

ring R = 7,(x,y,2z), dp;
qring r = std(maxideal(2));

e the ring Z[x,y, 2] :

ring R = integer, (x,y,2), dp;
e the ring Z/6%[x,vy, 2] :

ring R = (integer, 6, 3),(x,y,z), dp;
e the ring Z/100[x,y, 2] :

ring R = (integer, 100), (x,y,z), dp;

3.3.2 General syntax of a ring declaration

Rings

Syntax: ring name = (coefficients) , ( names_of_ring_variables ), ( ordering ); or
ring name = cring [ names_of_ring_variables ]

Default: (zZ/32003) [x,y,2];

Purpose: declares a ring and sets it as the current basering. The second form sets the ordering
to (dp,C). cring stands currently for QQ (the rationals), ZZ (the integers) or (ZZ/m)
(the field (m prime and <2147483648) resp. ring of the integers modulo m).
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The coefficients (for the first form) are given by one of the following:

1.
2.

a cring as given above

a non-negative int_expression less than 2147483648 (2°31).

The int_expression should either be 0, specifying the field of rational numbers Q, or a prime
number p, specifying the finite field with p elements. If it is not a prime number, int_expression
is converted to the next lower prime number.

an expression_list of an int_expression and one or more names.

The int_expression specifies the characteristic of the coefficient field as described above. The
names are used as parameters in transcendental or algebraic extensions of the coefficient field.
Algebraic extensions are implemented for one parameter only. In this case, a minimal polyno-
mial has to be defined by an assignment to minpoly. See Section 5.3.3 [minpoly|, page 300.

an expression_list of an int_expression and a name.

The int_expression has to be a prime number p to the power of a positive integer n. This
defines the Galois field GF(p") with p" elements, where p" has to be less than or equal to 25,
The given name refers to a primitive element of GF(p™) generating the multiplicative group.
Due to a different internal representation, the arithmetic operations in these coefficient fields
are faster than arithmetic operations in algebraic extensions as described above.

an expression_list of the name real and two optional int_expressions determining the precision
in decimal digits and the size for the stabilizing rest. The default for the rest is the same
size as for the representation. An exception is the name real without any integers. These
numbers are implemented as machine floating point numbers of single precision. Note that
computations over all these fields are not exact.

an expression_list of the name complex, two optional int_expression and a name. This specifies
the field of complex numbers represented by floating point numbers with a precision similar
to real. An expression_list without int_expression defines a precision and rest with length 6.
The name of the imaginary unit is given by the last parameter. Note that computations over
these fields are not exact.

7. an expression_list with the name integer. This specifies the ring of integers.

an expression_list with the name integer and one subsequent int_expression. This specifies
the ring of integers modulo the given int_expression.

an expression_list with the name integer and two int_expressions b and e. This specifies the
ring of integers modulo b~e. If b = 2 and e < int_bit_size an optimized implementation is
used.

‘names_of_ring_variables’ is a list of names or indexed names.

‘ordering’ is a list of block orderings where each block ordering is either

1.
2.
3.
4.

1p, dp, Dp, 1s, ds, or Ds optionally followed by a size parameter in parentheses.
wp, Wp, ws, Ws, or a followed by a weight vector given as an intvec_expression in parentheses.
M followed by an intmat_expression in parentheses.

c or C.

For the definition of the orderings, see Section B.2 [Monomial orderings|, page 765.

If one of coefficients, names_of_ring_variables, and ordering consists of only one entry, the paren-
theses around this entry may be omitted.

Quotient rings

Syntax: gring name = ideal_expression ;
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Default: none

Purpose:  declares a quotient ring as the basering modulo ideal_expression, and sets it as current
basering.

ideal_expression has to be represented by a standard basis.

The most convenient way to map objects from a ring to its quotient ring and vice versa is to use
the fetch function (see Section 5.1.38 [fetchl, page 180).

SINGULAR computes in a quotient ring as long as possible with the given representative of a poly-
nomial, say, £. L.e., it usually does not reduce £ w.r.t. the quotient ideal. This is only done when
necessary during standard bases computations or by an explicit reduction using the command
reduce(f, std(0)) (see Section 5.1.129 [reducel, page 247).

Operations based on standard bases (e.g. std,groebner, etc., reduce) and functions which require
a standard basis (e.g. dim,hilb, etc.) operated with the residue classes; all others on the polynomial
objects.

Example:

// definition and usage:
ring r=(ZZ/32003) [x,y];
poly f=x3+yx2+3y+4;
gring g=std(maxideal(2));
basering;
// coefficients: ZZ/32003
// number of vars : 2
// block 1 : ordering dp
// : names Xy
// block 2 : ordering C
// quotient ring from ideal
_[1]=y2
_[2]=xy
_[31=x2
poly g=fetch(r, £);
g;
= x3+x2y+3y+4
reduce(g,std(0));
— 3y+4
// polynomial and residue class:
ring R=QQ[x,y];
gring Q=std(y);
poly pl=x;
poly p2=x+y;
// comparing polynomial objects:
pl==p2;
= 0
// comparing residue classes:
reduce (pl,std(0))==reduce(p2,std(0));
= 1

111111111

3.3.3 Term orderings

Any polynomial (resp. vector) in SINGULAR is ordered w.r.t. a term ordering (or, monomial or-
dering), which has to be specified together with the declaration of a ring. SINGULAR stores and
displays a polynomial (resp. vector) w.r.t. this ordering, i.e., the greatest monomial (also called the
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leading monomial) is the first one appearing in the output polynomial, and the smallest monomial
is the last one.

Remark: The novice user should generally use the ordering dp for computations in the polynomial
ring K[z1,...,x,], resp. ds for computations in the localization LocKlz1,...,z,]). For more
details, see Appendix B [Polynomial data], page 764.
In a ring declaration, SINGULAR offers the following orderings (but see also Section B.2 [Monomial
orderings], page 765):
1. Global orderings
1p lexicographical ordering

rp reverse lexicographical ordering, i.e. a lexicographical ordering from the right with
1 <x.1 < ... <xn (should not be used as it reverses the "natural" x_1 > ... > xn,
reorder the variables instead)

dp degree reverse lexicographical ordering
Dp degree lexicographical ordering

wp ( intvec_expression )
weighted reverse lexicographical ordering; the weight vector is expected to consist
of positive integers only.

Wp ( intvec_expression )
weighted lexicographical ordering; the weight vector is expected to consist of pos-
itive integers only.

Global orderings are well-orderings, i.e., 1 < x for each ring variable = . They are denoted by
a p as the second character in their name.

2. Local orderings
1s negative lexicographical ordering

rs negative reverse lexicographical ordering, i.e. a lexicographical ordering from the
right (should not be used as it reverses the "natural" x_1 < ... < x.n, reorder the
variables instead)

ds negative degree reverse lexicographical ordering
Ds negative degree lexicographical ordering

ws ( intvec_expression )
(general) weighted reverse lexicographical ordering; the first element of the weight
vector has to be non-zero.

Ws (intvec_expression )
(general) weighted lexicographical ordering; the first element of the weight vector
has to be non-zero.

Local orderings are not well-orderings. They are denoted by an s as the second character in
their name.
3. Matrix orderings

M( intmat_expression )
intmat_expression has to be an invertible square matrix

Using matrix orderings, SINGULAR can compute standard bases w.r.t. any monomial ordering
which is compatible with the natural semi-group structure on the monomials. In practice, the
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predefined global and local orderings together with the block orderings should be sufficient
in most cases. These orderings are faster than their corresponding matrix orderings since
evaluation of a matrix ordering is more time consuming.

4. Extra weight vector

a( intvec_expression )
aa( intvec_expression )
am ( intvec_expression )

an extra weight vector a( intvec_expression ), may precede any monomial ordering.
aa allows larger degrees.
am allows degrees for module generators (see example)

Example for ordering am

ring r=QQ, (x,y,2),(am(1,1,1,4,1,6),dp);
r;

// coefficients: QQ

// number of vars : 3

// block 1 : ordering am

// ! names Xy z
// : weights 1 11
// : 3 module weights 4 1 6
// block 2 : ordering dp

// : names Xy z
// block 3 : ordering C
[x,y,2];

— zxgen(3)+x*gen(1)+y*gen(2)

deg([x]);

= 5

deg([0,y]1);

= 2

deg([0,0,2]);

=7

deg([0,0,0,x]);

=1

11111111

5. Product ordering

( ordering [ ( int_expression ) |, ... )
any of the above orderings and the extra weight vector may be combined to yield
product or block orderings

The orderings 1p, dp, Dp, 1s, ds, Ds and rp may be followed by an int_expression in parentheses
giving the size of the block. For the last block the size is calculated automatically. For weighted
orderings, the size of the block is given by the size of the weight vector. The same holds
analogously for matrix orderings.

6. Module orderings

( ordering, ..., C)
( ordering, ..., c)
sort polynomial vectors by the monomial ordering first, then by components

( C, ordering, ... )
( ¢, ordering, ... )
sort polynomial vectors by components first, then by the monomial ordering



Chapter 3: General concepts 37

Here a capital C sorts generators in ascending order, i.e., gen(1) < gen(2) < .... A small
c sorts in descending order, i.e., gen(1) > gen(2) > .... It is not necessary to specify the
module ordering explicitly since ( ordering, ..., C) is the default.

In fact, ¢ or C may be specified anywhere in a product ordering specification, not only at its
beginning or end. All monomial block orderings preceding the component ordering have higher
precedence, all monomial block orderings following after it have lower precedence.

For a mathematical description of these orderings, see Appendix B [Polynomial datal, page 764.

3.3.4 Coefficient rings

SINGULAR supports coefficient ranges which are not fields, i.e. the integers Z and the finite rings
Z/n for a number n. These coefficient rings were implemented in SINGULAR 3.0.5 and at the
moment only limited functionality is available.

p-adic numbers

The p-adic integers Z, are the projective limit of the finite rings Z/p™ for n to infinity. Therefore,
computations in this ring can be approximated by computations in Z/p™ for large n.

3.4 Implemented algorithms

The basic algorithm in SINGULAR is a general standard basis algorithm for any monomial ordering
which is compatible with the natural semi-group structure of the exponents. This includes well-
orderings (Buchberger algorithm to compute a Groebner basis) and tangent cone orderings (Mora
algorithm) as special cases.
Nonetheless, there are a lot of other important algorithms:
e Algorithms to compute the standard operations on ideals and modules: intersection, ideal
quotient, elimination, etc.
e Different Syzygy algorithms and algorithms to compute free resolutions of modules.
e Combinatorial algorithms to compute dimensions, Hilbert series, multiplicities, etc.
e Algorithms for univariate and multivariate polynomial factorization, resultant and ged com-
putations.

Commands to compute standard bases

facstd Section 5.1.34 [facstd], page 177
computes a list of Groebner bases via the Factorizing Groebner Basis Algorithm, i.e.,
their intersection has the same radical as the original ideal. It need not be a Groebner
basis of the given ideal.

The intersection of the zero-sets is the zero-set of the given ideal.

fglm Section 5.1.39 [fglm], page 181
computes a Groebner basis provided that a reduced Groebner basis w.r.t. another
ordering is given.
Implements the so-called FGLM (Faugere, Gianni, Lazard, Mora) algorithm. The given
ideal must be zero-dimensional.

groebner Section 5.1.53 [groebner], page 189
computes a standard resp. Groebner basis using a heuristically chosen method.

This is the preferred method to compute a standard resp. Groebner bases.
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Section 5.1.99 [mstd], page 224

computes a standard basis and a minimal set of generators.

Section 5.1.149 [std], page 267

computes a standard resp. Groebner basis.

Section 5.1.150 [stdfglm], page 269

computes a Groebner basis in a ring with a “difficult” ordering (e.g., lexicographical)
via std w.r.t. a “simple” ordering and fglm.

The given ideal must be zero-dimensional.

Section 5.1.151 [stdhilb], page 270

computes a Groebner basis in a ring with a “difficult” ordering (e.g., lexicographical)
via std w.r.t. a “simple” ordering and a std computation guided by the Hilbert series.

Further processing of standard bases

The next commands require the input to be a standard basis.

degree

dim

Section 5.1.20 [degree], page 169
computes the (Krull) dimension, codimension and the multiplicity.

The result is only displayed on the screen.

Section 5.1.25 [dim], page 172
computes the dimension of the ideal resp. module.

highcorner

hilb

kbase

mult

reduce

vdim

Section 5.1.55 [highcorner], page 192
computes the smallest monomial not contained in the ideal resp. module. The ideal
resp. module has to be finite dimensional as a vector space over the ground field.

Section 5.1.56 [hilb], page 193

computes the first, and resp. or, second Hilbert series of an ideal resp. module.
Section 5.1.69 [kbase|, page 203

computes a vector space basis (consisting of monomials) of the quotient of a ring by
an ideal resp. of a free module by a submodule.

The ideal resp. module has to be finite dimensional as a vector space over the ground
field and has to be represented by a standard basis w.r.t. the ring ordering.

Section 5.1.100 [mult], page 225
computes the degree of the monomial ideal resp. module generated by the leading
monomials of the input.

Section 5.1.129 [reduce], page 247
reduces a polynomial, vector, ideal or module to its normal form with respect to an
ideal or module represented by a standard basis.

Section 5.1.166 [vdim]|, page 282
computes the vector space dimension of a ring (resp. free module) modulo an ideal
(resp. module).

Commands to compute resolutions

res

Section 5.1.132 [res]|, page 249
computes a free resolution of an ideal or module using a heuristically chosen method.
This is the preferred method to compute free resolutions of ideals or modules.
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fres

lres

mres

sres

nres

syz

Section 5.1.48 [fres|, page 186
improved version of Section 5.1.147 [sres|, page 265, computes a free resolution of an
ideal or module using Schreyer’s method. The input has to be a standard basis.

Section 5.1.83 [lres|, page 213
computes a free resolution of an ideal or module with LaScala’s method. The input
needs to be homogeneous.

Section 5.1.98 [mres], page 223
computes a minimal free resolution of an ideal or module with the Syzygy method.

Section 5.1.147 [sres]|, page 265
computes a free resolution of an ideal or module with Schreyer’s method. The input
has to be a standard basis.

Section 5.1.105 [nres|, page 229

computes a free resolution of an ideal or module with the standard basis method.
Section 5.1.154 [syz], page 276

computes the first Syzygy (i.e., the module of relations of the given generators).

Further processing of resolutions

betti

minres

regularity

Section 5.1.4 [betti], page 157
computes the graded Betti numbers of a module from a free resolution.

Section 5.1.93 [minres|, page 221
minimizes a free resolution of an ideal or module.

Section 5.1.130 [regularity], page 248
computes the regularity of a homogeneous ideal resp. module from a given minimal
free resolution.

Processing of polynomials

char_serie

extgced

factorize

S
Section 5.1.6 [char_series|, page 159
computes characteristic sets of polynomial ideals.

Section 5.1.33 [extged], page 176
computes the extended gcd of two polynomials.

This is implemented as extended Euclidean Algorithm, and applicable for univariate
polynomials only.

Section 5.1.36 [factorize|, page 178
computes factorization of univariate and multivariate polynomials into irreducible fac-
tors.

The most basic algorithm is univariate factorization in prime characteristic. The
Cantor-Zassenhaus Algorithm is used in this case. For characteristic 0, a univariate
Hensel-lifting is done to lift from prime characteristic to characteristic 0. For multi-
variate factorization in any characteristic, the problem is reduced to the univariate case
first, then a multivariate Hensel-lifting is used to lift the univariate factorization.
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Factorization of polynomials over algebraic extensions is provided by factoring the norm
for univariate polynomials f (the ged of f and the factors of the norm is a factorization
of f) resp. by the extended Zassenhaus algorithm for multivariate polynomials.

ged Section 5.1.50 [ged], page 188
computes greatest common divisors of univariate and multivariate polynomials.

In the univariate case NTL is used. For prime characteristic, a subresultant gcd is
used. In characteristic 0, the EZGCD is used, except for a special case where a modular
algorithm is used.

resultant
Section 5.1.134 [resultant], page 251
computes the resultant of two univariate polynomials using the subresultant algorithm.

Multivariate polynomials are considered as univariate polynomials in the main variable
(which has to be specified by the user).

vandermonde
Section 5.1.162 [vandermonde], page 280
interpolates a polynomial from its values at several points

Matrix computations

bareiss  Section 5.1.3 [bareiss|, page 156
implements sparse Gauss-Bareiss method for elimination (matrix triangularization) in
arbitrary integral domains.

det Section 5.1.23 [det], page 170

computes the determinant of a square matrix.

For matrices with integer entries a modular algorithm is used. For other domains the
Gauss-Bareiss method is used.

minor Section 5.1.92 [minor], page 219
computes all minors (=subdeterminants) of a given size for a matrix.

Numeric computations

laguerre Section 5.1.74 [laguerre], page 206
computes all (complex) roots of a univariate polynomial

uressolve
Section 5.1.161 [uressolve], page 280
finds all roots of a 0-dimensional ideal with multivariate resultants

Controlling computations

option Section 5.1.110 [option], page 231
allows setting of options for manipulating the behaviour of computations (such as
reduction strategies) and for showing protocol information indicating the progress of a
computation.
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3.5 The SINGULAR language

SINGULAR interprets commands given interactively on the command line as well as given in the
context of user-defined procedures. In fact, SINGULAR makes no distinction between these two cases.
Thus, SINGULAR offers a powerful programming language as well as an easy-to-use command line
interface without differences in syntax or semantics.

In the following, the basic language concepts such as commands, expressions, names, objects, etc.,
are discussed. See Section 3.7 [Procedures|, page 50, and Section 3.8 [Libraries|, page 55, for the
concepts of procedures and libraries.

In many aspects, the SINGULAR language is similar to the C programming language. For a de-
scription of some of the subtle differences, see Section 6.3 [Major differences to the C programming
language], page 306.

Elements of the language

The major building blocks of the SINGULAR language are expressions, commands, and control
structures. The notion of expressions in the SINGULAR and the C programming language are
identical, whereas the notion of commands and control structures only roughly corresponds to C
statements.

e An “expression” is a sequence of operators, functions, and operands that specifies a computa-
tion. An expression always results in a value of a specific type. See Chapter 4 [Data types|,
page 73, and its subsections (e.g., Section 4.16.2 [poly expressions|, page 119), for information
on how to build expressions.

e A “command” is either a declaration, an assignment, a call to a function without return value,
or a print command. For detailed information, see Section 3.5.1 [General command syntax]|,
page 41.

e “Control structures” determine the execution sequence of commands. SINGULAR provides
control structures for conditional execution (if ... else) and iteration (for and while).
Commands may be grouped in pairs of { } (curly brackets) to form blocks. See Section 5.2
(Control structures|, page 286, for more information.

Other notational conventions

For user-defined functions, the notions of “procedure” and “function” are synonymous.

As already mentioned above, functions without return values are called commands. Furthermore,
whenever convenient, the term “command” is used for a function, even if it does return a value.

3.5.1 General command syntax

In SINGULAR a command is either a declaration, an assignment, a call to a function without
return value, or a print command. The general form of a command is described in the following
subsections.

Declaration

1. type name = expression ;
declares a variable with the given name of the given type and assigns the expression as initial
value to it. Expression is an expression of the specified type or one that can be converted to
that type. See Section 3.5.5 [Type conversion and casting], page 46.



Chapter 3: General concepts 42

2. alias type name
Introduces name as an alternative, read-only name for another variable_name. Can only be
used in procedure headings to avoid copying large data.

3. type name_list = expression_list ;
declares variables with the given names and assigns successively each expression of expres-
sion_list to the corresponding name of name_list. Both lists must be of the same length. Each
expression in expression_list is an expression of the specified type or one that can be converted
to that type. See Section 3.5.5 [Type conversion and casting], page 46.

4. type name ;
declares a variable with the given name of the given type and assigns the default value of the
specific type to it.

See Section 3.5.3 [Names|, page 44, for more information on declarations. See Chapter 4 [Data
types|, page 73, for a description of all data types known to SINGULAR.

ring r; // the default ring
poly f,g = x"2+y~3,xy+z2; // the polynomials f=x"2+y~3 and g=x*y+z~2
ideal I = f,g; // the ideal generated by f and g
matrix m[3] [3]; // a 3 x 3 zero matrix
int i=2; // the integer i=2
Assignment

4. name = expression ;
assigns expression to name.

5. name_list = expression_list ;
assigns successively each expression of expression_list to the corresponding name of name_list.
Both lists must be of the same length. This is not a simultaneous assignment. Thus, £, g =
g, f; does not swap the values of £ and g, but rather assigns g to both £ and g.

A type conversion of the type of expression to the type of name must be possible. See Section 3.5.5
[Type conversion and casting], page 46.
An assignment itself does not yield a value. Hence, compound assignments like i = j = k; are not
allowed and result in an error.

f=x"2+7y2; // overrides the old value of f

I = jacob(f);

f,g = I[1],x"2+y"2 ; // overrides the old values of f and g

Function without return value

6. function.name | ( argument_list ) | ;
calls function function_name with arguments argument_list.

The function may have output (not to be confused with a return value of type string). See Sec-
tion 5.1 [Functions|, page 154. Functions without a return value are specified there to have a return
type 'none’.

Some of these functions have to be called without parentheses, e.g., help, LIB.

ring r;

ideal i=x2+y2,x;

i=std(i);

degree(i); // degree has no return value but prints output
— // dimension (proj.) =0

— // degree (proj.) =2
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Print command

7. expression ;
prints the value of an expression, for example, of a variable.

Use the function print (or the procedure show from inout.lib) to get a pretty output of various
data types, e.g., matrix or intmat. See Section 5.1.119 [print], page 239.

int i=2;
i;
= 2
intmat m[2] [2]=1,7,10,0;
print (m) ;
— 1 7
— 10 0

3.5.2 Special characters

The following characters and operators have special meanings:

= assignment

47} parentheses for block programming

() in expressions, for indexed names and for argument lists

[, ] access operator for strings, integer vectors, ideals, matrices, polynomials, resolutions,
and lists. Used to build vectors of polynomials. Example: s[3], m[1,3], i[1..3],
[f,g+x,0,0,1].

+ addition operator

++ increment operator

- subtraction operator
- decrement operator
* multiplication operator

/ division operator. See Section 6.4 [Miscellaneous oddities|, page 310, for the difference
between the division operators / and div.

% modulo operator (mod is an alias to %): result is always non-negative
T oor k% exponentiation operator
== comparison operator equal

I=or <> comparison operator not equal

>= comparison operator larger than or equal to

> comparison operator larger

<= comparison operator smaller than or equal to

< comparison operator smaller. Also used for file input. See Section 5.1.41 [filecmd],
page 182.

! boolean operator not

&& boolean operator and
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[ boolean operator or
" delimiter for string constants

delimiter for name substitution

? synonym for help

// comment delimiter. Comment extends to the end of the line.
/% comment delimiter. Starts a comment which ends with */.
*/ comment delimiter. Ends a comment which starts with /*.

s statement separator

R separator for expression lists and function arguments

\ escape character for " and \ within strings

interval specifier returning intvec. E.g., 1. .3 which is equivalent to the intvec 1, 2, 3.

repeated entry. E.g., 3:5 generates an intvec of length 5 with constant entries 3, i.e.,
(3, 3, 3, 3, 3).

accessor for package members. E.g., MyPackage::i accesses variable i in package
MyPackage.

value of expression displayed last
breakpoint in procedures
# list of parameters in procedures without explicit parameter list

$ terminates SINGULAR

3.5.3 Names

SINGULAR is a strongly typed language. This means that all names (= identifiers) have to be
declared prior to their use. For the general syntax of a declaration, see the description of declaration
commands (see Section 3.5.1 [General command syntax], page 41).

See Chapter 4 [Data types|, page 73, for a description of SINGULAR’s data types. See Section 5.1.159
[typeof], page 279, for a short overview of possible types. To get information on a name and the
object named by it, the type command may be used (see Section 5.1.158 [typel, page 278).

It is possible to redefine an already existing name if doing so does not change its type. A redefinition
first sets the variable to the default value and then computes the expression. The difference between
redefining and overriding a variable is shown in the following example:
int i=3;
i=i+1; // overriding
i;
— 4
int i=i+1; // redefinition
— // ** redefining i ( int i=i+1; // redefinition) ./examples/Names.sin\
g:4
i;
— 1
User defined names should start with a letter and consist of letters and digits only. As an exception
to this rule, the characters @, and _ may be used as part of a name, too (@ as the first letter is
reserved for purposes of library routines). Capital and small letters are distinguished. Indexed
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names are built as a name followed by an int_expression in parentheses. A list of indexed names
can be built as a name followed by an intvec_expression in parentheses. For multi-indices, append
an int_expression in parentheses to an indexed name. An alternative multi-index construction is
name_prefix( index_1, index_2,... ) where the name_prefix must be an undefined name.

ring R;
int n=3;
ideal j(3);
ideal j(mn); // is equivalent to the above
— // ** redefining j(3) ( ideal j(n); // is equivalent to the above) .\

/examples/Names_1.sing:4
ideal j(2)=x;
j(2..3);
= j(2) [1]1=x j(3)[1]=0
ring r=0, (x(1..2)(1..3)(1..2)),dp;
r;

— // coefficients: QQ

— // number of vars : 12

= // block 1 : ordering dp

= // : names  x(1) (1) (1) x(1) (1) (2) x(1)(2) (1) x(1)(2) (2\

) x(1)(3) (1) x(1)(3)(2) x(2) (1) (1) x(2) (1) (2) x(2)(2) (1) x(2)(2)(2) x(2) (\
3) (1) x(2)(3)(2)

= // block 2 : ordering C
int i(1,2),1(2,3);
i(2,3);

= 0

Names must not coincide with reserved names (keywords). Type reservedName () ; to get a list of
the reserved names. See Section 5.1.133 [reservedNamel, page 251. Names should not interfere with
names of ring variables or, more generally, with monomials. See Section 6.5 [Identifier resolution],
page 312.

The command listvar provides a list of the names in use (see Section 5.1.82 [listvar|, page 211).

The most recently printed expression is available under the special name _, e.g.,

ring r;
ideal i=x2+y3,y3+z4;
std(i);
= _[1]=y3+x2
= _[2]=2z4-x2
ideal k=_;
kxk+x;
= _[1]=y6+2x2y3+x4
= _[2]=y3z4+x2z4-x2y3-x4
— _[3]=28-2x2z4+x4
— _[4]=x
size(_[3]);
= 3
A string_expression enclosed in ‘. ..¢ (back ticks) evaluates to the value of the variable given by
the string_expression. This feature is referred to as name substitution.

int foo(1)=42;
string bar="foo";
f'bar+|| (1) ne ;

= 42
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3.5.4 Objects

Every object in SINGULAR has a type and a value. In most cases it has also a name and in some
cases an attribute list. The value of an object may be examined simply by printing it with a print
command: object;. The type of an object may be determined by means of the typeof function,
the attributes by means of the attrib function (Section 5.1.159 [typeof], page 279, Section 5.1.2
[attrib], page 154):
ring r=0,x,dp;
typeof (10);
— int
typeof (10000000000000000) ;
— bigint
typeof (1) ;
— ring
attrib(x);
— no attributes
attrib(std(ideal(x)));
— attr:isSB, type int

Each object of type poly, ideal, vector, module, map, matrix, number, or resolution belongs to
a specific ring. This is also true for 1ist, if at least one of the objects contained in the list belongs
to a ring. These objects are local to the ring. Their names can be duplicated for other objects in
other rings. Objects from one ring can be mapped to another ring using maps or the commands
fetch or imap. See Section 4.11 [map|, page 104, Section 5.1.38 [fetch], page 180, Section 5.1.59
[imap], page 196.

All other types do not belong to a ring and can be accessed within every ring and across rings.
They can be declared even if there is no active basering.

3.5.5 Type conversion and casting

Type conversion

Assignments convert the type of the right-hand side to the type of the left-hand side of the as-
signment, if possible. Operators and functions which require certain types of operands can also
implicitly convert the type of an expression. It is, for example, possible to multiply a polynomial
by an integer because the integer is automatically converted to a polynomial. Type conversions do
not act transitively. Possible conversions are:

1. intvec — intmat
2. poly — ideal

3. bigint — ideal

4. int — ideal

5. intmat — matrix
6. ideal — matrix
7. module — matrix
8. number — matrix
9. poly — matrix
10. vector — matrix
11. bigint — matrix
12. int — matrix
13. intvec — matrix

14. ideal — module
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15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.

matrix
vector
bigint
int
number
bigint
int
list
poly
bigint
int
int
int
string
resolution

Type casting

module

module

number

number

poly

poly

poly

resolution

vector (p — p*gen(1))
vector

vector (i — i*gen(1))
bigint

intvec

N A A

An expression can be casted to another type by using a type cast expression:
type ( expression ).

Possible type casts are:

to from
bigint expression int, number, poly
ideal expression lists of int, number, poly
ideal int, matrix, module, number, poly, vector
int number, poly
intvec expression lists of int, intmat
intmat intvec (see Section 4.7.3 [intmat type cast], page 90)
list expression lists of any type
matrix module, ideal, vector, matrix.
There are two forms to convert something to a matrix: if matrix( expression )
is used then the size of the matrix is determined by the size of expression.
But matrix( expression , m , n ) may also be used - the result is a m x n
matrix (see Section 4.12.3 [matrix type cast|, page 108)
module expression lists of int, number, poly, vector
module ideal, matrix, vector
number poly
poly int, number
ring list (the inverse of ringlist)
string any type (see Section 4.21.3 [string type cast], page 130)
Example:
ring r=0,x, (c,dp);
number (3x) ;
= 0
number (poly(3));
= 3

ideal i=1,2,3,4,5,6;
print (matrix(i));

— 1,2,3,4,5,6
print (matrix(i,3,2));
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’2’
’4’
,6
vector v=[1,2];
print (matrix(v));
— 1,
— 2
module (matrix(i,3,2));
— _[1]=[1,3,5]
— _[2]=[2,4,6]
// generators are columns of a matrix

111
g w -

3.5.6 Flow control

A block is a sequence of commands surrounded by { and }.

{

command ;

3

Blocks are used whenever SINGULAR is used as a structured programming language. The if and
else structures allow conditional execution of blocks (see Section 5.2.9 [if], page 292, Section 5.2.5
lelse], page 288). for and while loops are available for a repeated execution of blocks (see Sec-
tion 5.2.8 [for], page 292, Section 5.2.15 [while|, page 298). In procedure definitions, the main part
and the example section are blocks as well(see Section 4.17 [proc|, page 122).

3.6 Input and output

SINGULAR’s input and output (short, I/O) are realized using links. Links are the communication
channels of SINGULAR, i.e., something SINGULAR can write to and read from. In this section, a
short overview of the usage of links and of the different link types is given.

For loading of libraries, see Section 5.1.79 [LIB], page 209. For executing program scripts, see
Section 5.1.41 [filecmd], page 182.

Monitoring

A special form of I/O is monitoring. When monitoring is enabled, SINGULAR makes a typescript
of everything printed on your terminal to a file. This is useful to create a protocol of a SINGULAR
session. The monitor command enables and disables this feature (see Section 5.1.95 [monitor]
page 222).

How to use links

Recall that links are the communication channels of SINGULAR, i.e., something SINGULAR can write
to and read from using the functions write and read. There are furthermore the functions dump
and getdump which store resp. retrieve the content of an entire SINGULAR session to, resp. from, a
link. The dump and getdump commands are not available for DBM links.

For more information, see Section 5.1.172 [write], page 285, Section 5.1.128 [read], page 246, Sec-
tion 5.1.27 [dump], page 173, Section 5.1.52 [getdump]|, page 189.

Example:
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ring r; poly p = x+y;

dump(":w test.sv"); // dump the session to the file test.sv
kill r; // kill the basering
listvar(); // no output after killing the ring
getdump(":r test.sv");// read the dump from the file
listvar();

= // r [0] *ring

= // p [0] poly

Specifying a link can be as easy as specifying a filename as a string. Links do not even need to
be explicitly opened or closed before, resp. after, they are used. To explicitly open or close a link,
the open, resp. close, commands may be used (see Section 5.1.109 [open|, page 231, Section 5.1.10
[close], page 161).

Links have various properties which can be queried using the status function (see Section 5.1.148
[status], page 266).

Example:

link 1 = "ssi:fork";
1;
— // type : ssi
— // mode : fork
— // name :
— // open : no
— // read : not open
— // write: not open
open(1);
status(l, "open");
> yes
close(1l);
status(1, "open");
— no

ASCII links

Data that can be converted to a string can be written into files for storage or communication with
other programs. The data are written in plain ASCII format. Reading from an ASCII link returns
a string — conversion into other data is up to the user. This can be done, for example, using the
command execute (see Section 5.1.32 [executel|, page 176).

ASCII links should primarily be used for storing small amounts of data, especially if it might
become necessary to manually inspect or manipulate the data.

See Section 4.9.4 [ASCII links|, page 96, for more information.
Example:

// (over)write file test.ascii, link is specified as string
write(":w test.ascii", "int i =", 3, ";");
// reading simply returns the string
read("test.ascii");
int 1 =
3

3

1111

// but now test.ascii is "executed"
execute(read("test.ascii"));
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i;
— 3

Ssi links

Data is communicated with other processes (e.g., SINGULAR processes) which may run on the same
computer or on different ones. Data exchange is accomplished using TCP /IP links in the ssi format.
Reading from an ssi link returns the written expressions (i.e., not a string, in general).

Ssi links should primarily be used for communicating with other programs or for parallel compu-
tations (see, for example, Section A.1.8 [Parallelization with ssi links|, page 704).
See Section 4.9.5 [Ssi links|, page 97, for more information.
Example:
ring r;
link 1 = "ssi:tcp localhost:"+system("Singular"); // declare a link explicitly
open(l); // needs an open, launches another SINGULAR as a server
write(1l, x+y);
kill r;
def p = read(l);
typeof(p); p;
— poly
Xty
close(l); // shuts down SINGULAR server

DBM links

Data is stored in and accessed from a data base. Writing is accomplished by a key and a value and
associates the value with the key in the specified data base. Reading is accomplished w.r.t. a key,
the value associated to it is returned. Both the key and the value have to be specified as strings.
Hence, DBM links may be used only for data which may be converted to or from strings.

DBM links should primarily be used when data needs to be accessed not in a sequential way (like
with files) but in an associative way (like with data bases).
See Section 4.9.7 [DBM links], page 100, for more information.
Example:
ring r;
// associate "x+y" with "mykey"
write("DBM:w test.dbm", "mykey", string(x+y));
// get from data base what is stored under "mykey"

execute(read("DBM: test.dbm", "mykey"));
= Xty

3.7 Procedures

Procedures contain sequences of commands in the SINGULAR language. They are used to extend
the set of commands by user defined commands. In a SINGULAR session, procedures are defined
by either typing them on the command line or by loading them from a library file with the LIB or
load command (see Section 3.8 [Libraries|, page 55). A procedure is invoked like normal built-in
commands, i.e., by typing its name followed by the list of arguments in parentheses. The invocation
then executes the sequence of commands constituting the procedure. All procedures defined in a
SINGULAR session can be displayed by entering listvar (proc); .

See also See Section 3.8.6 [Procedures in a library|, page 57.
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3.7.1 Procedure definition

Syntax: [static| proc proc_name [(<parameter_list>)]
[<help_string>]
{
<procedure_body>
}
[example
{
<sequence_of_commands>
3]
Purpose:

e Defines a new function, the proc proc_name.

e The help string, the parameter list, and the example section are optional. They
are, however, mandatory for the procedures listed in the header of a library. The
help string is ignored and no example section is allowed if the procedure is defined
interactively, i.e., if it is not loaded from a file by the LIB or load command (see
Section 5.1.79 [LIB], page 209 and see Section 5.2.12 [load], page 295 ).

e Once loaded from a file into a SINGULAR session, the information provided in the
help string will be displayed upon entering help proc_name;, while the example
section will be executed upon entering example proc_name;. See Section 3.7.2
[Parameter list|, page 52, Section 3.7.3 [Help string|, page 54, and the example in
Section 3.8.6 [Procedures in a library], page 57.

e In the body of a library, each procedure not meant to be accessible by users should

be declared static. See Section 3.8.6 [Procedures in a library], page 57.

Example of an interactive procedure definition and its execution:

proc milnor_number (poly p)

{

ideal i= std(jacob(p));
int m_nr=vdim(i);
if (m_nr<O0)

{
"// not an isolated singularity";
}
return(m_nr) ; // the value of m_nr is returned
}

ring r1=0, (x,y,z),ds;
poly p=x"2+y~2+z75;
milnor_number (p);

= 4

Example of a procedure definition in a library:

First, we define the library (and store it as sample.lib):

// Example of a user accessible procedure
proc tab (int n)

"USAGE:
RETURNS:

tab(n); n integer
string of n space tabs
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EXAMPLE: example tab; shows an example"
{ return(internal_tab(n)); }
example
{

"EXAMPLE:"; echo=2;

for(int n=0; n<=4; n=n+1)

{ tab(4-n)+"*"+tab(n)+"+"+tab(n)+"*x"; }
}

// Example of a static procedure
static proc internal_tab (int n)
{ return(" "[1,n]); }

Now, we load the library and execute its procedures:

LIB "sample.lib"; // load the library sample.lib
example tab; // show an example
— // proc tab from lib sample.lib
— EXAMPLE:
— for(int n=0; n<=4; n=n+1)
= { tab(4-n)+"*"+tab(n)+"+"+tab(n)+"*x"; }
— k4%
— * + %
— * 4+ %
R T
ok + *
'%
"x"+tab(3)+"*x"; // use the procedure tab
ok %

// the static procedure internal_tab is not accessible
"x"+internal_tab(3)+"x";

— ? ‘internal_tab(3)‘ is not defined

— ? error occurred in or before ./examples/Example_of_a_procedure_defini\
tion_in_a_library:.sing line 5: ¢ "x"+internal_tab(3)+"x*";¢
// show the help section for tab
help tab;

— // *x Could not get ’IdxFile’.

— // ** Either set environment variable ’SINGULAR_IDX_FILE’ to ’IdxFile’,

— // *x or make sure that ’IdxFile’ is at "JD/singular/singular.idx"

+ // ** Displaying help in browser ’dummy’.

— // *x Use ’system("--browser", <browser>);’ to change browser,

— // **x where <browser> can be: "dummy", "emacs".

— ? No functioning help browser available.

— ? error occurred in or before ./examples/Example_of_a_procedure_defini\

tion_in_a_library:.sing line 7: ¢ help tab;"
3.7.2 Parameter list

Syntax: @)
( parameter_definition )
Purpose:
e Defines the number, type and names of the arguments of a procedure.

o The parameter_list is optional.
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Example:

Note:

e Adding list # as argument to a parameter list means to allow optional parameters.
Furthermore, (1ist #) is the default for a parameter list (in case no list is explicitly
given). Inside the procedure body, the arguments of list # are referenced by
#[1]1, #[2], etc

e If a procedure has optional parameters, the attribute default_arg gives the de-
fault values for the optional arguments. This provides in particular the possibility
to also change the behaviour of all procedures nested inside the given procedure.

proc x0

{
// can be called with

... // any number of arguments of any type: #[1], #[2],...
// number of arguments: size (#)

}

proc x1 O

{

... // can only be called without arguments

}

proc x2 (ideal i, int j)

{

... // can only be called with 2 arguments,
// which can be converted to ideal resp. int

}

proc x3 (i,j)

{

... // can only be called with 2 arguments
// of any type
// (i,j) is the same as (def i,def j)

}

proc x5 (i,list #)

{

... // can only be called with at least 1 argument
// number of arguments: size(#)+1

}

attrib(x5,"default_arg",3);
x5(2); // is equivalent to
x5(2,3);

The parameter_list may stretch across multiple lines.
A parameter may have any type (including the types proc and ring).
If a parameter is of type ring, then it can only be specified by name, but not with a
type. For instance
proc x6 (r)
{

... // this is correct, r may be of any type, even of type ring

}
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proc x7 (ring r)

{
... // this is NOT CORRECT

}
3.7.3 Help string

Syntax: string_constant;

Purpose:  Constitutes the help text of a procedure.

Format:
USAGE: <proc_name>(<parameter list>); <explanation of parameters>
ASSUME: <description of assumptions made>
RETURN: <description of what is returned>
SIDE EFFECTS: <description of global objects generated or manipulated,
but not returned>
REMARKS: <information on theory and implemented algorithms,references>
NOTE: <particularities, limitations, additional details>
KEYWORDS: <semicolon-separated phrases of index keys>
SEE ALSO: <comma-separated names of related procedures/cross references>
EXAMPLE: example <proc_name>; shows an example

NOTE:

e ASSUME, SIDE EFFECTS, KEYWORDS, and SEE ALSO are optional. No help
string is required for static procedures.

e EXAMPLE: refers to the example section of the procedure. In a SINGULAR ses-
sion, the example will be carried out upon entering example <proc_name>; if the
procedure is loaded from a file by the LIB or load command (see Section 5.1.79
[LIBJ, page 209 and see Section 5.2.12 [load], page 295 ). No example section is
allowed if the procedure is defined interactively.

e See Section 3.8.10 [Typesetting of help and info strings], page 64 for help strings
in the SINGULAR documentation.

e See the example in Section 3.8.6 [Procedures in a library|, page 57 for an illustra-
tion.

3.7.4 Names in procedures

e All variables defined inside a procedure are local to the procedure and their names cannot
interfere with names in other procedures. Without further action, they are automatically
deleted after leaving the procedure.

e To keep local variables and their value after leaving the procedure, they have to be exported (i.e.
made global) by a command like export or exportto (see Section 5.2.6 [export]|, page 289, see
Section 5.2.7 [exportto], page 289, see Section 5.2.10 [importfrom|, page 293; see Section 4.15

package|, page 118). To return the value of a local variable, use the return command (see
Section 5.2.14 [return], page 297).

Example:

proc XXX

{

int k=4; //defines a local variable k



Chapter 3: General concepts 55

int result=k+2;
export(result); //defines the global variable "result".
}
xxx () ;
listvar(all);
— // result [0] int 6

Note that the variable result became a global variable after the execution of xxx.

3.7.5 Procedure-specific commands

A few commands should only be used inside a procedure. They either make local objects global
ones or return results to the level from where the procedure was called.

See Section 5.2.6 [export], page 289; Section 5.2.7 [exportto], page 289; Section 5.2.14 [return],
page 297.

3.8 Libraries

A library is a collection of SINGULAR procedures in a file.

To load a library into a SINGULAR session, use the LIB or load command. Having loaded a
library, its procedures can be used like any built-in SINGULAR function, and information on
the library is obtained by entering help libname.lib;

See Appendix D [SINGULAR libraries|, page 790, for all libraries currently distributed with
SINGULAR.

When writing your own library, it is important to comply with the guidelines described in this
section. Otherwise, due to potential parser errors, it may not be possible to load the library.

Each library consists of a header and a body. The first line of a library must start with a
double slash //.

The library header consists of a version string, a category string, an info string, and LIB
commands. The strings are mandatory. LIB commands are meant to load the additional
libraries used by the library under consideration.

The library body collects the procedures (declared static or not).

No line of a library should consist of more than 60 characters.

3.8.1 Libraries in the SINGULAR Documentation

The typesetting language in which the SINGULAR documentation is written is texinfo. The
info string of a library included in the SINGULAR distribution will be parsed and automatically
translated to the texinfo format. The same applies to the help string of each procedure listed
in the PROCEDURE: section of the info string.

Based on various tools, info, dvi, p, and html versions of the texinfo documentation are
generated.

For texinfo markup elements and other information facilitating optimal typesetting, see Sec-
tion 3.8.10 [Typesetting of help and info strings|, page 64.

For the convenience of users checking directly the source code, the texinfo tools should be
used economically. That is, the info and help texts should be well readable verbatim.

The example of each procedure listed in the PROCEDURE: section of the info string is com-
puted and its output is included in the documentation.
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3.8.2 Version string

A version string is part of the header of a library.

Syntax: version = string_constant;

Purpose:  Defines the version number of a library. It is displayed when the library is loaded.
Example: version="version sample.lib 4.0.0.0 Dec_2013 ";

Note: Syntax: version<space><filename><space><version><space><date><space>

3.8.3 Category string

A category string is part of the header of a library.
Syntax: category = string_constant;

Purpose:  Defines the category of a library.
Example: category="Algebraic geometry";

Note: Reserved for sorting the libraries into categories.
3.8.4 Info string

Syntax: info = string_constant;

Purpose:  Constitutes the help text of a library. Will be displayed in a SINGULAR session upon
entering help libname.lib; . Will be part of the SINGULAR documentation if the
library is distributed with SINGULAR. See Section 3.8.1 [Libraries in the SINGULAR
Documentation], page 55.

Format:
info="
LIBRARY: <library_name> <one line description of the purpose>
AUTHOR: <name, and email address of author>
OVERVIEW: <concise, additional information on what is implemented>
REFERENCES: <references for further information>
KEYWORDS: <semicolon-separated phrases of index keys>
SEE ALSO: <comma-separated words of cross references>
PROCEDURES :
<proc_name_1>(Q); <one line description of the purpose>

<proc_name_N>(); <one line description of the purpose>

n.
b

NOTE:

e In the documentation, the one line description of the purpose following LIBRARY:
will be printed in its own line, starting with the prefix PURPOSE: .

¢ REFERENCES, KEYWORDS, and SEE ALSO are optional.

e Only non-static procedures should be listed in the PROCEDURES: section. A
procedure parameter should be included between the brackets () only if the cor-
responding one line description of the purpose refers to it. See Section 3.8.6 [Pro-
cedures in a library|, page 57.
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e In the documentation, separate nodes (subsections in printed documents) are cre-
ated precisely for those procedures of the library appearing n the PROCEDURES:
section (that is, for some if not all non-static procedures of the library).

Example:
info="
LIBRARY: absfact.lib Absolute factorization for characteristic O
AUTHORS: Wolfram Decker, decker at math.uni-sb.de
Gregoire Lecerf, lecerf at math.uvsq.fr
Gerhard Pfister, pfister at mathematik.uni-kl.de
OVERVIEW:

A library for computing the absolute factorization of multivariate
polynomials f with coefficients in a field K of characteristic zero.
Using Trager’s idea, the implemented algorithm computes an absolutely
irreducible factor by factorizing over some finite extension field L
(which is chosen such that V(f) has a smooth point with coordinates in L).
Then a minimal extension field is determined making use of the
Rothstein-Trager partial fraction decomposition algorithm.

REFERENCES :
G. Cheze, G. Lecerf: Lifting and recombination techniques for absolute
factorization. Journal of Complexity, 23(3):380-420, 200

KEYWORDS: factorization; absolute factorization.
SEE ALSO: factorize

PROCEDURES :

absFactorize(); absolute factorization of poly

n.
3

To see how this infostring appears in the documentation after typesetting, check Sec-
tion D.4.1 [absfact_lib], page 998:

3.8.5 LIB commands

LIB commands are part of the header of a library.

Syntax: LIB "lib_1.lib";

LIB "lib_r.lib";

Purpose: Loads libraries used by the library under consideration.

Example:
LIB "primdec.lib";
LIB "normal.lib";
Note: The keyword LIB must be followed by at least one space.

3.8.6 Procedures in a library

Here asre hints and requirements on how procedures contained in a library should be implemented.
For more on procedures, see Section 3.7 [Procedures|, page 50.

1. Each procedure not meant to be accessible by users should be declared static.
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2. The header of each procedure not declared static must comply with the guidelines described
in Section 3.7.1 [Procedure definition|, page 51 and Section 3.7.3 [Help string|, page 54. In
particular, it must have a help and example section, and assumptions made should be carefully
explained. If the assumptions are checked by the procedure on run-time, errors may be reported
using the Section 5.1.30 [ERROR]. page 175 function.

3. Names of procedures should not be shorter than 4 characters and should not contain any
special characters. In particular, the use of _ in names of procedures is discouraged. If the
name of the procedure is composed of more than one word, each new word should start with
a capital letter, all other letters should be lower case (e.g. linearMapKernel).

4. No procedures should be defined within the body of another procedure.

5. A procedure may print out comments, for instance to explain results or to display intermediate
computations. This is often helpful when calling the procedure directly, but it may also cause
confusions in cases where the procedure is called by another procedure. The SINGULAR solution
to this problem makes use of the function dbprint (see Section 5.1.17 [dbprint], page 167) and
the reserved variables printlevel and voice (see Section 5.3.6 [printlevel], page 301 and see
Section 5.3.11 [voice|, page 305). Note that printlevel is a predefined, global variable whose
value can be changed by the user, while voice is an internal variable, representing the nesting
level of procedures. Accordingly, the value of Section 5.3.11 [voice|, page 305 is 1 on the
top level, 2 inside the first procedure, and so on. The default value of printlevel is 0, but
printlevel can be set to any integer value by the user.

Example: If the procedure Test below is called directly from the top level, then ‘commentl’ is
displayed, but not ‘comment2’. By default, nothing is displayed if Test is called from
within any other procedure. However, if printlevel is set to a value k with k>0, then
‘comment1’ (resp. ‘comment2’) is displayed — provided Test is called from another
procedure with nesting level at most k (resp. k-1).

The example part of a procedure behaves in this respect like the procedure on top level
(the nesting level is 1, that is, the value of voice is 2). Therefore, due to the command
printlevel=1;, ‘commentl’ will be displayed when entering example Test;. However,
since printlevel is a global variable, it should be reset to its old value at the end of the
example part.

The predefined variable echo controls whether input lines are echoed or not. Its default
is 0, but it can be reset by the user. Input is echoed if echo>=voice. At the beginning
of the example part, echo is set to the value 2. In this way, the input lines of the
example will be displayed when entering example Test;.

proc Test
"USAGE:

EXAMPLE: example Test; shows an example

{ ...
int p = printlevel - voice + 3;
dbprint (p,"commentl");
dbprint (p-1,"comment2") ;
// dbprint prints only if p > O
}
example

{ "EXAMPLE:"; echo = 2;
int p = printlevel; //store old value of printlevel
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printlevel = 1; //assign new value to printlevel
Test();
printlevel = p; //reset printlevel to old value
}
Note: SINGULAR functions such as pause or read allow and require interactive user-input.

They are, thus, in particular useful for debugging purposes. If such a command is used
inside the procedure of a library to be distributed with SINGULAR, the example section
of the procedure has to be written with some care — the procedure should only be called
from within the example if the value of printlevel is 0. Otherwise, the automatic
build process of SINGULAR will not run through since the examples are carried out
during the build process. They are, thus, tested against changes in the code.

3.8.7 template_lib

First, we show the source-code of a template library:

LITTT77777777777777777777777777777777777777777777777777777777777

version="version template.lib 4.1.2.0 Feb_2019 "; // $Id: 4d4a314bcbeaaaf113c4c4687Dbl
category="Miscellaneous";

// summary description of the library

info="
LIBRARY: template.lib A Template for a Singular Library
AUTHOR: Olaf Bachmann, email: obachman@mathematik.uni-kl.de

SEE ALSO: standard_1lib, Libraries,
Typesetting of help and info strings

KEYWORDS: library, template.lib; template.lib; library, info string

PROCEDURES :
mdouble (int) return double of int argument
mtriple(int) return three times int argument
msum( [int,..,int]) sum of int arguments

/}//////////////////////////////////////////////////////////////////

proc mdouble(int i)

"USAGE: mdouble(i); i int
RETURN: int: i+i
NOTE: Help string is in pure ASCII.

This line starts on a new line since previous line is short.
No new line here.
SEE ALSO: msum, mtriple, Typesetting of help and info strings
KEYWORDS: procedure, ASCII help
EXAMPLE: example mdouble; shows an example"

{
return (i + 1i);

}

example

{ "EXAMPLE:"; echo = 2;
mdouble(0);

mdouble(-1);
}
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[I1777777777777777777777777777777777777777777777777777777777777177177
proc mtriple(int i)

"@c we do texinfo here

Q@table Qasis

Q@item @strong{Usage:}

Q@code{mtriple(i)}; @code{il} int

@item @strong{Return:}

int: @Gmath{i+i+i}

@item @strong{Note:}

Help is in pure Texinfo.

@*This help string is written in texinfo, which enables you to use,
among others, the @@math command for mathematical typesetting

(for instance, to print @math{\alpha, \betal}l).

0xTexinfo also gives more control over the layout, but is, admittingly,
more cumbersome to write.

Q@end table

@c use Qc ref contstuct for references

O@cindex procedure, texinfo help

Q@c ref

@strong{See also:}

@ref{mdouble}, Q@ref{msum}, Qref{Typesetting of help and info strings}
Oc ref

{
return (i + i + 1i);
X
example
{ "EXAMPLE:"; echo = 2;
mtriple(0);
mtriple(-1);
b
LITTT777777777777777777777777777777777777777777777777777777777777777
proc msum(list #)
"USAGE: msum([i_1,..,i_n]); @code{i_1,..,i_n} def
RETURN: Sum of int arguments
NOTE: This help string is written in a mixture of ASCII and texinfo.
Ox Use Qref for references (e.g., G@pxref{mtriple}).
@+ Use @code for typewriter font (e.g., Qcode{i_13}).
@x Use Omath for simple math mode typesetting (e.g., G@math{i_1}).
@+ Warning: Parenthesis like } are not allowed inside @math and @code.
Ox Use Qexample for indented, preformatted text typesetting in
typewriter font:
Q@example
this --> that
O@end example
Use Q@format for preformatted text typesetting in normal font:
@format
this --> that
Q@end format
Use Qtexinfo for text in pure texinfo:
O@texinfo
Q@expansion{}
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Qtex
$i_{1,13}$
Q@end tex

Q@end texinfo
Note that
automatic linebreaking is still in affect (like in this line).
SEE ALSO: mdouble, mtriple, Typesetting of help and info strings
KEYWORDS: procedure, ASCII/Texinfo help
EXAMPLE: example msum; shows an example"
{
if (size(#)
if (size(#)
int i;
def s = #[1];
for (i=2; i<=size(#); i++)
{
s = s + #[i];
}
return (s);
}
example
{ "EXAMPLE:"; echo = 2;
msum() ;
msum(4) ;
msum(1,2,3,4);
X

Second, we show how the library appears in the documentation after typesetting (with one subsec-
tion for each procedure):

0) { return (0);2}
1) { return (#[11);}

Library:  template.lib

Purpose: A Template for a Singular Library

Author: Olaf Bachmann, email: obachman@mathematik.uni-kl.de

Procedures: See also: Section 3.8 [Libraries|, page 55; Section 3.8.10 [Typesetting of help and info

strings|, page 64; Section D.1 [standard_lib], page 790.

3.8.7.1 mdouble

Procedure from library template.lib (see Section 3.8.7 [template_lib], page 59).
Usage: mdouble(i); 1 int
Return: int: i+

Note: Help string is in pure ASCII.
This line starts on a new line since previous line is short. No new line here.

Example:

LIB "template.lib";
mdouble(0) ;

— 0

mdouble(-1);

= =2
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See also: Section 3.8.10 [Typesetting of help and info strings], page 64; Section 3.8.7.3 [msum],
page 62; Section 3.8.7.2 [mtriple|, page 62.

3.8.7.2 mtriple

Procedure from library template.lib (see Section 3.8.7 [template_lib], page 59).
Usage: mtriple(i); i int
Return: int: i +1+1

Note: Help is in pure Texinfo.
This help string is written in texinfo, which enables you to use, among others, the
@math command for mathematical typesetting (for instance, to print «, 3 ).
Texinfo also gives more control over the layout, but is, admittingly, more cumbersome
to write.

See also:
Example:

LIB "template.lib";
mtriple(0);

= 0

mtriple(-1);

= =3

3.8.7.3 msum

Procedure from library template.lib (see Section 3.8.7 [template_lib], page 59).

Usage: msum([i-1,..,in]); i_1,..,i_n def
Return: Sum of int arguments
Note: This help string is written in a mixture of ASCII and texinfo.

Use @ref for references (e.g., see Section 3.8.7.2 [mtriple|, page 62).

Use @code for typewriter font (e.g., i_1).

Use @math for simple math mode typesetting (e.g., i; ).

Warning: Parenthesis like } are not allowed inside @math and @code.

Use @example for indented, preformatted text typesetting in typewriter font:
this --> that

Use @format for preformatted text typesetting in normal font:

this —> that
Use @texinfo for text in pure texinfo:
=l
Note that
automatic linebreaking is still in affect (like in this line).
Example:
LIB "template.lib";
msum() ;
= 0
msum(4) ;
= 4

msum(1,2,3,4);
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— 10
See also: Section 3.8.10 [Typesetting of help and info strings], page 64; Section 3.8.7.1 [mdouble],
page 61; Section 3.8.7.2 [mtriple|, page 62.

3.8.8 Formal Checker

There is a formal library checker for SINGULAR which can be wused online: see
https://www.singular.uni-kl.de/index.php/new-libraries/formal-library-
checker.html.

After uploading your library file, you will receive an output of hints, warnings, and errors which
may help you to improve your library.

3.8.9 Documentation Tool

lib2doc is a utility to generate the stand-alone documentation for a SINGULAR library in various
formats.

The 1ib2doc utility should be used by developers of SINGULAR libraries to check the generation of
the documentation of their libraries.

lib2doc can be downloaded from
ftp://jim.mathematik.uni-kl.de/pub/Math/Singular/misc/lib2doc.tar.gz  (mirror at
https://www.mathematik.uni-k1.de/ftp/pub/Math/Singular/misc/lib2doc.tar.gz)

Important:
To use 1ib2doc, you need to have perl (version 5 or higher), texinfo (version 3.12 or higher) and
Singular and libparse (version 1-3-4 or higher) installed on your system.

To generate the documentation for a library, follow these steps:
1. Unpack lib2doc.tar.gz
gzip -dc 1lib2doc.tar.gz | tar -pxf -
and
cd lib2doc

2. Edit the beginning of the file Makefile, filling in the values for SINGULAR and LIBPARSE. Check
also the values of PERL and LATEX2HTML.

3. Copy your library to the current directory:
cp <path-where-your-lib-is>/mylib.1ib .
4. Now you can run the following commands:
make mylib.hlp

Generates the file mylib.hlp — the info file for the documentation of mylib.1lib.
This file can be viewed using

info -f mylib.hlp
make mylib.dvi

Generates the file mylib.dvi — the dvi file for the documentation of mylib.1lib.
This file can be viewed using

xdvi mylib.dvi
make mylib.ps

Generates the file mylib.ps — the PostScript file for the documentation of
mylib.1lib. This file can be viewed using (for example)

ghostview mylib.dvi
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make mylib.html
Generates the file mylib.html — the HTML file for the documentation of
mylib.1lib. This file can be viewed using (for example)

firefox mylib.html

make clean
Deletes all generated files.

Note that you can safely ignore messages complaining about undefined references.

3.8.10 Typesetting of help and info strings

The info strings of the libraries which are included in the distribution of SINGULAR and the help
strings of the corresponding procedures are parsed and automatically converted into the texinfo
format (the typesetting language in which the documentation of SINGULAR is written).
The illustrative example given in Section 3.8.7 [template_lib], page 59 should provide sufficient
information on how this works. For more details, check the following items:
e Users familiar with texinfo may write help and info strings directly in the texinfo format.
The string should, then, start with the @ sign. In this case, no parsing will be done.
e Help and info strings are typeset within a @table @asis environment (which is similar to the
latex description environment).
e If a line starts with uppercase words up to a colon, then the text up to the colon is taken to be
the description-string of an item, and the text following the colon is taken to be the content
of the item.

e If the description-string of an item matches

SEE ALSO then the content of the item is assumed to consist of comma-separated words which
are valid references to other texinfo nodes of the manual (e.g., all procedure and
command names are also texinfo nodes).

KEYWORDS then the content of the item is assumed to be a semicolon-separated list of phrases
which are taken as keys for the index of the manual (the name of a proce-
dure/library is automatically added to the index keys).

e If the description-string of an item in the info string of a library matches
LIBRARY then the content of the item is assumed to be a one-line description of the library.

If this one-line description consists of uppercase characters only, then it is typeset
in lowercase characters (otherwise it is left as is).

PROCEDURES
then the content of the item is assumed to consist of lines of type
<proc_name>(); <one line description of the purpose>

Separate texinfo nodes (subsections in printed documents) are created precisely
for those procedures of the library appearing here (that is, for some if not all
non-static procedures of the library).

With respect to the content of an item, the following texinfo markup elements are recognized:
@x* Enforces a line-break.
Example: o0ld line @* new line
’_>

old line
new line
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@ref{...} For references to other parts of the SINGULAR manual, use one of the following
@ref{node} constructs. Here, node must be the name of a section of the SINGULAR manual.
In particular, it may be the name of a function, library or procedure in a library.

@xref{node}
for a reference to the node node at the beginning of a sentence.

@ref{node}
for a reference to the node node at the end of a sentence.

@pxref{node}
for a reference to the node node within parentheses.

Example: @xref{Hurricanes}, for more info.
—*Note Hurricanes::, for more info.
—See Section 3.1 [Hurricanes|, page 24, for more info.
For more information, see @ref{Hurricanes?}.
—TFor more information, see *Note Hurricanes::.
—For more information, see Section 3.1 [Hurricanes], page 24.
. storms cause flooding (@pxref{Hurricanes}) ...

... storms cause flooding (*Note Hurricanes::) ...
... storms cause flooding (see Section 3.1 [Hurricanes|, page 24)

@math{..} Typeset short mathematical expressions in LaTeX math-mode syntax (short: does
not cause expansion over multiple lines).

Example: ©@math{\alpha}
’_>
e

Note: The mathematical expressions inside @math{. .} must not contain the characters

£}, and e.

@codeq{. .} Typeset short strings in typewriter font (short: does not cause expansion over
multiple lines).

Example: @code{typewriter font}
’_>

typewriter font

Note: The string inside @codeq{. .} must not contain the characters {,}, and @.
Typeset pre-formatted text in typewriter font.
Q@example
Q@end example
Example:
before example
Q@example
in example
notice escape of special characters like @{,@},0@
@end example
after example

’_>
before example
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in example
notice escape of special characters like {,},0@

after example

Note: Inside an @example environment, the characters {,},@ have to be escaped by an @
sign.
Typeset pre-formatted text in normal font.

@format
Q@end format
Example:

before format
Q@format
in format
notice escape of special characters like @{,@},0®@
Q@end format
after format
’_>
before format
in format
escape of special characters like {,},@

after format

Note: Inside an @format environment, the characters {,},@ have to be escaped by an @
sign.
Write text in pure texinfo.
O@texinfo
Q@end texinfo
Example:
@texinfo
Among others, within a texinfo environment,
one can use the tex environment to typeset
more complex mathematical items like
Qtex
$i_{1,1} $

Qtex
Q@end texinfo

|_>
Among others, within a texinfo environment, one can use the tex environment to
typeset more complex mathematical items like #; ;

Furthermore, a line-break is inserted before each line whose previous line is shorter than 60
characters and does not contain any of the above described recognized texinfo markup elements.

3.8.11 Loading a library

Libraries can be loaded with the LIB or the load command (see Section 5.1.79 [LIB], page 209 and
see Section 5.2.12 [load], page 295).
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Syntax: LIB string_expression ;
load string_expression ;

Type: none

Purpose: Reads a library from a file. If the given filename does not start with . or / and if
the file cannot be located in the current directory, the SearchPath is checked for a
directory containing a file with this name.

Note on SearchPath:
The SearchPath for a library is constructed at SINGULAR start-up time as follows:
1. the directories contained in the environment variable SINGULARPATH are appended.
2. the directories $BinDir/LIB, $RootDir/LIB, $RootDir/../LIB,
$DefaultDir/LIB, $DefaultDir/../LIB are appended, where
e $BinDir is the value of the environment variable SINGULAR_BIN_DIR, if set,
or, if not set, the directory in which the SINGULAR program resides
e $RootDir is the value of the environment variable SINGULAR_ROOT_DIR, if set,
or, if not set, $BinDir/../.
e $DefaultDir is the value of the environment variable SINGULAR_DEFAULT_
DIR, if set, or /usr/local.

3. all directories which do not exist are removed from the SearchPath.

For setting environment variables, see Section 5.1.153 [system], page 271, or consult
the manual of your shell.

The library SearchPath can be examined by starting up SINGULAR with the option
-v, or by issuing the command system("--version") ;.

Note on standard.lib:
Unless SINGULAR is started with the ——no-stdlib option, the library standard.lib
is automatically loaded at start-up time.

Following a LIB or load command, only the names of the procedures in the library are loaded. The
body of a particular procedure is only read upon the first call of the procedure. This minimizes
memory consumption by unused procedures. Starting a SINGULAR session with the -q or —-
quiet option unsets the option loadLib and inhibits, thus, the monitoring of library loading (see
option).

All libraries loaded in a SINGULAR session are displayed upon entering listvar (package); :

option(loadLib); // show loading of libraries;
// standard.lib is loaded

listvar(package) ;

— // Singmathic [0] package Singmathic (C,singmathic.s\
o)

— // Standard [0] package Standard (S,standard.lib)

— // Top [0] package Top (T)

// the names of the procedures of inout.lib

LIB "inout.lib"; // are now known to Singular

— // ** loaded inout.lib (4.1.2.0,Feb_2019)

listvar(package) ;

+— // Inout [0] package Inout (S,inout.lib)

— // Singmathic [0] package Singmathic (C,singmathic.s\
o)

— // Standard [0] package Standard (S,standard.lib)

— // Top [0] package Top (T)
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See Section 3.1.6 [Command line options], page 19; Section 5.1.79 [LIB], page 209; Section 2.3.3
[Procedures and libraries|, page 10; Appendix D [SINGULAR libraries|, page 790; Section 4.17
[proc], page 122; Section D.1 [standard_lib], page 790; Section 4.21 [string], page 128; Section 5.1.153
[system], page 271.

3.9 Debugging tools

If SINGULAR does not come back to the prompt while calling a user defined procedure, probably a
bracket or a " is missing. The easiest way to leave the procedure is to type some brackets or " and

then .
3.9.1 ASSUME

Syntax: ASSUME ( int_constant , expression )

Purpose: Tests the expression for correctness if the int_constant is smaller as a variable
assumeLevel. If no such variable exist the int expression is compared against 0. It
is possible to define an individual assumeLevel for each library and/or procedure If
the expression is evaluated and not true (i.e. does not evaluate to int(0) an error is
raised.

Note: ASSUME shall be used for documentation and debugging,
production code of a library must never define assumeLevel.

Example:

ASSUME(0,2==2); // always tested
ASSUME(1,1==2); // not evaluated
int assumelevel=2;
ASSUME(1,1==2);
7 ASSUME failed: ASSUME(1,1==2);
? error occurred in or before ./examples/ASSUME.sing line 4: ¢ ASSUI
(1,1==2);°
// setting a different assumelLevel for poly.lib:
int Poly::assumelevel=2;
— Poly of type ’ANY’. Trying load.
—> ? ’Poly’ no such package
— ? error occurred in or before ./examples/ASSUME.sing line 6: ¢ int |
ly: :assumelLevel=2;
> ? wrong type declaration. type ’help int;’

11

3.9.2 Tracing of procedures

Setting the TRACE variable to 1 (resp. 3) results in reporting of all procedure entries and exits
(resp. together with line numbers). If TRACE is set to 4, Singular displays each line before its
interpretation and waits for the key being pressed. See Section 5.3.9 [TRACE var|,
page 303.
Example:

proc til

{
int i=2;
while (i>0)
{ i=i-1; }

+
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TRACE=3;
t10);

entering t1 (level 0)

{1H{2H{3H{4 {6 {4 {6H{6{7r{4{cH{6} {7 {4}{6}{7}{8}
leaving t1 (level 0)

|_>
|_>
H
H
3.9.3 Source code debugger
The source code debugger (sdb) is an experimental feature, its interface may change in future
versions of SINGULAR.

To enable the use of the source code debugger SINGULAR has to be started with the option -d or
--sdb (see Section 3.1.6 [Command line options|, page 19).

sdb commands

Each sdb command consists of one character which may be followed by a parameter.

b print backtrace of calling stack
c continue
e edit the current procedure and reload it (current call will be aborted)

only available on UNIX systems
h,? display help screen
n execute current line, sdb break at next line

p <identifier>
display type and value of the variable given by <identifier>

Q quit this SINGULAR session

q <flags>  quit debugger, set debugger flags(0,1,2)
0: continue, disable the debugger
1: continue
2: throw an error, return to toplevel

Syntactical errors in procedures

If SINGULAR was started using the command line option -d or --sdb, a syntactical error in a
procedure will start the source code debugger instead of returning to the top level with an error
message. The commands q 1 and q 2 are equivalent in this case.

SDB breakpoints in procedures

Up to seven SDB breakpoints can be set. To set a breakpoint at a procedure use breakpoint. (See
Section 5.2.3 [breakpoint]|, page 287).

These breakpoints can be cleared with the command d breakpoint_no from within the debugger
or with breakpoint ( proc_name ,-1);.
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3.9.4 Break points

A break point can be put into a proc by inserting the command ~. If Singular reaches a break
point it asks for lines of commands (line-length must be less than 80 characters) from the user. It

returns to normal execution if given an empty line. See Section 5.2.16 [7], page 298.
Example:
proc t
{
int i=2;
return(i+1);
}
t0O;
— —-- break point in t --

= —— 0: called from STDIN --

// here local variables of the procedure can be accessed
= 2

— —-— break point in t --

= 3

3.9.5 Printing of data

The procedure dbprint is useful for optional output of data: it takes 2 arguments and prints the
second argument, if the first argument is positive; otherwise, it does nothing. See Section 5.1.17
[dbprint], page 167; Section 5.3.11 [voice], page 305.

3.9.6 libparse

libparse is a stand-alone program contained in the SINGULAR distribution (at the place where the
SINGULAR executable program resides), which cannot be called inside SINGULAR. It is a debugging
tool for libraries which performs exactly the same checks as the load command in SINGULAR, but
generates more output during parsing. libparse is useful if an error occurs while loading the
library, but the whole block around the line specified seems to be correct. In these situations the
real error might have occurred hundreds of lines earlier in the library.

Usage:

libparse [options] singular-library

Options:

-d Debuglevel
increases the amount of output during parsing, where Debuglevel is an integer between
0 and 4. Default is 0.

-s turns on reporting about violations of unenforced syntax rules

The following syntax checks are performed in any case:

e counting of pairs of brackets {,} , [,] and (,) (number of { has to match number of }, same for

L] and (;) ).

e counting of " ( number of " must be even ).

e general library syntax ( only LIB, static, proc (with parameters, help, body and example) and
comments, i.e // and /* ... */, are allowed).
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Its output lists all procedures that have been parsed successfully:

$ libparse sample.lib
Checking library ’sample.lib’

Library function line,start-eod line,body-eob line,example-eoe
Version:0.0.0;
g Sample tab line 9, 149-165 13, 271-298 14, 300-402
1 Sample internal_tab line 24, 450-475 25, 476-496 0, 0-496

where the following abbreviations are used:
e g: global procedure (default)

e 1. static procedure, i.e., local to the library.

each of the following is the position of the byte in the library.

start: begin of 'proc’

e cod: end of parameters

e body: start of procedurebody '{’
e cob: end of procedurebody '}’

e example: position of ’example’

eoe: end of example '}’

Hence in the above example, the first procedure of the library sample.lib is user-accessible and its
name is tab. The procedure starts in line 9, at character 149. The head of the procedure ends at
character 165, the body starts in line 13 at character 271 and ends at character 298. The example
section extends from line 14 character 300 to character 402.

The following example shows the result of a missing close-bracket } in line 26 of the library
sample.lib.
LIB "sample.lib";
Library sample.lib: ERROR occurred: in line 26, 497.
missing close bracket ’}’ at end of library in line 26.
Cannot load library,... aborting.
error occurred in STDIN line 1: ‘LIB "sample.lib";°

1111

3.9.7 option(warn)

If this option is set some constructs which may lead to bug will result in a warning. While there
are legitimate uses for them and they are not errors is is worth thinking about it.

change of options during a procedure call: is this side effect intended?

use of def: avoids type checking, but useful if a procedure handles several types at once
ASSUME outside of procedures: while a failed ASSUME aborts the current procedures and return
to the top level - what should it do at top level?

See Section 5.1.110 [option], page 231.

3.10 Dynamic loading

In addition to the concept of libraries, it is also possible to dynamically extend the functionality
by loading functions written in C/C++ or some other higher programming language. A collection
of such functions is called a dynamic module and can be loaded by the command LIB or load. It
is basically handled in the same way as a library: upon loading, a new package is created which
holds the contents of the dynamic module. General information about the loaded module can be
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displayed by the command help package_name. After loading the dynamic module, its functions
can be used exactly like the built-in SINGULAR functions.

To have the full functionality of a built-in function, dynamic modules need to comply with certain
requirements on their internal structure. As this would be beyond the scope of the Singular
manual, a separate, more detailed guide on how to write and use dynamic modules is available.
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4 Data types

This chapter explains all data types of SINGULAR in alphabetical order. For every type, there is
a description of the declaration syntax as well as information about how to build expressions of
certain types.

The term expression list in SINGULAR refers to any comma separated list of expressions.

For the general syntax of a declaration see Section 3.5.1 [General command syntax|, page 41.

4.1 cring

Variables of type cring represent the ring of coefficients (see Section 4.14 [number|, page 114)
4.1.1 cring declarations

Syntax: cring name = cring_expression ;

Purpose:  defines a new coefficient ring resp. field to be used for a ring definition (see Section 4.19
ring|, page 125). Most objects of this type are predefined.

Default: none

Example:

77;
— ZZ

77/3;
— ZZ/3

4.1.2 cring expressions

A cring expression is:
1. an identifier of type cring:
QQ - the rational numbers
77 - the integers
2. a function returning cring

3. an expression involving crings and the arithmetic operations /.

Example:

77/3;
— ZZ/3

See Section 4.19 [ring], page 125.
4.1.3 cring operations

/ residue class ring

Example:

77/101;
— 2Z/101
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4.1.4 cring related functions

crossprod

Float

flintQ

crooss product of several objects of type cring (see Section 5.1.15 [crossprod], page 166)

several variants of Floating point (inexact) real and complex numbers (see Sec-
tion 5.1.45 [Float], page 184).

multivariate rational functions over Q (via flint, requires >=2.5.3) (see Section 5.1.44
[flintQ], page 184).

See Section 5.1.45 [Float]|, page 184; Section 5.1.15 [crossprod], page 166; Section 5.1.44 [flintQ)],

page 184.

4.2 bigint

Variables of type bigint represent the arbitrary long integers. They can only be constructed from
other types (int, number).

4.2.1 bigint declarations

Syntax:
Purpose:
Default:

Example:

bigint name = int_expression ;
defines a long integer variable

0

bigint i = 42;

ring r=0,x,dp;

number n=2;

bigint j = i + bigint(n)~50; j;
— 1125899906842666

4.2.2 bigint expressions

A bigint expression is:

1. an identifier of type bigint

2. a function returning bigint

3. an expression involving bigints and the arithmetic operations +, -, *, div, % (mod), or

~

4. a type cast to bigint.

Example:

// Note: 11%13%17%*100%200%2000%503*1111%222222

// returns a machine integer:

11%13%17%100%200%2000%503%1111%222222;

= // *x int overflow(*), result may be wrong

— -6869239595516308480

// using the type cast number for a greater allowed range

bigint (11)*13%17%100%200%x2000%503*%1111%222222;

— 12075748128684240000000
See Section 3.5.5 [Type conversion and casting], page 46; Section 4.6 [int], page 83; Section 4.14
[number], page 114.
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4.2.3 bigint operations

+ addition

- negation or subtraction

* multiplication
div integer division (omitting the remainder >= 0)
mod, % integer modulo (the remainder of the division div)
T, kX exponentiation (exponent must be non-negative)
<, >, <=, >= == <>

comparators
Example:

bigint (5)*2, bigint(2)~100-10;

— 10 1267650600228229401496703205366
bigint(-5) div 2, bigint(-5) mod 2;
— -3 1

4.2.4 bigint related functions

=

gecd greatest common divisor (see Section 5.1.50 [ged], page 188)

memory memory usage (see Section 5.1.89 [memory|, page 217)

See Section 5.1.89 [memory], page 217.

4.3 bigintmat

Big integer matrices are matrices with big integer entries. No basering definition is required to use
bigint matrices, for they do not belong to a ring. Bigintmat entries can have any size because of
the use of bigint.

4.3.1 bigintmat declarations

Syntax: bigintmat name = bigintmat_expression ;
bigintmat name [ rows ] [ cols ] = bigintmat_expression ;
bigintmat name [ rows ] [ cols ] = list_of_int_and_bigint expressions ;
rows and cols must be positive int expressions.

Purpose:  defines a bigintmat variable.
Given a list of (big) integers, the matrix is filled up with the first row from the left
to the right, then the second one and so on. If the (big-)int_list contains less than
rows*cols elements, the remaining ones are set to zero; if it contains more elements,
only the first rows*cols ones are considered.

Default:  empty (1x0 matrix)

Example:
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bigintmat bim[4] [3]=2, 5, 224553233465, 232444, 434, 0, 0, 4544232222;

bim;

— 2, 5,224553233465,
— 232444, 434, 0,
— 0,4544232222, 0,
— 0, 0, 0
bim[2, 11;

— 232444

4.3.2 bigintmat expressions

A bigintmat expression is:
. an identifier of type bigintmat

. a function returning bigintmat

1
2
3. a bigintmat operation involving (big-)ints and int operations (+, -, *)
4. an expression involving bigintmats and the operations (+, -, *)

)

. a type cast to bigintmat (see Section 4.3.3 [bigintmat type cast], page 76)

Example:

bigintmat m1[2][2]=1, 2, 6, 3;
ml1x*x3;

= 3,6,

— 18,9
intmat im[3] [2] = intmat(m1*3);
bigintmat m2 = bigintmat(im); // cast intmat im to bigintmat
m2;

— 3,6,

— 18,9
m2*ml+m2;

— 42,30,

= 90,72
_t4;

— 46, O,

— 0,76

See Section 3.5.5 [Type conversion and casting], page 46; Section 4.3 [bigintmat]|, page 75.
4.3.3 bigintmat type cast

Syntax: bigintmat ( expression )
Type: bigintmat

Purpose:  Converts expression to a bigintmat, where expression must be of type intmat, or big-
intmat.The size (resp. dimension) of the created bigintmat equals the size (resp. di-
mension) of the expression.

Example:
intmat im[2][1]=2, 3;
bigintmat (im) ;
— 2,
= 3
bigintmat (_);
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— 2,
— 3
bigintmat (intmat (intvec(1,2,3,4), 2, 2)); //casts at first to intmat, th
—~ 1,2,
— 3,4

sction 3.5.5 [Type conversion and casting], page 46; Section 4.3 [bigintmat]|, page 75; Sec-

tion 4.7.3 [intmat type cast], page 90.

4.3.4 bigintmat operations

+

<>’ ==

addition with intmat, int, or bigint. In case of (big-)int, it is added to every entry of
the matrix.

negation or subtraction with intmat, int, or bigint. In case of (big-)int, it is subtracted
from every entry of the matrix.

multiplication with intmat, int, or bigint; In case of (big-)int, every entry of the matrix
is multiplied by the (big-)int

comparators

bigintmat_expression [ int, int ]

is a bigintmat entry, where the first index indicates the row and the second the column

Example:

bigintmat m[3][4] = 3,3,6,3,5,2,2,7,0,0,45,3;

— 3,3, 6,3,
— 5,2, 2,7,
—~ 0,0,45,3
m[1,3]; // show entry at [row 1, col 3]
— 6
m[1,3] = 10; // set entry at [row 1, col 3] to 10
m;
~ 3,3,10,3,
— 5,2, 2,7,
—~ 0,0,45,3
size(m) ; // number of entries
= 12
bigintmat n[2][3] = 2,6,0,4,0,5;
n * m;

— 36,18, 32,48,
— 12,12,265,27
typeof (L) ;
— bigintmat
-3,-3,-10,-3,
-5,-2, -2,-7,
0, 0,-45,-3
bigintmat o;
0=n-10;

111

b b

— -8, 0,0,
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— 0,-10,0
m*2; // double each entry of m
— 6,6,20, 6,
— 10,4, 4,14,
— 0,0,90, 6
0—2%m;
— ? bigintmat/cmatrix not compatible
> ? error occurred in or before ./examples/bigintmat_operations.sing lin\

e 15: ¢ o0-2*m;°¢

4.4 def

Objects may be defined without a specific type: they inherit their type from the first assignment
to them. E.g., ideal i=x,y,z; def j=i"2; defines the ideal i~2 with the name j.

Note: Unlike other assignments a ring as an untyped object is not a copy but another reference
to the same (possibly unnamed) ring. This means that entries in one of these rings appear also
in the other ones. The following defines a ring s which is just another reference (or name) for the
basering r. The name basering is an alias for the current ring.

ring r=32003, (x,y,2),dp;

poly f = x;

def s=basering;

setring s;

nameof (basering) ;
— s

listvar();
— // s [0] *ring
= // f [0] poly
— // T [0] ring(*)

poly g = y;

kill £f;

listvar(r);
= // T [0] ring(*)
= // g [0] poly
ring t=32003, (u,w) ,dp;
def rt=r+t;
rt;

// coefficients: ZZ/32003

// number of vars : 5

// block 1 : ordering dp

// : names Xy z

// block 2 : ordering dp

// : names uw

// block 3 : ordering C

This reference to a ring with def is useful if the basering is not local to the procedure (so it cannot
be accessed by its name) but one needs a name for it (e.g., for a use with setring or map). setring
r; does not work in this case, because r may not be local to the procedure.

1111111

4.4.1 def declarations

Syntax: def name = expression ;

Purpose:  defines an object of the same type as the right-hand side.
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Default: none

Note: This is useful if the right-hand side may be of variable type as a consequence of a
computation (e.g., ideal or module or matrix). It may also be used in procedures to
give the basering a name which is local to the procedure.

Example:
def i=2;

typeof (1) ;
— int

See Section 5.1.159 [typeof], page 279.

4.5 ideal

Ideals are represented as lists of polynomials which generate the ideal. Like polynomials they can
only be defined or accessed with respect to a basering.

Note: size counts only the non-zero generators of an ideal whereas ncols counts all generators;
see Section 5.1.142 [size], page 261, Section 5.1.103 [ncols|, page 228.

4.5.1 ideal declarations

Syntax: ideal name = list_of_poly_and_ideal_expressions ;
ideal name = ideal_expression ;

Purpose:  defines an ideal.
Default: 0

Example:

ring r=0, (x,y,z),dp;
poly sl = x2;
poly s2 = y3;
poly s3 = z;
ideal i sl, s2-s1, 0,s2%s3, s374;
i;

i[1]=x2

i[2]=y3-x2

i[3]=0

i[4]=y3z

i[6]=z4
size(i);
— 4

ncols(i);
— 5

11111

4.5.2 ideal expressions

An ideal expression is:
1. an identifier of type ideal
2. a function returning an ideal

3. a combination of ideal expressions by the arithmetic operations + or *
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4. a power of an ideal expression (operator ~ or *x)
Note that the computation of the product i*i involves all products of generators of i while
i"2 involves only the different ones, and is therefore faster.

5. a type cast to ideal

Example:

ring r=0, (x,y,z),dp;
ideal m = maxideal(1);

m;

— m[1]=x

— m[2]=y

— m[3]=z
poly f = x2;
poly g = y3;

ideal i = x*y*z , f-g, gx(x-y) + £°4 ,0, 2x-z2y;
ideal M = i + maxideal(10);
timer =0;
i = MkM;
timer;
— 0
ncols(i);
— 505
timer =0;
i=M2;
ncols(i);
— 505
timer;
— 0
i[ncols(i)];
— x20
vector v = [x,y-z,x2,y-x,x2yz2-y];
ideal j = ideal(v);

4.5.3 ideal operations

+ addition (concatenation of the generators and simplification)

* multiplication (with ideal, poly, vector, module; simplification in case of multiplication
with ideal)

exponentiation (by a non-negative integer)

ideal_expression [ intvec_expression ]
are polynomial generators of the ideal, index 1 gives the first generator.

Note: For simplification of an ideal, see also Section 5.1.141 [simplify]|, page 259.

Example:

ring r=0, (x,y,z),dp;
ideal I = 0,x,0,1;
I;

— I[1]=0

— I[2]=x
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— I[3]=0
— I[4]1=1
I+ 0; // simplification
= _[1]=1
ideal J = I1,0,x,x-2;;
J;
J[1]1=0
J[2]=x
J[3]1=0
J[4]=1
J[5]1=0
J[6]=x
J[7]=x-z
I xJ; // multiplication with simplification
= _[1]=1
IT*x;
— _[1]=0
— _[2]=x2
— _[3]=0
= _[4]=x
vector V = [x,y,z];
print (VI);
— 0,x2,0,x,

1111111

ideal m = maxideal(l);
m-2;

_[11=x2

_[2]=xy

_[3]=xz

_[4]=y2

_[5]=yz

_[6]==z2

ideal II = I[2..4];

4.5.4 ideal related functions

char_series

coeffs matrix of coefficients (see Section 5.1.12 [coeffs|, page 163)

contract contraction by an ideal (see Section 5.1.13 [contract], page 165)

diff partial derivative (see Section 5.1.24 [diff], page 171)

degree multiplicity, dimension and codimension of the ideal of leading terms (see Section 5.1.20
[degree], page 169)

dim Krull dimension of basering modulo the ideal of leading terms (see Section 5.1.25 [dim],

irreducible characteristic series (see Section 5.1.6 [char_series|, page 159)

page 172)

81
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eliminate
elimination of variables (see Section 5.1.28 [eliminate|, page 174)

facstd factorizing Groebner basis algorithm (see Section 5.1.34 [facstd|, page 177)

factorize
ideal of factors of a polynomial (see Section 5.1.36 [factorize|, page 178)

fglm Groebner basis computation from a Groebner basis w.r.t. a different ordering (see
Section 5.1.39 [fglm], page 181)

finduni  computation of univariate polynomials lying in a zero dimensional ideal (see Sec-
tion 5.1.43 [finduni], page 183)

fres free resolution of a standard basis (see Section 5.1.48 [fres], page 186)

groebner Groebner basis computation (a wrapper around std,stdhilb,stdfglm,...) (see Sec-
tion 5.1.53 [groebner], page 189)

highcorner
the smallest monomial not contained in the ideal. The ideal has to be zero-dimensional.
(see Section 5.1.55 [highcorner], page 192)

homog homogenization with respect to a variable (see Section 5.1.57 [homog|, page 194)
hilb Hilbert series of a standard basis (see Section 5.1.56 [hilb], page 193)

indepSet sets of independent variables of an ideal (see Section 5.1.61 [indepSet|, page 197)
interred interreduction of an ideal (see Section 5.1.64 [interred], page 199)

intersect
ideal intersection (see Section 5.1.65 [intersect|, page 200)

jacob ideal of all partial derivatives resp. jacobian matrix (see Section 5.1.66 [jacob], page 201)

jet Taylor series up to a given order (see Section 5.1.68 [jet], page 202)

kbase vector space basis of basering modulo ideal of leading terms (see Section 5.1.69 [kbase],
page 203)

koszul Koszul matrix (see Section 5.1.73 [koszul], page 205)

lead leading terms of a set of generators (see Section 5.1.75 [lead], page 207)

lift lift-matrix (see Section 5.1.80 [lift], page 209)

liftstd standard basis and transformation matrix computation (see Section 5.1.81 [liftstd]
page 210)

lres free resolution for homogeneous ideals (see Section 5.1.83 [lres|, page 213)
maxideal power of the maximal ideal at 0 (see Section 5.1.88 [maxideal], page 217)

minbase  minimal generating set of a homogeneous ideal, resp. module, or an ideal, resp. module,
in a local ring (see Section 5.1.91 [minbase|, page 219)

minor set of minors of a matrix (see Section 5.1.92 [minor|, page 219)
modulo representation of (hl 4+ h2)/hl = h2/(h1 N h2) (see Section 5.1.94 [modulo], page 221)

mres minimal free resolution of an ideal resp. module w.r.t. a minimal set of generators of
the given ideal resp. module (see Section 5.1.98 [mres|, page 223)

mstd standard basis and minimal generating set of an ideal (see Section 5.1.99 [mstd]
page 224)
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ncols

nres

preimage
ghweight
quotient
reduce

res

simplify
size
slimgb
sortvec
sres

std

stdfglm

stdhilb
subst
syz

vdim

weight

4.6 int
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multiplicity, resp. degree, of the ideal of leading terms (see Section 5.1.100 |[mult],
page 225)

number of columns (see Section 5.1.103 [ncols|, page 228)

a free resolution of an ideal resp. module M which is minimized from the second free
module on (see Section 5.1.105 [nres|, page 229)

preimage under a ring map (see Section 5.1.116 [preimage|, page 237)
quasihomogeneous weights of an ideal (see Section 5.1.122 [qhweight|, page 242)
ideal quotient (see Section 5.1.125 [quotient], page 244)

normalform with respect to a standard basis (see Section 5.1.129 [reduce], page 247)

free resolution of an ideal resp. module but not changing the given ideal resp. module
(see Section 5.1.132 [res], page 249)

simplification of a set of polynomials (see Section 5.1.141 [simplify], page 259)
number of non-zero generators (see Section 5.1.142 [size|, page 261)

Groebner basis computation with slim technique (see Section 5.1.143 [slimgb], page 262)
permutation for sorting ideals resp. modules (see Section 5.1.144 [sortvec|, page 262)
free resolution of a standard basis (see Section 5.1.147 [sres|, page 265)

standard basis computation (see Section 5.1.149 [std], page 267)

standard basis computation with fglm technique (see Section 5.1.150 [stdfglm],
page 269)

Hilbert driven standard basis computation (see Section 5.1.151 [stdhilb], page 270)
substitution of a ring variable (see Section 5.1.152 [subst]|, page 271)

computation of the first syzygy module (see Section 5.1.154 [syz], page 276)

vector space dimension of basering modulo ideal of leading terms (see Section 5.1.166
[vdim], page 282)

optimal weights (see Section 5.1.170 [weight], page 284)

Variables of type int represent the machine integers and are, therefore, limited in their range (e.g.,
the range is between -2147483647 and 2147483647 on 32-bit machines). They are mainly used to
count things (dimension, rank, etc.), in loops (see Section 5.2.8 [for|, page 292), and to represent
boolean values (FALSE is represented by 0, every other value means TRUE, see Section 4.6.5
[boolean expressions|, page 87).

Integers consist of a sequence of digits, possibly preceded by a sign. A space is considered as a
separator, so it is not allowed between digits. A sequence of digits outside the allowed range is
converted to the type bigint, see Section 4.2 [bigint], page 74.
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4.6.1 int declarations

Syntax: int name = int_expression ;

Purpose: defines an integer variable.

Default: 0
Example:
int i = 42;
int j =1 + 3; j;
— 45
i=1*3-7j; 1i;
— 81
int k; // assigning the default value O to k
k;
= 0

4.6.2 int expressions

An int expression is:

1.

a sequence of digits (if the number represented by this sequence is too large to fit into the
range of integers it is automatically converted to the type number, if a basering is defined)

. an identifier of type int
. a function returning int

2
3
4.
5
6

an expression involving ints and the arithmetic operations +, -, *, div (/), % (mod), or ~

. a boolean expression

. a type cast to int

Note: Variables of type int represent the compiler integers and are, therefore, limited in their range
(see Section 6.1 [Limitations|, page 306). If this range is too small the expression must be converted
to the type number over a ring with characteristic 0.

Example:

12345678901; // too large

— 12345678901

typeof () ;

— bigint

ring r=0,x,dp;

12345678901 ;

— 12345678901

typeof (_);

— bigint

// Note: 11%13%17%100%200%2000%503*1111%222222
// returns a machine integer:
11%13%17%100*%200%2000%503%1111%222222;

— // ** int overflow(*), result may be wrong
— -6869239595516308480

// using the type cast number for a greater allowed range
number (11) *13*x17%100%200%x2000%503*%1111%222222;
— 12075748128684240000000

ring rp=32003,x,dp;
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12345678901 ;

— 12345678901

typeof (U);

— bigint

intmat m[2][2] = 1,2,3,4;
m;

m[1,1] + m[2,1] == trace(m);

= 0

1 0;

= 1

1 and 2;

=1

intvec v = 1,2,3;

def d =transpose(v)*v; // scalarproduct gives an 1x1 intvec
typeof (d) ;

— intvec

int i = 4[1]; // access the first (the only) entry in the intvec
ring rr=31,(x,y,z),dp;

poly £ = 1;

i = int(f); // cast to int

// Integers may be converted to constant polynomials by an assignment,
poly g=37;

// define the constant polynomial g equal to the image of

// the integer 37 in the actual coefficient field, here it equals 6

g;

= 6

See Section 3.5.5 [Type conversion and casting], page 46; Section 4.14 [number], page 114.
4.6.3 int operations

++ changes its operand to its successor, is itself no int expression
-= changes its operand to its predecessor, is itself no int expression
+ addition

- negation or subtraction

* multiplication

div integer division (omitting the remainder), rounding toward 0
%, mod integer modulo (the remainder of the division

o kK exponentiation (exponent must be non-negative)

<, >, <=, >= == <>

comparators
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Note:

An assignment j=i++; or j=i--; is not allowed, in particular it does not change the value

of j, see Section 6.1 [Limitations], page 306.

Example:

int i=1;
int j;
it+; 15 i-—5 1
= 2
=1
// ++ and -- do not return a value as in C, cannot assign
j = i++;
— // *x right side is not a datum, assignment ignored
— // %% in line >> j = i++;<<
// the value of j is unchanged
Js 13
— 0
= 2
i+2, 2-i, 572;
— 4 0 25
5 div 2, 8%3;
= 2 2
-5 div 2, -5 mod 2, -5 % 2;
= -2 -1 -1
1<2, 2<=2;
= 11

4.6.4 int related functions

char characteristic of the coefficient field of a ring (see Section 5.1.5 [char|, page 159)

deg degree of a polynomial resp. vector (see Section 5.1.19 [deg], page 168)

det determinant (see Section 5.1.23 [det], page 170)

dim Krull dimension of basering modulo ideal of leading terms, resp. dimension of module
of leading terms (see Section 5.1.25 [dim|, page 172)

extged Bezout representation of ged (see Section 5.1.33 [extged], page 176)

find position of a substring in a string (see Section 5.1.42 [find], page 183)

ged greatest common divisor (see Section 5.1.50 [ged], page 188)

koszul Koszul matrix (see Section 5.1.73 [koszul], page 205)

memory memory usage (see Section 5.1.89 [memory|, page 217)

mult multiplicity of an ideal, resp. module, of leading terms (see Section 5.1.100 [mult],
page 225)

ncols number of columns (see Section 5.1.103 [ncols|, page 228)

npars number of ring parameters (see Section 5.1.104 [npars|, page 229)

nrows number of rows of a matrix, resp. the rank of the free module where the vector or
module lives (see Section 5.1.106 [nrows|, page 230)

nvars number of ring variables (see Section 5.1.108 [nvars|, page 230)
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ord

par

pardeg

prime

random

regularity

rvar

size
trace
var

vdim

degree of the leading term of a polynomial resp. vector (see Section 5.1.111 |ord],
page 235)
n-th parameter of the basering (see Section 5.1.113 [par|, page 236)

degree of a number considered as a polynomial in the ring parameters (see Sec-
tion 5.1.114 [pardeg], page 237)

the next lower prime (see Section 5.1.117 [prime|, page 238)

a pseudo random integer between the given limits (see Section 5.1.126 [random],
page 245)

regularity of a resolution (see Section 5.1.130 [regularity], page 248)

test, if the given expression or string is a ring variable (see Section 5.1.137 [rvar],
page 255)

number of elements in an object (see Section 5.1.142 [size|, page 261)
trace of an integer matrix (see Section 5.1.156 [trace|, page 278)
n-th ring variable of the basering (see Section 5.1.163 [var|, page 281)

vector space dimension of basering modulo ideal of leading terms, resp. of freemodule
modulo module of leading terms (see Section 5.1.166 [vdim]|, page 282)

4.6.5 boolean expressions

A boolean expression is an int expression used in a logical context:

An int expression <> 0 evaluates to TRUE (represented by 1), 0 evaluates to FALSE (represented

by 0).

The following is the list of available comparisons of objects of the same type.

Note: There are no comparisons for ideals and modules, resolutions and maps.

1. integer comparisons:

1==

il=j // or i<>j
i<=j
i>=j
i>j
i< j

2. number comparisons:

m==n
m'=n // or m<>n
m<n

m>n

m <=n

m >=n

For numbers from Z/p or from field extensions not all operations are useful:

- 0 is always the smallest element,

- in Z/p the representatives in the range -(p-1)/2..(p-1)/2 when p>2 resp. 0 and 1 for p=2 are
used for comparisons,

- in field extensions the last two operations (>=,<=) yield always TRUE (1) and the < and >
are equivalent to !=.
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3. polynomial or vector comparisons:

ft=g
fl=g // or f<>g
f<=g // comparing the leading term w.r.t. the monomial order
f< g
f>=g
f> g
4. intmat or matrix comparisons:
v ==
v !=w // or v <>ow

5. intvec or string comparisons:

ft==g

fl=g // or f<og

f<=g // comparing lexicographically

f>=g // w.r.t. the order specified by ASCII
f> g

f< g

6. boolean expressions combined by boolean operations (and, or, not)

Note: All arguments of a logical expression are first evaluated and then the value of the logical
expression is determined. For example, the logical expression (a || b) is evaluated by first evalu-
ating a and b, even though the value of b has no influence on the value of (a || b), if a evaluates
to true.

Note that this evaluation is different from the left-to-right, conditional evaluation of logical expres-
sions (as found in most programming languages). For example, in these other languages, the value
of (1 || b) is determined without ever evaluating b.

See Section 6.3 [Major differences to the C programming language], page 306.

4.6.6 boolean operations

and logical and, may also be written as &&
or logical or, may also be written as | |
not logical not, may also be written as !

The precedence of the boolean operations is:
1. parentheses

2. comparisons
3. not
4. and
5. or
Example:
(1>2) and 3;
— 0
1 > 2 and 3;
— 0
1 0 or 1;
— 1
1(0 or 1);

= 0



Chapter 4: Data types 89

4.7 intmat

Integer matrices are matrices with integer entries. For the range of integers see Section 6.1 [Limita-
tions|, page 306. Integer matrices do not belong to a ring, they may be defined without a basering
being defined. An intmat can be multiplied by and added to an int; in this case the int is converted
into an intmat of the right size with the integer on the diagonal. The integer 1, for example, is

converted into the unit matrix.
4.7.1 intmat declarations

Syntax: intmat name = intmat_expression ;
intmat name [ rows ] [ cols ] = intmat_expression ;
intmat name [ rows ] [ cols ] = list_of_int_and_intvec_and_intmat_expressions ;
rows and cols must be positive int expressions.

Purpose: defines an intmat variable.
Given a list of integers, the matrix is filled up with the first row from the left to
the right, then the second row and so on. If the int_list contains less than rows*cols
elements, the matrix is filled up with zeros; if it contains more elements, only the first
rows*cols elements are used.

Default: 0 (1 x 1 matrix)

Example:

intmat im[3][5]=1,3,5,7,8,9,10,11,12,13;
im;

~ 1,3,5,7,8,

— 9,10,11,12,13,

—~ 0,0,0,0,0
im[3,2];

— 0
intmat m[2][3] = im[1..2,3..5]; // defines a submatrix
m;

~ 5,7,8,

— 11,12,13

4.7.2 intmat expressions

An intmat expression is:
. an identifier of type intmat
. a function returning intmat

1
2
3. an intmat operation involving ints and int operations (+, -, *, div, %)
4. an expression involving intmats and the operations (+, -, *)

5

. a type cast to intmat (see Section 4.7.3 [intmat type cast|, page 90)

Example:

intmat Idm[2][2];
Idm +1; // add the unit intmat
— 1,0,
— 0,1
intmat m1[3][2] = _,1,-2; // take entries from the last result
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transpose (m2) ;
— 1,4,
— 0,5,
— 2,1
intvec vi1=1,2,4;
intvec v2=5,7,8;
ml=vl,v2; // £ill ml1 with v1 and v2
mi;
— 1,2,
— 4,5,
— 7,8
trace(mi*m2) ;
— 56

See Section 3.5.5 [Type conversion and casting], page 46; Section 4.14 [number]|, page 114.
4.7.3 intmat type cast

Syntax: intmat ( expression )
intmat ( expression, int_n, int_m )

Type: intmat

Purpose: Converts expression to an intmat, where expression must be of type intvec, intmat,
or bigintmat. If int_n and int_m are supplied, then they specify the dimension of the
intmat. Otherwise, the size (resp. dimensions) of the intmat are determined by the size
(resp. dimensions) of the expression. If expression is a bigintmat containing an entry
larger the the limit of int, it is set to 0 in the returning intmat.

Example:

intmat (intvec(1));
— 1
intmat (intvec(1), 1, 2);
— 1,0
intmat (intvec(1,2,3,4), 2, 2);
— 1,2,
— 3,4
intmat(_, 2, 3);
— 1,2,3,
—~ 4,0,0
intmat(_, 2, 1);
— 1,2
bigintmat bim[2] [3]=34, 64, 345553234, 35553, 6434, 6563335675;
intmat (bim) ;
— 34,64,345553234,
— 35553,6434,-2026598917

See Section 3.5.5 [Type conversion and casting], page 46; Section 4.7 [intmat|, page 89; Sec-
tion 4.12.3 [matrix type cast|, page 108.
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4.7.4 intmat operations

+ addition with intmat or int; the int is converted into a diagonal intmat

- negation or subtraction with intmat or int; the int is converted into a diagonal intmat
* multiplication with intmat, intvec, or int; the int is converted into a diagonal intmat
div,/ division of entries in the integers (omitting the remainder)

%, mod entries modulo int (remainder of the division)

<>, == comparators

intmat_expression [ intvec_expression, intvec_expression ]

is an intmat entry, where the first index indicates the row and the second the column

Example:

intmat m[2][4] = 1,0,2,4,0,1,-1,0,3,2,1,-2;
m;
— 1,0,2,4,
— 0,1,-1,0
m[2,3]; // entry at row 2, col 3
= -1
size(m); // number of entries
— 8
intvec v = 1,0,-1,2;
m * v;
= 7,1
typeof (L) ;
— intvec
intmat m1[4][3] = 0,1,2,3,v,1;
intmat m2 = m * ml;

m2; // 2 x 3 intmat
— -2,5,4,
— 4,-1,-1
m2%10; // multiply each entry of m with 10;

— -20,50,40,
— 40,-10,-10

m2[2,1]; // entry at row 2, col 1

mi[2..3,2..3]; // submatrix
— 1021

m2 [nrows (m2) ,ncols(m2)]; // the last entry of intmat

-1

m2
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4.7.5 intmat related functions

betti Betti numbers of a free resolution (see Section 5.1.4 [betti], page 157)
det determinant (see Section 5.1.23 [det]|, page 170)

ncols number of cols (see Section 5.1.103 [ncols|, page 228)

nrows number of rows (see Section 5.1.106 [nrows|, page 230)

random pseudo random intmat (see Section 5.1.126 [random|, page 245)

size total number of entries (see Section 5.1.142 [size], page 261)
transpose

transpose of an intmat (see Section 5.1.157 [transpose], page 278)

trace trace of an intmat (see Section 5.1.156 [trace], page 278)

4.8 intvec

Variables of type intvec are lists of integers. For the range of integers see Section 6.1 [Limitations,
page 306. They may be used for simulating sets of integers (and other sets if the intvec is used as
an index set for other objects). Addition and subtraction of an intvec with an int or an intvec is
done element-wise.

4.8.1 intvec declarations

Syntax: intvec name = intvec_expression ;
intvec name = list_of_int_and_intvec_expressions ;

Purpose: defines an intvec variable.
An intvec consists of an ordered list of integers.

Default: 0

Example:

intvec iv=1,3,5,7,8;
iv;

~ 1,3,5,7,8
iv([4];

— 7
iv[3..size (iv)];

— 57 8

4.8.2 intvec expressions

An intvec expression is:
1. a range: int expression .. int expression

2. a repeated entry: int expression : positive int expression
(a:b generates an intvec of length b>0 with identical entries a)

a function returning intvec
an expression involving intvec operations with int (+, =, *, /, %)

an expression of intvecs involving intvec operations (+, -)

SRR

an expression involving an intvec operation with intmat (*)
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7. a type cast to intvec

Example:

intvec v=-1,2;
intvec w=v,v; // concatenation
W3

2
:3; // repetition

= -2,-1,0,1,2,-1,2,1
intmat m[3][2] = 0,1,2,-2,3,1;
m*v ;
— 2,-6,-1
typeof (1) ;
— intvec
v = intvec(m);
v
— 0,1,2,-2,3,1
ring r;
poly f = x2z + 2xy-z;
f;
= X2z+2xy-z
v = leadexp(f);
v
—~ 2,0,1

4.8.3 intvec operations

+ addition with intvec or int (component-wise)

- negation or subtraction with intvec or int (component-wise)

* multiplication with int (component-wise)
/, div division by int (component-wise)

%, mod modulo (component-wise)

<>, ==, <= >= > <

comparison (done lexicographically, different length will be filled with 0 at th right)

intvec_expression [ int_expression ]
is an element of the intvec; the first element has index one.

Example:

93
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intvec iv = 1,3,5,7,8;
iv+l; // add 1 to each entry

= 2,

4,6,8,9

ivx2;

= 2,
iv;
= 1,

6,10,14,16

3,5,7,8

iv-10;
= -9,-7,-5,-3,-2
iv=iv,0;

iv;
= 1,

3,5,7,8,0

iv div 2;

= 0,

1,2,3,4,0

iv+iv; // component-wise addition

= 2,

6,10,14,16,0

iv[size(iv)-1]; // last-1 entry

— 8

intvec iw=2,3,4,0;
iv==iw; // lexicographic comparison

= 0

iv < iw;

= 1

iv = iw;

= 1

iv[2];

— 3
iw

=4,1,2;

iv[iw];
— 7 1 3

4.8.4 intvec related functions

hilb
indepSet
leadexp

monomial

nrows
ghweight
size
sortvec

transpose

weight

Hilbert series as intvec (see Section 5.1.56 [hilb], page 193)

sets of independent variables of an ideal (see Section 5.1.61 [indepSet]|, page 197)

94

the exponent vector of the leading monomial (see Section 5.1.77 [leadexpl, page 208)

the power product corresponding to the exponent vector (see Section 5.1.96 [monomiall,

page 223)

number of rows (see Section 5.1.106 [nrows|, page 230)

quasihomogeneous weights (see Section 5.1.122 [qhweight], page 242)

length of the intvec (see Section 5.1.142 [size|, page 261)

permutation for sorting ideals/modules (see Section 5.1.144 [sortvec], page 262)

transpose of an intvec, returns an intmat (see Section 5.1.157 [transposel, page 278)

weights for the weighted ecart method (see Section 5.1.170 [weight], page 284)
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4.9 link

Links are the communication channels of SINGULAR, i.e., something SINGULAR can write to and/or
read from. Currently, SINGULAR supports four different link types:

e ASCII links (see Section 4.9.4 [ASCII links|, page 96)

e ssi links (see Section 4.9.5 [Ssi links|, page 97)

e pipe links (see Section 4.9.6 [Pipe links|, page 100)

e DBM links (see Section 4.9.7 [DBM links|, page 100)
4.9.1 link declarations

Syntax: link name = string_expression ;
Purpose: defines a new communication link.
Default: none

Example:

link 1=":w example.txt";

int i=22; // cf. ASCII links for explanation
string s="An int follows:";

write(l,s,1i);

1;
— // type : ASCII
— // mode : w
— // name : example.txt
> // open : yes
— // read : not ready
— // write: ready
close(1); //
read(1);
— An int follows:
= 22
H
close(1);

4.9.2 link expressions

A link expression is:

1. an identifier of type link

2. a string describing the link
A link is described by a string which consists of two parts: a property string followed by a name
string. The property string describes the type of the link (ASCII, ssi or DBM) and the mode of

the link (e.g., open for read, write or append). The name string describes the filename of the link,
resp. a network connection for ssi links.

For a detailed format description of the link describing string see:
e for ASCII links: Section 4.9.4 [ASCII links|, page 96
e ssi links (see Section 4.9.5 [Ssi links|, page 97)
e pipe links (see Section 4.9.6 [Pipe links|, page 100)
e for DBM links: Section 4.9.7 [DBM links|, page 100
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4.9.3 link related functions

close closes a link (see Section 5.1.10 [close], page 161)

dump generates a dump of all variables and their values (see Section 5.1.27 [dump|, page 173)

getdump  reads a dump (see Section 5.1.52 [getdump], page 189)

open opens a link (see Section 5.1.109 [open], page 231)

read reads from a link (see Section 5.1.128 [read], page 246)

status gets the status of a link (see Section 5.1.148 [status], page 266)

write writes to a link (see Section 5.1.172 [write|, page 285)

kill closes and kills a link (see Section 5.1.71 [kill], page 204)

waitall  wait till all links of a list of links become ready (only ssi:tcp links) (see Section 5.1.167
[waitall], page 283)

waitfirst
wait till at least one link of a list of links become ready (only ssi:tcp links) (see Sec-
tion 5.1.168 [waitfirst], page 283)

4.9.4 ASCII links

Via ASCII links data that can be converted to a string can be written into files for storage or
communication with other programs. The data is written in plain ASCII format. The output
format of polynomials is done w.r.t. the value of the global variable short (see Section 5.3.7
ishort], page 301). Reading from an ASCII link returns a string — conversion into other data is
up to the user. This can be done, for example, using the command execute (see Section 5.1.32
[execute], page 176).
The ASCII link describing string has to be one of the following:
1. "ASCII: " + filename
the mode (read or append) is set by the first read or write command.
2. "ASCII:r " + filename
opens the file for reading.
3. "ASCII:w " + filename
opens the file for overwriting.
4. "ASCII:a " + filename
opens the file for appending.
There are the following default values:
e the type ASCII may be omitted since ASCII links are the default links.

e if non of r, w, or a is specified, the mode of the link is set by the first read or write command
on the link. If the first command is write, the mode is set to a (append mode).

e if the filename is omitted, read reads from stdin and write writes to stdout.

Using these default rules, the string ":r temp" describes a link which is equivalent to the link
"ASCII:r temp": an ASCII link to the file temp which is opened for reading. The string "temp"
describes an ASCII link to the file temp, where the mode is set by the first read or write command.
See also the example below.

Note that the filename may contain a path. On Microsoft Windows (resp. MS-DOS) platforms,
names of a drive can precede the filename, but must be started with a // (as in //c/temp/ex. An
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ASCII link can be used either for reading or for writing, but not for both at the same time. A
close command must be used before a change of I/O direction. Types without a conversion to
string cannot be written.

Example:

ring r=32003, (x,y,z),dp;

link 1=":w example.txt"; // type is ASCII, mode is overwrite
1;
— // type : ASCII
— // mode : w
— // name : example.txt
— // open : no
— // read : not ready
— // write: not ready
status(l, "open", "yes"); // link is not yet opened
= 0
ideal i=x2,y2,z2;
write (1,1,";",2,";","idea1 i=",i,";");
status(l, "open", "yes"); // now link is open
= 1
status(l, "mode"); // for writing
= W
close(1); // link is closed
write("example.txt","int j=5;");// data is appended to file
read("example.txt"); // data is returned as string
=1
=
2
=
— ideal i=
— x2,y2,22;
— int j=5;
—
execute(read(1)); // read string is executed
=1
= 2
— // ** redefining i (ideal i=) ./examples/ASCII_links.sing:14
close(l); // link is closed

4.9.5 Ssi links

Ssi (simple singular interface) links give the possibility to store and communicate data betweenm
Singular processes: Read and write access is very fast compared to ASCII links. Ssi links can be
established using files or using TCP sockets. For ring-dependent data, a ring description is written
together with the data. Reading from an Ssi link returns an expression (not a string) which was
evaluated after the read operation. If the expression read from an Ssi link is not from the same
ring as the current ring, then a read changes the current ring.

Currently under development - not everything is implemtented.
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4.9.5.1 Ssi file links

Ssi file links provide the possibility to store data in a file using the ssi format. For storing large
amounts of data, ssi file links should be used instead of ASCII links. Unlike ASCII links, data read
from ssi file links is returned as expressions one at a time.

The ssi file link describing string has to be one of the following;:

1. "ssi:r " + filename
opens the file for reading.

2. "ssi:w " + filename
opens the file for overwriting.

3. "ssi:a " + filename
opens the file for appending.

Note that the filename may contain a path. An ssi file link can be used either for reading or for
writing, but not for both at the same time. A close command must be used before a change of
I/0O direction.

Example:

ring r;
link 1="ssi:w example.ssi"; // type=ssi, mode=overwrite
1;

— // type : ssi

— // mode : w

— // name : example.ssi

— // open : mno

— // read : not open

— // write: not open

ideal i=x2,y2,z2;
write (1,1, i, "hello world");// write three expressions

write(1,4); // append one more expression

close(l); // link is closed

// open the file for reading now

read(l); // only first expression is read
= 1

kill r; // no basering active now

def i = read(1); // second expression

// notice that current ring was set, the name was assigned
// automatically

listvar(ring) ;
— // ssiRing0 [0] *ring
= // ZZ [0] cring
= // QQ [0] cring
def s = read(1); // third expression
listvar();
= // s [0] string hello world
+— // ssiRing0 [0] #ring
= // i [0] ideal, 3 generator(s)
= // 1 [0] 1link

close(1); // link is closed
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4.9.5.2 Ssi tcp links

Ssi tep links give the possibility to exchange data between two processes which may run on the
same or on different computers. Ssi tcp links can be opened in four different modes:

tcp SINGULAR acts as a server.
connect  SINGULAR acts as a client.

tcp <host>:<program>
SINGULAR acts as a client, launching an application as server. This reuires
ssh/sshd to be installed an the computers (and preferably an automatic login via
.ssh/authorized_keys).

fork SINGULAR acts as a client, forking another SINGULAR as server.

The Ssi tcp link describing string has to be
e tcp mode:
1. "ssi:tcp"
SINGULAR becomes a server and waits at the first free port (>1024) for a connect call.
e connect mode:

2. "ssi:connect " + host:port

SINGULAR becomes a client and connects to a server waiting at the host and port.
e launch mode:

4. "ssi:tcp" + host:application

SINGULAR becomes a client and starts (launches) the application using ssh on a (possibly)
different host which then acts as a server.

e fork mode:

8. "ssi:fork"

SINGULAR becomes a client and forks another SINGULAR on the same host which acts as a
server.

To open an ssi tcp link in launch mode, the application to launch must either be given with
an absolute pathname, or must be in a directory contained in the search path. The launched
application acts as a server, whereas the SINGULAR that actually opened the link acts as a client.
The client "listens" at the some free port until the server application does a connect call.

If the ssi tep link is opened in fork mode a child of the current SINGULAR is forked. All variables
and their values are inherited by the child. The child acts as a server whereas the SINGULAR that
actually opened the link acts as a client.

To arrange the evaluation of an expression by a server, the expression must be quoted using the
command quote (see Section 5.1.124 [quote|, page 244), so that a local evaluation is prevented.
Otherwise, the expression is evaluated first, and the result of the evaluation is written, instead of
the expression which is to be evaluated.

If SINGULAR is in server mode, the value of the variable 1ink_11 is the ssi link connecting to the
client and SINGULAR is in an infinite read-eval-write loop until the connection is closed from the
client side (by closing its connecting link). Reading and writing is done to the link 1ink_11: After
an expression is read, it is evaluated and the result of the evaluation is written back. That is, for
each expression which was written to the server, there is exactly one expression written back. This
might be an "empty" expression, if the evaluation on the server side does not return a value.
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Ssi tep links should explicitly be opened before being used. Ssi tcp links are bidirectional, i.e. can
be used for both, writing and reading. Reading from an ssi tcp link blocks until data was written
to that link. The status command can be used to check whether there is data to read.

Example:

int i=7;
link 1 = "ssi:fork"; // fork link declaration
open(1); 1;

— // type : ssi

— // mode : fork

— // name :

— // open : yes

— // read : not ready

— // write: ready

write(l,quote(i)); // Child inherited vars and their values
read(1);

— 7
close(1); // shut down forked child

4.9.6 Pipe links

Pipe links provide access to stdin and stdout of any program. Pipe links are bidirectional. Syntax:
"|: " + string_for_system

The string_for system will be passed to system after conneting the input and output to the corre-
sponding stdout and stdin.

Example:
link 1="|: date";
open(l); 1;
// type : pipe

H

— // mode :

— // name : date

— // open : yes

— // read : not ready

— // write: ready
read(1);

— Fr 24. Feb 09:07:43 2023
1;

— // type : pipe

— // mode :

— // name : date

— // open : yes

— // read : not ready

— // write: ready

close(1);

4.9.7 DBM links

DBM links provide access to data stored in a data base. Each entry in the data base consists
of a (key_string, value_string) pair. Such a pair can be inserted with the command write (link,
key_string, value_string). By calling write(link, key_string), the entry with key key_string is
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deleted from the data base. The value of an entry is returned by the command read(link,
key_string). With only one argument, read(link) returns the next key in the data base. Us-
ing this feature a data base can be scanned in order to access all entries of the data base.

If a data base with name name is opened for writing for the first time, two files (name.pag and
name.dir), which contain the data base, are automatically created.

The DBM link describing string has to be one of the following:

1. "DBM: " + name
opens the data base for reading (default mode).

2. "DBM:r " + name
opens the data base for reading.

3. "DBM:rw " + name
opens the data base for reading and writing.

Note that name must be given without the suffix . pag or .dir. The name may contain an (absolute)
path.

Example:

link 1="DBM:rw example";
write(l,"1","abc");
write(1,"3","XYZ");
write(1,"2","ABC");
1;
// type : DBM
// mode : rw
// name : example
// open : yes
// read : ready
// write: ready
close(1);
// read all keys (till empty string):
read(1);
— 1
read(1);
— 3
read(l);
= 2
read(1);
—
// read data corresponding to key "1"
read(1,"1");
— abc
// read all data:
read(l,read(1));
— abc
read(l,read(l));
— XYZ
read(l,read(1l));
— ABC
// close
close(l);

111111
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4.10 list

Lists are arrays whose elements can be of different types (including ring). If one element belongs
to a ring the whole list belongs to that ring. This applies also to the special list #. The expression
list () is the empty list.

Note that a list stores the objects itself and not the names. Hence, if L is a list, L[1] for example
has no name. A name, say R, can be created for L[1] by def R=L[1];. To store also the name of
an object, say r, it can be added to the list with nameof (r) ;. Rings may be objects of a list.

Note: Unlike other assignments a ring as an element of a list is not a copy but another reference
to the same ring.

4.10.1 list declarations

Syntax: list name = expression_list;
list name = list_expression;

Purpose:  defines a list (of objects of possibly different types).
Default: empty list

Example:

list 1=1,"str";
1[1];

— 1
1[2];

— str
ring r;
listvar(r);

= // r [0] *ring
ideal 1 = x72, y"2 + z73;
1[3] = i;

I

=

— .-
[
—
= e

[2]:
str
[3]:
_[1]=x2
_[2]=z3+y2
listvar(r); // the list 1 belongs now to the ring r
// T [0] =*ring
/1 [0] 1list, size: 3
/i [0] ideal, 2 generator(s)

111111

4.10.2 list expressions

A list expression is:

the empty list 1ist ()
an identifier of type list
a function returning list

list expressions combined by the arithmetic operation +

AN

a type cast to list
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See Section 3.5.5 [Type conversion and casting], page 46.

Example:

list 1 = "hello",1;
1;
— [1]:
— hello
— [2]:
— 1
1 = 1list(Q);
1;

— empty list
ring r =0,x,dp;
factorize((x+1)"2);

— [1]:

_[11=1

_[2]=x+1
[2]:

1,2

1ist(1,2,3);

[1]:

1
[2]:

2
[3]:

3

1111

111111

4.10.3 list operations

+ concatenation
delete deletes one element from list, returns new list
insert inserts or appends a new element to list, returns a new list

list_expression [ int_expression ]
is a list entry; the index 1 gives the first element.

Example:

list 11 1,"hello",list(-1,1);
list 12 list(1,5,7);
11 + 12; // a new list
[1]:
1
[2]:
hello
[3]:
[1]:
-1
[2]:
1

[4]:
1

1131111111117

103
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[5]:
5
(6]:
-

12 = delete(12, 2); // delete 2nd entry

4.10.4 list related functions

bareiss  returns a list of a matrix (lower triangular) and of an intvec (permutations of columns,
see Section 5.1.3 [bareiss|, page 156)

betti Betti numbers of a resolution (see Section 5.1.4 [betti], page 157)
delete deletion of an element from a list (see Section 5.1.21 [delete], page 169)

facstd factorizing Groebner basis algorithm (see Section 5.1.34 [facstd], page 177)

factorize
list of factors of a polynomial (see Section 5.1.36 [factorize|, page 178)

insert insertion of a new element into a list (see Section 5.1.62 [insert], page 198)
minres minimization of a free resolution (see Section 5.1.93 [minres|, page 221)
names list of all user-defined variable names (see Section 5.1.102 [names|, page 226)
size number of entries (see Section 5.1.142 [size], page 261)

conversion from resolution
(see Section 4.18 [resolution], page 124)

4.11 map

Maps are ring maps from a preimage ring into the basering.
Note:
e The target of a map is ALWAYS the actual basering
e The preimage ring has to be stored "by its name", that means, maps can only be used in such
contexts, where the name of the preimage ring can be resolved (this has to be considered in
subprocedures). See also Section 6.5 [Identifier resolution|, page 312, Section 3.7.4 [Names in
procedures|, page 54.
Maps between rings with different coefficient fields are possible and listed below.
Canonically realized are
e @ — Qa,...) (Q : the rational numbers)
@ — R ( R : the real numbers)
@ — C ( C : the complex numbers)
Z/p— (Z/p)(a,...) ( Z : the integers)
Z/p — GF(p™) ( GF : the Galois field)
Z/p— R



Chapter 4: Data types 105

e R—>C

Possible are furthermore

o Z/p—
° Z/p—%
e C >R

Q, lil—icl-p/2,p/ACZ
zlp', il —i€[-p/2,p/21 CZ i [ily € Z/pf

, by taking the real part

Finally, in SINGULAR we allow the mapping from rings with coefficient field Q to rings whose ground
fields have finite characteristic:

e Q—Z/p
e Q— (Z/p)a,...)

In these cases the denominator and the numerator of a number are mapped separately by the usual
map from Z to Z/p, and the image of the number is built again afterwards by division. It is thus

not allowed

to map numbers whose denominator is divisible by the characteristic of the target

ground field, or objects containing such numbers. We, therefore, strongly recommend using such
maps only to map objects with integer coefficients.

4.11.1 map declarations

Syntax:

Purpose:

Default:
Note:

Example:

map name = preimage_ring_name , ideal_expression ;
map name = preimage_ring_name , list_of_poly_and_ideal_expressions ;
map name = map-_expression ;

defines a ring map from preimage_ring to basering.

Maps the variables of the preimage ring to the generators of the ideal. If the ideal
contains less elements than variables in the preimage_ring the remaining variables are
mapped to 0, if the ideal contains more elements these are ignored. The image ring is
always the current basering. For the mapping of coefficients from different fields see
Section 4.11 [map], page 104.

none

There are standard mappings for maps which are close to the identity map: fetch and
imap.

The name of a map serves as the function which maps objects from the preimage_ring
into the basering. These objects must be defined by names (no evaluation in the
preimage ring is possible).

ring r1=32003, (x,y,z),dp;
ideal i=x,y,z;

ring r2=32003, (a,b),dp;
map f=rl,a,b,a+tb;

// maps from rl to r2,

// x -> a
//'y =>b
// z -> atb
f(1);

= _[1]=a

— _[2]=b

— _[3]=a+b

// operations like f(i[1]) or f(i*i) are not allowed
ideal i=f(i);
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// objects in different rings may have the same name
map g = r2,a2,b2;
map phi = g(£f);
// composition of map f and g
// maps from rl to r2,
// x => a2
/]y —> b2
// z —> a2+b2
phi(i);
= _[1]=a2
= _[2]=b2
= _[3]=a2+b2

See Section 5.1.38 [fetch], page 180; Section 4.5.2 [ideal expressions|, page 79; Section 5.1.59 [imap],
page 196; Section 4.11 [map], page 104; Section 4.19 [ring], page 125.

4.11.2 map expressions

A map expression is:
1. an identifier of type map
2. a function returning map

3. map expressions combined by composition using parentheses ((, ))
4.11.3 map operations

) composition of maps. If, for example, £ and g are maps, then £ (g) is a map expression
giving the composition f o g of £ and g,
provided the target ring of g is the basering of £.

map_expression [ int_expressions ]
is a map entry (the image of the corresponding variable)

Example:

ring r=0, (x,y),dp;
map f=r,y,Xx; // the map f permutes the variables
f;

— f[1]=y

= f[2]=x
poly p=x+2y3;
f(p);

— 2x3+y
map g=f(f); // the map g defined as £f°2 is the identity
g;

= gli]l=x

= gl2]=y

g(p) == p;
o1

4.11.4 map related functions

fetch the identity map between rings (see Section 5.1.38 [fetch], page 180)
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imap a convenient map procedure for inclusions and projections of rings (see Section 5.1.59
[imap]|, page 196)

preimage preimage under a ring map (see Section 5.1.116 [preimage|, page 237)

subst substitution of a ring variable (see Section 5.1.152 [subst], page 271)

See also the libraries Section D.4.2 [algebra_lib], page 1000 and Section D.2.12 [ring_lib], page 939,
which contain more functions, related to maps.

4.12 matrix

Objects of type matrix are matrices with polynomial entries. Like polynomials they can only be
defined or accessed with respect to a basering. In order to compute with matrices having integer
or rational entries, define a ring with characteristic 0 and at least one variable.

A matrix can be multiplied by and added to a poly; in this case the polynomial is converted into
a matrix of the right size with the polynomial on the diagonal.

If A is a matrix then the assignment module M=A; or module M=module(A); creates a module
generated by the columns of A. Note that the trailing zero columns of A may be deleted by module
operations with M.

4.12.1 matrix declarations

Syntax: matrix name [rows] [cols] = list_of_poly_expressions ;
matrix name = matrix_expression ;

Purpose:  defines a matrix (of polynomials).

The given poly_list fills up the matrix beginning with the first row from the left to
the right, then the second row and so on. If the poly_list contains less than rows*cols
elements, the matrix is filled up with zeros; if it contains more elements, then only
the first rows*cols elements are used. If the right-hand side is a matrix expression the
matrix on the left-hand side gets the same size as the right-hand side, otherwise the
size is determined by the left-hand side. If the size is omitted a 1x1 matrix is created.

Default: 0 (1 x 1 matrix)

Example:

int ro = 3;

ring r = 32003, (x,y,z),dp;
poly f=xyz;

poly g=z*f;

ideal i=f,g,g"2;

matrix m[ro] [3] = x3y4, 0, i, f ; // a 3 x 3 matrix
m;

m[1,1]=x3y4

m[1,2]=0

m[1,3]=xyz

m[2,1]=xyz2
m[2,2]=x2y2z4

m[2,3]=xyz

m[3,1]1=0

m[3,2]=0

m[3,3]=0

print (m);

111111111
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— x3y4,0, Xyz,

— xyz2,x2y2z4,xyz,

— 0, 0, 0
matrix A; // the 1 x 1 zero matrix
matrix B[2][2] = m[1..2, 2..3]; //defines a submatrix
print(B);

— 0, Xyz,

= x2y2z4,xyz
matrix C=m; // defines C as a 3 x 3 matrix equal to m

print(C);
— x3y4,0, Xyz,
— xyz2,x2y2z4,xyz,
= 0, 0, 0

4.12.2 matrix expressions

A matrix expression is:

1. an identifier of type matrix

2. a function returning matrix

3. matrix

expressions combined by the arithmetic operations +, — or *

4. a type cast to matrix (see Section 4.12.3 |matrix type cast|, page 108)

Example:

ring r=0, (x,y),dp;
poly f= x3y2 + 2x2y2 +2;

matrix H = jacob(jacob(f)); // the Hessian of f
matrix mc = coef(f,y);
print (mc) ;

= y2, 1,

— x3+2x2,2
module MD = [x+y,1,x], [x+y,0,y];
matrix M = MD;
print (M) ;

= x+y,x+ty,

=1,
= X,

0,
y

4.12.3 matrix type cast

Syntax:

Type:

Purpose:

Example:

matrix ( expression )
matrix ( expression, int_n, int_m )

matrix
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Converts expression to a matrix, where expression must be of type int, intmat, intvec,
number, poly, ideal, vector, module, or matrix. If int_n and int_m are supplied, then
they specify the dimension of the matrix. Otherwise, the size (resp. dimensions) of the

matrix is determined by the size (resp. dimensions) of the expression.

ring r=32003, (x,y,z),dp;
matrix(x);
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— _[1,1]=x
matrix(x, 1, 2);

= _[1,1]=x

— _[1,2]=0
matrix(intmat (intvec(1,2,3,4), 2, 2));

— _[1,1]=1

— _[1,2]=2

— _[2,1]=3

— _[2,2]=4
matrix(_, 2, 3);

— _[1,1]1=1

— _[1,2]=2

— _[1,3]=0

— _[2,1]=3

— _[2,2]=4

— _[2,3]=0
matrix(_, 2, 1);

= _[1,1]=1

— _[2,1]=3

See Section 3.5.5 [Type conversion and casting], page 46; Section 4.7.3 [intmat type cast], page 90;

Section 4.12 [matrix|, page 107.

4.12.4 matrix operations

+

*

/

addition with matrix or poly; the polynomial is converted into a diagonal matrix

negation or subtraction with matrix or poly (the first operand is expected to be a
matrix); the polynomial is converted into a diagonal matrix

multiplication with matrix or poly; the polynomial is converted into a diagonal matrix

division by poly

== <> I= comparators

matrix_expression [ int_expression, int_expression ]

is a matrix entry, where the first index indicates the row and the second the column

Example:

ring r=32003,x,dp;
matrix A[3][3] = 1,3,2,5,0,3,2,4,5; // define a matrix
print(A); // nice printing of small matrices
— 1,3,2,
~ 5,0,3,
— 2,4,5
A[2,3]; // matrix entry
— 3
A[2,3] = A[2,3] + 1; // change entry
A[2,1..3] = 1,2,3; // change 2nd row
print (A);
—~ 1,3,2,
— 1,2,3,
— 2,4,5
matrix E[3][3]; E=E + 1; // the unit matrix
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4.12.5

bareiss
coef
coeffs
det
diff
jacob
koszul
1ift

liftstd

minor
ncols
nrows
print
size

subst

trace
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matrix B =x*E - A;
print(B);
x-1,-3, -2,
-1, x-2,-3,
-2, -4, x-5
// the same (but x-A does not work):
B = -A+x;
print(B);
x-1,-3, -2,
-1, x-2,-3,
-2, -4, x-5
det(B); // the characteristic polynomial of A
x3-8x2-2x-1
AxAxA - 8 * AxA - 2xA == E; // Cayley-Hamilton
1
vector v =[x,-1,x2];
Axv; // multiplication of matrix and vector
_[1,1]=2x2+x-3
_[2,1]=3x2+x-2
_[3,1]1=5x2+2x-4
matrix m[2] [2]=1,2,3;
print (m-transpose (m)) ;
0,-1,
1,0

matrix related functions

Gauss-Bareiss algorithm (see Section 5.1.3 |[bareiss|, page 156)

matrix of coefficients and monomials (see Section 5.1.11 [coef], page 162)
matrix of coefficients (see Section 5.1.12 [coeffs|, page 163)

determinant (see Section 5.1.23 [det], page 170)

partial derivative (see Section 5.1.24 [diff], page 171)

Jacobi matrix (see Section 5.1.66 [jacob], page 201)

Koszul matrix (see Section 5.1.73 [koszul], page 205)

lift-matrix (see Section 5.1.80 [lift], page 209)

standard basis and transformation matrix computation (see Section 5.1.81 [liftstd],
page 210)

set of minors of a matrix (see Section 5.1.92 [minor|, page 219)
number of columns (see Section 5.1.103 [ncols|, page 228)
number of rows (see Section 5.1.106 [nrows|, page 230)

nice print format (see Section 5.1.119 [print], page 239)

number of matrix entries (see Section 5.1.142 [size|, page 261)
substitute a ring variable (see Section 5.1.152 [subst|, page 271)

trace of a matrix (see Section 5.1.156 [trace|, page 278)
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transpose
transposed matrix (see Section 5.1.157 [transposel, page 278)

wedge wedge product (see Section 5.1.169 [wedge|, page 284)

See also the library Section D.3.1 [matrix_lib|, page 964, which contains more matrix-related func-
tions.

4.13 module

Modules are submodules of a free module over the basering with basis gen(1), gen(2), ... . They
are represented by lists of vectors which generate the submodule. Like vectors they can only be
defined or accessed with respect to a basering.

If R is the basering, and M is a submodule of R"
generated by vectors vy, ..., v, , then vy, ..., vy

may be considered as the generators of relations of R™/M between the canonical generators
gen(1),...,gen(n). Hence any finitely generated R -module can be represented in SINGULAR
by its module of relations. The assignments module M=v1,...,vk; matrix A=M; create the pre-
sentation matrix of size n x k for R"/M | i.e., the columns of A are the vectors vy,...,v; which
generate M (cf. Section B.1 [Representation of mathematical objects|, page 764).

4.13.1 module declarations

Syntax: module name = list_of_vector_expressions ;
module name = module_expression ;

Purpose: defines a module.
Default:  [0]

Example:

ring r=0, (x,y,2), (c,dp);

vector sl = [x2,y3,z];

vector s2 = [xy,1,0];

vector s3 [0,x2-y2,2];

poly f = xyz;

module m = s1, s2-s1,f*(s3-s1);
m;

= m[1]=[x2,y3,z]

= m[2]=[-x2+xy,-y3+1,-z]

— m[3]=[-x3yz,-xy4z+x3yz-xy3z]
// show m in matrix format (columns generate m)
print (m);

= x2,-x2+xy,-x3yz,

— y3,-y3+1l, -xy4z+x3yz-xy3z,

— z, -z, 0

4.13.2 module expressions

A module expression is:
1. an identifier of type module
2. a function returning module

3. module expressions combined by the arithmetic operation +
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4. multiplication of a module expression with an ideal or a poly expression: *

5. a type cast to module

See Section 3.5.5 [Type conversion and casting], page 46; Section 4.5 [ideal], page 79; Section 4.16
[poly|, page 118; Section 4.22 [vector|, page 132.

4.13.3 module operations

+ addition (concatenation of the generators and simplification)

¢k ¢

* multiplication with ideal or poly (but not ‘module‘ * ‘module‘!)

module_expression [ int_expression , int_expression ]
is a module entry, where the first index indicates the row and the second the column

module_expressions [ int_expression ]
is a vector, where the index indicates the column (generator)

Example:

ring r=0, (x,y,2),dp;
module m=[x,y], [0,0,z];
print (m* (x+y)) ;

= x2+xy,0,

= xy+y2,0,

= 0, XZ+yz
// this is not distributive:
print (mxx+m*y) ;

— x2,0, xy,0,

— xy,0, y2,0,

— 0, xz,0, yz

4.13.4 module related functions

coeffs matrix of coefficients (see Section 5.1.12 [coeffs], page 163)

degree multiplicity, dimension and codimension of the module of leading terms (see Sec-
tion 5.1.20 [degree], page 169)

diff partial derivative (see Section 5.1.24 [diff], page 171)

dim Krull dimension of free module over the basering modulo the module of leading terms
(see Section 5.1.25 [dim], page 172)

eliminate
elimination of variables (see Section 5.1.28 [eliminate|, page 174)

freemodule
the free module of given rank (see Section 5.1.47 [freemodule], page 186)

fres free resolution of a standard basis (see Section 5.1.48 [fres|, page 1806)

groebner Groebner basis computation (a wrapper around std,stdhilb,stdfglm,...) (see Sec-
tion 5.1.53 [groebner|, page 189)

hilb Hilbert function of a standard basis (see Section 5.1.56 [hilb], page 193)

homog homogenization with respect to a variable (see Section 5.1.57 [homog|, page 194)
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interreduction of a module (see Section 5.1.64 [interred], page 199)

module intersection (see Section 5.1.65 [intersect], page 200)
Taylor series up to a given order (see Section 5.1.68 [jet], page 202)

vector space basis of free module over the basering modulo the module of leading terms
(see Section 5.1.69 [kbase|, page 203)

initial module (see Section 5.1.75 [lead], page 207)

lift-matrix (see Section 5.1.80 [lift], page 209)

standard basis and transformation matrix computation (see Section 5.1.81 [liftstd],
page 210)

free resolution (see Section 5.1.83 [Ires|, page 213)

minimal generating set of a homogeneous ideal, resp. module, or an ideal, resp. module,

over a local ring
represents (h1l + h2)/h1 = h2/(h1 N h2) (see Section 5.1.94 [modulo], page 221)

minimal free resolution of an ideal resp. module w.r.t. a minimal set of generators of
the given module (see Section 5.1.98 [mres|, page 223)

multiplicity, resp. degree, of the module of leading terms (see Section 5.1.100 [mult],
page 225)

computation of a free resolution of an ideal resp. module M which is minimized from
the second free module on (see Section 5.1.105 [nres|, page 229)

number of columns (see Section 5.1.103 [ncols|, page 228)
number of rows (see Section 5.1.106 [nrows|, page 230)
nice print format (see Section 5.1.119 [print], page 239)

minimization of the embedding into a free module (see Section 5.1.121 [prune|,
page 242)

quasihomogeneous weights of an ideal, resp. module (see Section 5.1.122 [qhweight],
page 242)

module quotient (see Section 5.1.125 [quotient]|, page 244)
normalform with respect to a standard basis (see Section 5.1.129 [reduce], page 247)

free resolution of an ideal, resp. module, but not changing the given ideal, resp. module
(see Section 5.1.132 [res], page 249)

simplification of a set of vectors (see Section 5.1.141 [simplify|, page 259)
number of non-zero generators (see Section 5.1.142 [size|, page 261)
permutation for sorting ideals/modules (see Section 5.1.144 [sortvec], page 262)
free resolution of a standard basis (see Section 5.1.147 [sres|, page 265)

standard basis computation (see Section 5.1.149 [std], page 267, Section 5.1.81 [liftstd],
page 210)

substitution of a ring variable (see Section 5.1.152 [subst]|, page 271)

computation of the first syzygy module (see Section 5.1.154 [syz], page 276)
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vdim vector space dimension of free module over the basering modulo module of leading
terms (see Section 5.1.166 [vdim], page 282)

weight "optimal" weights (see Section 5.1.170 [weight]|, page 284)

4.14 number

Numbers are elements from the coefficient ring (or ground ring). They can only be defined or
accessed with respect to a basering which determines the coefficient field. See Section 4.19.2 [ring
declarations|, page 125 for declarations of coefficient fields.

Warning: Beware of the special meaning of the letter e (immediately following a sequence of digits)
if the field is real (or complex), Section 6.4 [Miscellaneous oddities|, page 310.

4.14.1 number declarations

Syntax: number name = number_expression ;
Purpose: defines a number.
Default: 0

Note: Numbers may only be declared w.r.t. the coefficient field of the current basering, i.e.,
a ring has to be defined prior to any number declaration. See Section 3.3 [Rings and
orderings|, page 30 for a list of the available coefficient fields.

Example:

// finite field Z/p, p<= 32003
ring r = 32003, (x,y,z) ,dp;
number n = 4/6;
n;
— -10667
// finite field GF(p°n), p°n <= 32767
// z is a primitive root of the minimal polynomial
ring rg= (7°2,2),x,dp;
number n = 4/9+z;
n;
— z38
// the rational numbers
ring r0O = 0,x,dp;
number n = 4/6;
n;
— 2/3
// algebraic extensions of Z/p or Q
ring ra=(0,a),x,dp;
minpoly=a~2+1;
number n=a3+a2+2a-1;
n;
— (a-2)
a“2;
= -1
// transcedental extensions of Z/p or Q
ring rt=(0,a),x,dp;
number n=a3+a2+2a-1;
n;
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— (a3+a2+2a-1)
a“2;
— (a2)
// machine floating point numbers, single precision
ring R_O=real,x,dp;
number n=4/6;
n;
— (6.667e-01)
n=0.25e+2;
n;
— (2.500e+01)
// floating point numbers, arbitrary prescribed precision
ring R_1=(real,50),x,dp;
number n=4.0/6;
n;
= 0.66666666666666666666666666666666666666666666666667
n=0.25e+2;
n;
= 25
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// floating point complex numbers, arbitrary prescribed precision

// the third parameter gives the name of the imaginary unit

ring R_2=(complex,50,i),x,dp;
number n=4.0/6;
n;
— 0.66666666666666666666666666666666666666666666666667
n=0.25e+2*i+n;
n;

— (0.66666666666666666666666666666666666666666666666667+1%25)

4.14.2 number expressions

A number expression is:

1.

NS Gtk W

a rational number (there are NO spaces allowed inside a rational number, see Section 4.6.2 [int

expressions|, page 84)

a floating point number (if the coefficient field is real):

<digits>. <digits>e<sign><digits>

an identifier of type number

a function returning number

an int expression (see Section 3.5.5 [Type conversion and casting], page 46)
number expressions combined by the arithmetic operations +, =, *, /, =, or **.

a type cast to number

Example:

// the following expressions are in any ring int expressions
2/ 3;
/ ** int division with ‘/¢: use ‘div‘ instead in line >> 2 / 3;<<

/ *% int division with ‘/¢: use ‘div‘ instead in line >> 4/ 8;<<
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2 /2; // the notation of / for div might change in the future
— // ** int division with ‘/¢: use ‘div‘ instead in line >> 2 /2; // the\
notation of / for div might change in the future<<
= 1
ring r0=0,x,dp;
2/3, 4/8, 2/2 ; // are numbers
= 2/3 1/2 1

poly f = 2x2 +1;
leadcoef (f);
— 2
typeof (1) ;
— number
ring rr =real,x,dp;
1.7e-2; 1.7e+2; // are valid (but 1.7e2 not), if the field is ‘real®
— (1.700e-02)
— (1.700e+02)
ring rp = (31,t),x,dp;
2/3, 4/8, 2/2 ; // are numbers
—~ 11 -15 1
poly g = (3t2 +1)*x2 +1;
leadcoef (g);
— (3t2+1)
typeof (L) ;
— number
par(1);
= (t)
typeof (_);
— number

See Section 3.5.5 [Type conversion and casting], page 46; Section 4.19 [ring], page 125.
4.14.3 number operations

+ addition

- negation or subtraction

* multiplication
/ division
%, mod modulo
o kK power, exponentiation (by an integer)
<=, >=, ==, <>
comparison
mod integer modulo (the remainder of the division div), always non-negative

Note: Quotient and exponentiation is only recognized as a number expression if it is already a
number, see Section 6.4 [Miscellaneous oddities], page 310.

For the behavior of comparison operators in rings with ground field different from real or the
rational numbers, see Section 4.6.5 [boolean expressions|, page 87.

Example:
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ring r=0,x,dp;
number n = 1/2 +1/3;

n;
— 5/6
n/2;
— 5/12
1/2/3;
= 1/6
1/2 * 1/3;
= 1/6
n = 2;
n~-2;
= 1/4
// the following oddities appear here
2/(2+3) ;
— // %% int division with ‘/‘: use ‘div‘ instead in line >> 2/(2+3);<<
= 0
number (2) / (2+3) ;
= 2/5
2°-2; // for int’s exponent must be non-negative
= ? exponent must be non-negative
— ? error occurred in or before ./examples/number_operations.sing line 1\

2: ¢ 27-2; // for int’s exponent must be non-negative‘
number (2) "-2;
= 1/4
3/4>=2/5;
= 1
2/6==1/3;
=1

4.14.4 number related functions

cleardenom
cancellation of denominators of numbers in polyomial and divide it by its content (see
Section 5.1.9 [cleardenom)], page 161)

impart imaginary part of a complex number, 0 otherwise (see Section 5.1.60 [impart|, page 196,
Section 5.1.131 [repart], page 249)

numerator, denominator
the numerator/denominator of a rational number (see Section 5.1.107 [numerator|,
page 230, Section 5.1.22 [denominator], page 170)

leadcoef coefficient of the leading term (see Section 5.1.76 [leadcoef], page 207)

par n-th parameter of the basering (see Section 5.1.113 [par|, page 236)

pardeg degree of a number in ring parameters (see Section 5.1.114 [pardeg]|, page 237)
parstr string form of ring parameters (see Section 5.1.115 [parstr], page 237)

repart real part of a complex number (see Section 5.1.60 [impart]|, page 196, Section 5.1.131

[repart], page 249)
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4.15 package

The data type package is used to group identifiers into collections. It is mainly used as an internal
means to avoid collisions of names of identifiers in libraries with variable names defined by the
user. The most important package is the toplevel package, called Top. It contains all user defined
identifiers as well as all user accessible library procedures. Identifiers which are local to a library
are contained in a package whose name is obtained from the name of the library, where the first
letter is converted to uppercase, the remaining ones to lowercase. Another reserved package name
is Current which denotes the current package name in use. See also Section 3.8 [Libraries|, page 55.

4.15.1 package declarations

Syntax: package name ;
Purpose:  defines a package (Only relevant in very special situations).

Example:

package Test;
int i=3; exportto(Test,i);
Test::i+2;
— 5
i;
—> ? ‘1Y is undefined

— 7 error occurred in or before ./examples/package_declarations.sing 1

e 4: ¢ if

listvar();

listvar(Test);
— // Test [0] package Test (N)
= // i [0] int 3

package dummy = Test;

kill Test;

listvar (dummy) ;
— // dummy [0] package dummy (N)
= // i [0] int 3

4.15.2 package related functions

exportto transfer an identifier to the specified package (see Section 5.2.7 [exportto], page 289)

importfrom
generate a copy of an identifier from the specified package in the current package (see
Section 5.2.10 [importfrom], page 293)

listvar list variables currently defined in a given package (see Section 5.1.82 [listvar|, page 211)

load load a library or dynamic module (see Section 5.2.12 [load], page 295)
LIB load a library or dynamic module (see Section 5.1.79 [LIB], page 209)
4.16 poly

Polynomials are the basic data for all main algorithms in SINGULAR. They consist of finitely
many terms (coefficient*monomial) which are combined by the usual polynomial operations (see
Section 4.16.2 [poly expressions|, page 119). Polynomials can only be defined or accessed with
respect to a basering which determines the coefficient type, the names of the indeterminates and
the monomial ordering.
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ring r=32003, (x,y,z),dp;
poly f=x3+yb+z2;

4.16.1 poly declarations

Syntax: poly name = poly_expression ;
Purpose:  defines a polynomial.
Default: 0

Example:

ring r = 32003, (x,y,z),dp;

poly s1 = x3y2+151x5y+186xy6+169y9;

poly s2 1xx" 2%y~ 2%z~ 2+328;

poly s3 5/4x4y2+4/5*x*y~5+2x2y2z3+y7+11x10;
int a,b,c,t=37,5,4,1;

poly f=3*x"atxxy~ (b+c)+t*x"a*xy b*z"c;

;5

= x37y5z4+3x37+xy9
short = 0;
£

= X" 37*xy " bxz"4+3*x"37+x*y"9

Section 5.3.7 [short], page 301

4.16.2 poly expressions

A polynomial expression is (optional parts in square brackets):
1. a monomial (there are NO spaces allowed inside a monomial)
[coefficient] ring_variable [ exponent] [ring_variable [exponent] ...].

Monomials which contain an indexed ring variable must be built from ring_variable and
coefficient with the operations * and ~

2. an identifier of type poly
3. a function returning poly
4. polynomial expressions combined by the arithmetic operations +, -, *, /, or ~
5. an int expression (see Section 3.5.5 [Type conversion and casting], page 46)
6. a type cast to poly

Example:

ring S=0, (x,y,z,a(1)),dp;
2x, x3, 2x2y3, xyz, 2xy2; // are monomials
2%x, x73, 2*xx"2%y~3, x*ky*z, 2*x*y~2; // are poly expressions
2*xa(1); // is a valid polynomial expression (a(l) is a name of a variable),
// but not 2a(l) (is a syntax error)
2*x~3; // is a valid polynomial expression equal to 2x3 (a valid monomial)
// but not equal to 2x~3 which will be interpreted as (2x)°3
// since 2x is a monomial
ring r=0, (x,y),dp;
poly f = 10x2y3 +2x2y2-2xy+y -x+2;
lead(f);
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— 10x2y3
leadmonom(f) ;
— x2y3
simplify(f,1); // normalize leading coefficient
— x2y3+1/5x2y2-1/5xy-1/10x+1/10y+1/5
poly g = 1/2x2 + 1/3y;
cleardenom(g) ;
— 3x2+2y
int i = 102;
poly(i);
— 102
typeof (_);
— poly

See Section 3.5.5 [Type conversion and casting], page 46; Section 4.19 [ring], page 125.

4.16.3 poly operations

+ addition

- negation or subtraction

* multiplication

/, div division by a polynomial, ignoring the remainder (only implemented for polynomials
over QQ, ZZ/p and field extensions of them)
(See also Section 5.1.125 [quotient], page 244,Section 5.1.26 [division], page 172,Sec-
tion 5.1.129 [reduce], page 247)

%, mod the remainder from the division by a polynomial (only implemented for polynomials
over QQ, ZZ/p and field extensions of them)
(See also Section 5.1.125 [quotient], page 244,Section 5.1.26 [division], page 172,Sec-
tion 5.1.129 [reduce], page 247)

T, oKk power by a positive integer

<, <=, >, >= == <>

comparators (considering leading monomials w.r.t. monomial ordering)

poly_expression [ intvec_expression ]

the sum of monomials at the indicated places w.r.t. the monomial ordering

Example:

ring R=0, (x,y),dp;
poly £ = x3y2 + 2x2y2 + xy - x +y + 1;
f;
= x3y2+2x2y2+xy-x+y+1
f + x5 + 2;
— x5+x3y2+2x2y2+xy-x+y+3
f *x x2;
= x5y2+2x4y2+x3y-x3+x2y+x2
(x+y) /x;
— 1
f/3x2;
— 1/3xy2+2/3y2
x5 > f;
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— 1
x<=y;
— 0
X>y;
— 1
ring r=0, (x,y),ds;
poly £ = fetch(R,f);
f;
= 1-x+y+xy+2x2y2+x3y2
x5 > f;
— 0
f[2..4];
= —xX+y+xy
size(f);
— 6
flsize(£f)+1]; f[-1]; // monomials out of range are 0
— 0
= 0
intvec v = 6,1,3;
flvl; // the polynom built from the 1st, 3rd and 6th monomial of f
= 1+y+x3y2

4.16.4 poly related functions
cleardenom

cancellation of denominators of numbers in polynomial and divide it by its content (see
Section 5.1.9 [cleardenom)], page 161; Section D.2.8.14 [content|, page 891)

coef matrix of coefficients and monomials (see Section 5.1.11 [coef], page 162)
coeffs matrix of coefficients (see Section 5.1.12 [coeffs], page 163)

deg degree (see Section 5.1.19 [deg], page 168)

diff partial derivative (see Section 5.1.24 [diff], page 171)

extged Bezout representation of ged (see Section 5.1.33 [extged], page 176)
factorize

factorization of polynomial (see Section 5.1.36 [factorize|, page 178)

finduni  univariate polynomials in a zero-dimensional ideal (see Section 5.1.43 [finduni]
page 183)

ged greatest common divisor (see Section 5.1.50 [ged], page 188)

homog homogenization (see Section 5.1.57 [homog], page 194)

jacob ideal, resp. matrix, of all partial derivatives (see Section 5.1.66 [jacob], page 201)
lead leading term (see Section 5.1.75 [lead], page 207)

leadcoef coefficient of the leading term (see Section 5.1.76 [leadcoef], page 207)
leadexp the exponent vector of the leading monomial (see Section 5.1.77 [leadexpl, page 208)

leadmonom
leading monomial (see Section 5.1.78 [leadmonom|, page 208)

jet monomials of degree at most k (see Section 5.1.68 [jet], page 202)
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ord degree of the leading monomial (see Section 5.1.111 [ord], page 235)

ghweight quasihomogeneous weights (see Section 5.1.122 [qhweight]|, page 242)

reduce normal form with respect to a standard base (see Section 5.1.129 [reduce], page 247)
rvar test for ring variable (see Section 5.1.137 [rvar|, page 255)

simplif normalization of a polynomial (see Section 5.1.141 [simplify]. page 259
P y poly plily|, pag

size number of monomials (see Section 5.1.142 [size|, page 261)

subst substitution of a ring variable (see Section 5.1.152 [subst]|, page 271)
trace trace of a matrix (see Section 5.1.156 [trace|, page 278)

var the indicated variable of the ring (see Section 5.1.163 [var|, page 281)
varstr variable(s) in string form (see Section 5.1.165 [varstr|, page 282)
4.17 proc

Procedures are sequences of SINGULAR commands in a special format. They are used to extend the
set of SINGULAR commands with user defined commands. Once a procedure is defined it can be
used as any other SINGULAR command. Procedures may be defined by either typing them on the
command line or by loading them from a file. For a detailed description on the concept of procedures
in SINGULAR see Section 3.7 [Procedures|, page 50. A file containing procedure definitions which
comply with certain syntax rules is called a library. Such a file is loaded using the command LIB.
For more information on libraries see Section 3.8 [Libraries|, page 55.

4.17.1 proc declaration

Syntax: [static] proc proc_name [(<parameter_list>)
[<help_string>]
{
<procedure_body>
+
[example
{
<sequence_of_commands>

3]

Purpose:  Defines a new function, the proc proc.name. Once loaded in a SINGULAR session,
the information provided in the help string will be displayed upon entering help proc_
name;, while the example section will be executed upon entering example proc_name;.
See Section 3.7.2 [Parameter list], page 52, Section 3.7.3 [Help string], page 54, and the
example in Section 3.8.6 [Procedures in a library], page 57.

The help string, the parameter list, and the example section are optional. They are,
however, mandatory for the procedures listed in the header of a library. The help string
is ignored and no example section is allowed if the procedure is defined interactively,
i.e., if it is not loaded from a file by the LIB or load command (see Section 5.1.79 [LIB],
page 209 and see Section 5.2.12 [load], page 295 ).

In the body of a library, each procedure not meant to be accessible by users should be
declared static. See Section 3.8.6 [Procedures in a library|, page 57.

Example:
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proc milnor_number (poly p)
{
ideal i= std(jacob(p));
int m_nr=vdim(i);
if (m_nr<O0)

{
"// not an isolated singularity";
}
return(m_nr) ; // the value of m_nr is returned

}
ring r1=0,(x,y,2z),ds;
poly p=x"2+y~2+z"5;
milnor_number (p);

— 4

See Section 5.1.79 [LIB], page 209; Section 3.8 [Libraries|, page 55; Section 5.2.1 [apply], page 287.
4.17.2 proc expression

Syntax: variable_name -> { expression(s) }
Purpose:  Defines a new function, within apply or for assigning.

Example:

apply (1..3,x->{x**2});
= 149

See Section 5.2.1 [apply], page 287; Section 4.17 [proc|, page 122.
4.17.3 procs with different argument types

Syntax: branchTo ( string_expression , ... proc_name )

Purpose:  branch to the given procedure if the argument types matches the types given as strings
(which may be empty - matching the empty argument list). The main procedure (p in
the example) must be defined without an argument list, and branchTo statement must
be the first statement within the procedure body.

Example:

proc pl(int i) { "int:",i; }

proc p21(string s) { "string:",s; }

proc p22(string s1, string s2) { "two strings:",sl,s2; }

proc p(O)

{ branchTo("int",pl);
branchTo("string","string",p22);
branchTo("string",p21);
ERROR("not defined for these argument types");

3
p(1);

— int: 1
p("huﬂ) ;

— string: hu
p(llhall s llha") ;

— two strings: ha ha
p(l, "hu") ;
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= ? not defined for these argument types
— ? leaving ::p (0)

See Section 4.17 [proc|, page 122.

4.18 resolution

The type resolution is intended as an intermediate representation which internally retains additional
information obtained during computation of resolutions. It furthermore enables the use of partial
results to compute, for example, Betti numbers or minimal resolutions. Like ideals and modules,
a resolution can only be defined w.r.t. a basering (see Section C.3 [Syzygies and resolutions,
page 772).

Note: To access the elements of a resolution, it has to be assigned to a list. This assignment also
completes computations and may therefore take time, (resp. an access directly with the brackets [
, 1 causes implicitly a cast to a list).

4.18.1 resolution declarations

Syntax: resolution name = resolution_expression ;
Purpose:  defines a resolution.
Default: none

Example:
ring R;
ideal i=z2,x;
resolution re=res(i,0);
re;
1 2 1
R <-—- R <—- R

0 1 2

11111

betti(re);
— 1,1,0,
— 0,1,1
list 1 = re;
1;
— [1]:
_[1]=x
_[2]==z2
[2]:
_[1]=-z2*gen (1) +x*gen(2)
[3]:
_[11=0

111111

4.18.2 resolution expressions

A resolution expression is:
1. an identifier of type resolution
2. a function returning a resolution

3. a type cast to resolution from a list of ideals, resp. modules..

See Section 3.5.5 [Type conversion and casting], page 46.
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4.18.3 resolution related functions

betti Betti numbers of a resolution (see Section 5.1.4 [betti], page 157)

fres free resolution of a standard basis (see Section 5.1.48 [fres|, page 186)

lres free resolution (see Section 5.1.83 [Ires|, page 213)

minres minimize a free resolution (see Section 5.1.93 [minres|, page 221)

mres minimal free resolution of an ideal, resp. module and a minimal set of generators of the

given ideal, resp. module (see Section 5.1.98 [mres|, page 223)

res free resolution of an ideal, resp. module, but not changing the given ideal, resp. module
(see Section 5.1.132 [res|, page 249)

sres free resolution of a standard basis (see Section 5.1.147 [sres|, page 265)

4.19 ring

Rings are used to describe properties of polynomials, ideals etc. Almost all computations in SIN-
GULAR require a basering. For a detailed description of the concept of rings see Section 3.3 [Rings
and orderings|, page 30.

4.19.1 qring

SINGULAR offers the opportunity to calculate in quotient rings (factor rings), i.e., rings modulo an
ideal. The ideal has to be given as a standard basis. For a detailed description of the concept of
rings and quotient rings see Section 3.3 [Rings and orderings|, page 30. Beside the construction,
an object describing a quotient ring is of type ring.

See Section 4.19.5 [qring declaration], page 127.
4.19.2 ring declarations

Syntax: ring name = ( coefficients ), ( names_of_ring variables ), ( ordering ); or
ring name = cring [ names_of _ring_variables ]

Default: (2Z/32003) [x,y,2]

Purpose: declares a ring and sets it as the actual basering. The second form sets the ordering to
(dp,0C).

For the second form: cring stands currently for QQ (the rationals), ZZ (the integers) or (ZZ/m)
(the field (m prime and <2147483648) resp. ring of the integers modulo m).
The coefficients for the first form are given by one of the following:
1. a cring as given above
a non-negative int_expression less or equal 2147483647.
an expression_list of an int_expression and one or more names.
the name real
an expression_list of the name real and an int_expression.
an expression_list of the name complex, an optional int_expression and a name.

an expression_list of the name ZZ.

® N o N

an expression_list of the name integer and following int_expressions.
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9. an expression_list of the name integer and two int_expressions.

For the definition of the ’coefficients’, see Section 3.3 [Rings and orderings|, page 30.
‘names_of_ring_variables’ must be a list of names or (multi-)indexed names.
‘ordering’ is a list of block orderings where each block ordering is either

1. 1p, dp, Dp, rp, 1s, ds, Ds, or rs optionally followed by a size parameter in parentheses.

2. wp, Wp, ws, Ws, am, aa, or a followed by a weight vector given as an intvec_expression in
parentheses.

3. M followed by an intmat_expression in parentheses.

4. corC.
For the definition of the orderings, see Section 3.3.3 [Term orderings|, page 34, Section B.2 [Mono-
mial orderings|, page 765.

If one of coefficients, names_of ring_variables, and ordering consists of only one entry, the paren-
theses around this entry may be omitted.

See also Section 3.3.1 [Examples of ring declarations|, page 31; Section 4.19 [ring], page 125;
Section 5.1.135 [ringlist], page 251.

4.19.3 ring related functions

charstr  description of the coefficient field of a ring (see Section 5.1.7 [charstr], page 160)

keepring move ring to next upper level (see Section 5.2.11 [keepring], page 295)

npars number of ring parameters (see Section 5.1.104 [npars|, page 229)

nvars number of ring variables (see Section 5.1.108 [nvars|, page 230)

ordstr monomial ordering of a ring (see Section 5.1.112 [ordstr], page 236)

parstr names of all ring parameters or the name of the n-th ring parameter (see Section 5.1.115

[parstr]|, page 237)

qring quotient ring (see Section 4.19.1 [qring], page 125)

)

ringlist decomposition of a ring into a list of its components (see Section 5.1.135 [ringlist]
page 251)

setring  setting of a new basering (see Section 5.1.139 [setring], page 256)

varstr names of all ring variables or the name of the n-th ring variable (see Section 5.1.165
[varstr], page 282)

4.19.4 ring operations

+ construct a new ring k[X,Y] from k;[X] and k2[Y] . (The sets of variables must be
distinct).

==<> compare two rings

Note: Concerning the ground fields k; and ky take the following guide lines into consideration:
e Neither k; nor k; may be R or C' .
e If the characteristic of k; and ko differs, then one of them must be @ .

e At most one of k; and ky may have parameters.
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e If one of k; and k, is an algebraic extension of Z/p it may not be defined by a charstr of type
(p°n,a).
Example:

ring R1=0, (x,y) ,dp;
ring R2=32003, (a,b) ,dp;

def R=R1+R2;

R;
— // coefficients: ZZ/32003
— // number of vars : 4
= // block 1 : ordering dp
= // : names Xy
= // block 2 : ordering dp
= // : names ab
= // block 3 : ordering C

Section D.2.12 [ring.lib], page 939
4.19.5 qring declaration

Syntax: qgring name = ideal_expression ;
Default: none

Purpose: declares a quotient ring as the basering modulo ideal_expression and sets it as current
basering.

Operations based on standard bases (e.g. std,groebner, etc., reduce) and functions
which require a standard basis (e.g. dimhilb, etc.) operated with the residue classes;
all others on the polynomial objects.

Example:
ring r=0, (x,y,z),dp;
ideal i=xy;
qring g=std(i);
basering;

— // coefficients: QQ

— // number of vars : 3

= // block 1 : ordering dp

= // : names Xy z
= // block 2 : ordering C

— // quotient ring from ideal

= _[1]=xy

// simplification is not immediate:
(x+y) "2;

= x2+2xy+y2

reduce(_,std(0));

= x2+y2

// polynomial and residue class:
ring R=0, (x,y),dp;

gring Q=std(y);

poly pl=x;

poly p2=x+y;

// comparing polynomial objects:
pl==p2;

= 0
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// comparing residue classes:
reduce(pl,std(0))==reduce(p2,std(0));
=1

4.20 smatrix

An experimental type:
Objects of type smatrix are (sparse) matrices with polynomial entries. Like polynomials they can
only be defined or accessed with respect to a basering.

Objects of type smatrix can be converted to and from matrix and module.

Operations are +, -, *, ==, <>,

Functions are chinrem, farey, ncols, nrows, std, transpose, tensor. Additional flatten(m)
and system("unflatten",m,col).

Resizing can be done via smatrix(m,r,c) where m is of type module or smatrix.

Access to single entries: m[1, j]

See Section 5.1.8 [chinrem], page 160; Section 5.1.37 [farey|, page 179; Section D.3.1.5 [flatten],
page 967; Section 4.12 [matrix], page 107; Section 4.13 [module], page 111; Section 5.1.103 [ncols],
page 228; Section 5.1.106 [nrows], page 230; Section 4.19 [ring], page 125; Section 5.1.149 [std],

page 267; Section 5.1.155 [tensor], page 277; Section 5.1.157 [transpose|, page 278.

4.21 string

Variables of type string are used for output (almost every type can be "converted" to string)
and for creating new commands at runtime see Section 5.1.32 [execute]|, page 176. They are also
return values of certain interpreter related functions (see Section 5.1 [Functions], page 154). String
constants consist of a sequence of ANY characters (including newline!) between a starting " and
a closing ". There is also a string constant newline, which is the newline character. The + sign
"adds" strings, "" is the empty string (hence strings form a semigroup). Strings may be used to
comment the output of a computation or to give it a nice format. Strings may also be used for
intermediate conversion of one type into another.

string s="Hi";

string sl="a string with new line at the end"+newline;

string s2="another string with new line at the end

n.
b

s;sl;s2;
— Hi
— a string with new line at the end
}_>
— another string with new line at the end
—

ring r; ideal i=std(ideal(x,y"3));

"dimension of i =",dim(i),", multiplicity of i =",mult(i);
— dimension of i = 1 , multiplicity of i = 3

"dimension of i = "+string(dim(i))+", multiplicity of i = "+string(mult(i));
— dimension of i 1, multiplicity of i = 3

lla|l+||b|| , IICII ;
— ab c

A comma between two strings makes an expression list out of them (such a list is printed with a
separating blank in between), while a + concatenates strings.
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4.21.1 string declarations

Syntax: string name = string_expression ;
string name = list_of_string_expressions ;

Purpose:  defines a string variable.
Default: "' (the empty string)

Example:

string s1="Now I know";

string s2="how to encode a \" in a string...";

string s=sl1+" "+s2; // concatenation of 3 strings

S5
— Now I know how to encode a " in a string...

s1,s2; // 2 strings, separated by a blank in the output:
— Now I know how to encode a " in a string...

4.21.2 string expressions

A string expression is:

a sequence of characters between two unescaped quotes (")
an identifier of type string

a function returning string

a substring (using the bracket operator)

a type cast to string (see Section 4.21.3 [string type cast], page 130)

S FU W=

string expressions combined by the operation +.

Example:

// string_expression[start, length] : a substring

// (possibly filled up with blanks)

// the substring of s starting at position 2

// with a length of 4

string s="123456";

s[2,4];

— 2345

"abcd"[2,2];

— bc

// string_expression[position] : a character from a string
s[3];

= 3

// string_expression[position..position]

// a substring starting at the first position up to the second
// given position

s[2..4];

= 234

// a function returning a string

typeof (s);

— string

See Section 3.5.5 [Type conversion and casting], page 46
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4.21.3 string type cast

Syntax:
Type:

Purpose:

Note:

Example:

string ( expression [, expression_2, ... expression_n|)
string

Converts each expression to a string, where expression can be of any type. The con-
catenated string of all converted expressions is returned.

The elements of intvec, intmat, ideal, module, matrix, and list, are separated by a
comma. No newlines are inserted.

Not defined elements of a list are omitted.

For link, the name of the link is used.

For map, the ideal defining the mapping is converted.

When applied to a list, elements of type intvec, intmat, ideal, module, matrix, and list
become indistinguishable.

string("1+1=", 2);

= 1+1=2
string(intvec(1,2,3,4));

— 1,2,3,4
string(intmat (intvec(1,2,3,4), 2, 2));

— 1,2,3,4
ring r;
string(r);

— (ZZ/32003), (x,y,2z),(dp(3),C)
string(ideal(x,y));

= X,y
gring R = std(ideal(x,y));
string(R);

— (Z2/32003), (x,y,2z), (dp(3),C)
map phi = r, ideal(x,z);
string(phi);

— X,z
list 1;
string(l);

'_)

1[3] = 1;
string(1l); // notice that 1[1],1[2] are omitted
=1

string(1l); // notice that lists of list is flattened
= 1,1
1[1] = intvec(1,2,3);
1;
= [1]:
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1,2,3
[2]:
[3]:
1
[3]:
1
string(l); // notice that intvec elements are not distinguishable
= 1,2,3,1,1

111111

See Section 3.5.5 [Type conversion and casting], page 46; Section 5.1.119 [print], page 239; Sec-
tion 4.21 [string], page 128.

4.21.4 string operations

+ concatenation

<=, >= == <>
comparison (lexicographical with respect to the ASCII encoding)

string_expression [ int_expression ]
is a character of the string; the index 1 gives the first character.

string_expression [ int_expression, int_expression ]
is a substring, where the first argument is the start index and the second is the length
of the substring, filled up with blanks if the length exceeds the total size of the string

string_expression [ intvec_expression ]
is a expression list of characters from the string

Example:

string s="abcde";
s[2];

— b
s[3,2];

— cd
ll>>"+s[1’1o]+ll<<ll;

— >>abcde <<
s[2]="BC"; s;

— aBcde
intvec v=1,3,5;
s=s[v]; s;

— ace
s="654321"; s=s[3..5]; s;

— 432

4.21.5 string related functions

charstr  description of the coefficient field of a ring (see Section 5.1.7 [charstr], page 160)
execute  executing string as command (see Section 5.1.32 |executel|, page 176)

find position of a substring in a string (see Section 5.1.42 [find], page 183)

names list of strings of all user-defined variable names (see Section 5.1.102 [names|, page 2206)

nameof name of an object (see Section 5.1.101 [nameof], page 225)
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option lists all defined options (see Section 5.1.110 [option|, page 231)
ordstr monomial ordering of a ring (see Section 5.1.112 [ordstr], page 236)
parstr names of all ring parameters or the name of the n-th ring parameter (see Section 5.1.115

[parstr], page 237)
read read a file (see Section 5.1.128 [read], page 246)
size length of a string (see Section 5.1.142 [size|, page 261)
sprintf  string formatting (see Section 5.1.146 [sprintf], page 264)
typeof type of an object (see Section 5.1.159 [typeof], page 279)

varstr names of all ring variables or the name of the n-th ring variable (see Section 5.1.165
[varstr], page 282)

4.22 vector

Vectors are elements of a free module over the basering with basis gen(1), gen(2), ... . Like
polynomials they can only be defined or accessed with respect to the basering. Each vector belongs
to a free module of rank equal to the biggest index of a generator with non-zero coefficient. Since
generators with zero coefficients need not be written any vector may be considered also as an element
of a free module of higher rank. (E.g., if f and g are polynomials then f*gen(1)+g*gen(3)+gen(4)
may also be written as [f,0,g,1] or as [£,0,g,1,0].) Note that the elements of a vector have to
be surrounded by square brackets ([, 1) (cf. Section B.1 [Representation of mathematical objects|,
page 764).

4.22.1 vector declarations

Syntax: vector name = vector_expression ;
Purpose:  defines a vector of polynomials (an element of a free module).

Default:  [0]

Example:
ring r=0, (x,y,2),(c,dp);
poly sl = x2;
poly s2 = y3;
poly s3 = z;

vector v = [sl, s2-s1, s3-s1]+ slx*gen(5);
// v is a vector in the free module of rank 5
v

= [x2,y3-x2,-x2+z,0,x2]

4.22.2 vector expressions

A vector expression is:
. an identifier of type vector

. a function returning vector

1
2
3. a polynomial expression (via the canonical embedding p — p*gen(1))
4. vector expressions combined by the arithmetic operations + or -

5

. a polynomial expression and a vector expression combined by the arithmetic operation *
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6. a type cast to vector using the brackets [ , ]

Example:

// ordering gives priority to components:
ring rr=0,(x,y,2z),(c,dp);
vector v=[x2+y3,2,0,x*y]+gen(6)*x6;
v

— [y3+x2,2,0,xy,0,x6]
vector w=[z3-x,3y];
V-W;

= [y3-z3+x2+x,-3y+2,0,xy,0,x6]
vk (z+x) ;

= [xy3+y3z+x3+x2z,2x+22,0,x2y+xyz,0,x7+x62]
// ordering gives priority to monomials:
// this results in a different output
ring r=0, (x,y,2z),(dp,c);
imap(rr,v);

— x6*gen(6)+y3*gen(1)+x2xgen (1) +xy*gen (4) +2*xgen(2)

See Section 3.5.5 [Type conversion and casting], page 46; Section 4.19 [ring], page 125.
4.22.3 vector operations

+ addition
- negation or subtraction
/ division by a monomial, not divisible terms yield 0
<, <=, >, >= == <>
comparators (considering leading terms w.r.t. monomial ordering)

vector_expression [ int_expressions ]
is a vector entry; the index 1 gives the first entry.

Example:
ring R=0, (x,y), (c,dp);
[x,y1-[1,x];
= [x-1,-x+y]
[1,2,x,4]1[3];
= X

4.22.4 vector related functions

cleardenom
quotient of a vector by its content (see Section 5.1.9 [cleardenom], page 161)

coeffs matrix of coefficients (see Section 5.1.12 [coeffs|, page 163)
deg degree (see Section 5.1.19 [deg], page 168)

diff partial derivative (see Section 5.1.24 [diff]. page 171)

gen i-th generator (see Section 5.1.51 [gen], page 189)

homog homogenization (see Section 5.1.57 [homog], page 194)
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jet k-jet: monomials of degree at most k (see Section 5.1.68 [jet], page 202)

lead leading term (see Section 5.1.75 [lead], page 207)

leadcoef leading coefficient (see Section 5.1.76 [leadcoef], page 207)

leadexp the exponent vector of the leading monomial (see Section 5.1.77 [leadexpl, page 208)

leadmonom
leading monomial (see Section 5.1.78 [leadmonom|, page 208)

nrows number of rows (see Section 5.1.106 [nrows|, page 230)
ord degree of the leading monomial (see Section 5.1.111 [ord], page 235)
reduce normal form with respect to a standard base (see Section 5.1.129 [reducel, page 247)

simplify mnormalize a vector (see Section 5.1.141 [simplify|, page 259)
size number of monomials (see Section 5.1.142 [size|, page 261)

subst substitute a ring variable (see Section 5.1.152 [subst|, page 271)

4.23 User defined types

User defined types are (non-empty) lists with a fixed size whose element can be accessed by names
(and not indices). These elements have a predefined type (which can also be a user defined type).
If these elements depend on a ring they can only be accessed if their base ring is the current base
ring. In contrast to usual lists the elements of a user defined type may belong to different rings.

4.23.1 Definition of a user defined type

Syntax: newstruct ( name , string_expression ) ;
newstruct ( name , name , string_expression ) ;

Purpose:  defines a new type with elements given by the last argument (string_expression). The
name of the new type is the first argument (of type string) and must be longer than
one character.

The second name (of type string) is an already defined type which should be extended
by the new type.

The last argument (of type string) must be an comma separated list of a type followed
by a name. If there are duplicate member names, the last one wins.

(User defined) member names are restricted to alphanumeric characters and must start
with a letter.

Operations:
the only operations of user defined types are:
assignment (between objects of the same or extended type)
typeof
string and printing
operator . to access the elements

Example:

newstruct ("nt","int a,poly b,string c");
nt A;
nt B;



Chapter 4: Data types 135

A.a=3;

A.c=string(A.a);

B=A4;

newstruct ("t2","nt","string c");

t2 C; C.c="t2-c";

A=C;

typeof (A) ;
— t2

A;
c=t2-c

(@]
I

??

o
Il

—
—
|_>
— a=0
// a motivating example —————————————————————————————
newstruct ("IDEAL","ideal I,proc prettyprint");
newstruct ("HOMOGENEOUS_IDEAL","IDEAL","intvec weights,proc prettyprint")
proc IDEAL_pretty_print (IDEAL I)
{
"ideal generated by";
I.1;
+
proc H_IDEAL_pretty_print (HOMOGENEQOUS_IDEAL I)
{
"homogeneous ideal generated by";
I.1;
"with weights";
I.weights;
}
proc p_print (IDEAL I) { I.prettyprint(I); }
ring r;
IDEAL I;
I.I=ideal(x+y2,z);
I.prettyprint=IDEAL_pretty_print;
HOMOGENEOUS_IDEAL H;
H.I=ideal(x,y,2);
H.prettyprint=H_IDEAL_pretty_print;
H.weights=intvec(1,1,1);
p_print(I);
— ideal generated by
= _[1]=y2+x
= _[2]=z
p_print (H);
homogeneous ideal generated by
_[1]=x
_[2]=y
_[3]=z
with weights
1,1,1

111111

4.23.2 Declaration of objects of a user defined type

Example:
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newstruct("nt","int a,poly b,string c");

nt A;

// as long as there is no value assigned to A.b, no ring is needed
nt B=A;

4.23.3 Access to elements of a user defined type

Access to elements of a user defined type via .: <object>.<element_name>. The <element_names>
are from the definition of the type. Additional, all (potentially) ring dependent elements have an
additional entry r_<element_name> for the corresponding ring.

Example:

newstruct ("nt","int a,poly b,string c");
nt A;
3+A.a;

— 3
A.c="example string";
ring r;
A.b=poly(1); // assignment: expression must be of the given type
A;

— c=example string

— b=1

— a=0
A.r_b;

— // coefficients: ZZ/32003

+ // number of vars : 3

= // block 1 : ordering dp

= // : names Xy z

= // block 2 : ordering C

4.23.4 Commands for user defined types

User defined types are normal data types (which do not belong to a ring, even if they have ring
dependent parts), so they can be passed as argument to procedures, and received as result from
procedures.

In order to apply kernel commands to these types (like string, +), provide a usual procedure
(say proc p..) for that task and install it via system("install", user_type , kernel_command
,p, number_of_args );. The user_type and kernel_command have to be given as strings. For
kernel_command having a variable number of arguments (internal CMD_M) use 4 independent of the
number of really supplied arguments.

List of available kernel commands and the required number_of_args, some accept several variants
and appear therefor at several places:

inplace binary operands: +,-,%*,/,div,%,&, |, [, number_of_args:2

unary functions: attrib, bareiss, betti, char, char_series, charstr, cleardenom,
close, convhull, defined, deg, degree, denominator, det, dim, dump, ERROR,
envelope, execute, facstd, factorize, finduni, gen, getdump, hilb, impart,
indepSet, interred, jacob, janet, kbase, killattrib, lead, leadcoef, leadexp,
leadmonom, load, ludecomp, maxideal, memory, minbase, minres, monitor, monomial,
mult, mstd, nameof, ncols, npars, nrows, numerator, nvars, open, opposite, ord,
ordstr, par, pardeg, parstr, preimage, prime, primefactors, prune, ghweight,
rank, read, regularity, repart, ringlist, rvar, sba, size, slimgb, sortvec,
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sqrfree, syz, trace, transpose, twostd, typeof, univariate, var, variables,
varstr, vdim, waitfirst, waitall, weight

functions with 2 arguments: attrib, betti, bracket, chinrem, coeffs, contract, deg,
delete, diff, dim, extgcd, eliminate, exportto, facstd, factorize, farey, fetch,
fglm, fglmquot, find, fres, frwalk, gcd, hilb, homog, hres, imap, importfrom,
indepSet, insert, interpolation, janet, kbase, kernel, killattrib, koszul, lift,
liftstd, load, lres, modulo, mpresmat, mres, newstruct, nc_algebra, nres, oppose,
parstr, primefactors, quotient, random, rank, read, sba, simplify, sqrfree, sres,
varstr, waitfirst, waitall, wedge

functions with 3 arguments: attrib, bareiss, coeffs, eliminate, find, fres, frwalk,
hilb, homog, insert, koszul, laguerre, 1ift, 1liftstd, newstruct, preimage,
random, resultant, sba, vandermonde

functions with variable number of arguments arguments (number_of_args:4): breakpoint,
coef, dbprint, division, factmodd, intersect, jet, luinverse, lusolve, minor,
names, option, qrds, reduce, reservedName, simplex, status, std, subst, system,
test, uressolve, write

Example:

newstruct ("nt","int a,poly b,string c");
nt A;

A;

= c=

= b=77

— a=0

ring r;

// a pretty print routine for nt:
proc pretty_print(nt A)

{
"nt with string c:"+A.c+" and poly:"+string(A.b);
}
system("install","nt","print",pretty_print,1); // default printing uses print
A;
— nt with string c: and poly:0
—

// a custem add for nt:
proc nt_add(nt A,nt B)

{
nt C;
C.a=A.a+B.a; C.b=A.b+B.b; C.c=A.c+B.c;
return(C) ;
}
system("install","nt","+",nt_add,2);
A.b=x;
nt B; B.c="B"; B.b=y;
A+B;

— nt with string c:B and poly:x+y
—>
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4.23.5 Assignments for user defined types

By default, only objects of the same (user defined) type can be assigned, there is no automatic
type conversion as for the kernel data types.

But the operator = can be overridden in oder to write custom constructors (the custom constructor
does not apply to assignments of the same type): via system("install", user_type ,"=" ,p,1);.
The user_type has to be given as a string.

Example:

newstruct ("wrapping","poly p");
proc wrap(poly p)
{
wrapping w; w.p = p;
return (w);
}
system("install", "wrapping", "=", wrap, 1);
ring r = 0,x,dp;
wrapping w = x+1;

W3
— p=x+1
w = int(1); // via conversion int->poly
W3
— p=1
w=number (2); // via conversion number->poly
W3
— p=2

The user defined procedure for = provides also generic type conversions: hh A=hh(b) ; is equivalent
to hh tmp=b; hh A=tmp; kill tmp;.

4.24 cone

In order to use convex objects in Singular, Singular has to be build from sources together with
gfanlib, a C++ library for convex geometry by Anders N. Jensen. Please check the readme file for
installation instructions.

This version of SINGULAR does not support cone.

4.25 fan

Not supported in this version of SINGULAR

4.26 polytope
Not supported in this version of SINGULAR
Not supported in this version of SINGULAR

4.27 pyobject

The pyobject is a black box data type in SINGULAR for handling objects from the programming
language python. It needs the python support of SINGULAR to be installed.
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Together with some basic operations and functions, pyobject instances access python functionality
from within SINGULAR and store the results for re-use:

Note that this feature is automatically loaded on demand when initializing an object of type
pyobject. For accessing pyobject-related functions before using any python object, please type
LIB("pyobject.so"); at the SINGULAR prompt

pyobject pystr = "Hello";

pyobject pyint = 2;

string singstr = string(pystr + " World!");
singstr;

— ’Hello World!’

pystr + pyint; // Error: not possible

> ? pyobject error occurred
> ? cannot concatenate ’str’ and ’int’ objects
— ? error occurred in or before ./examples/pyobject.sing line 5: ‘pystr \

+ pyint; // Error: not possible‘
pystr * pyint; // But this is allowed,
— ’HelloHello’
pystr * 3; // as well as this;

— ’HelloHelloHello’

python_run("def newfunc(*args): return list(args)"); // syncs contexts!
newfunc(1, 2, 3); // newfunc also knowd to SINGULAR
— [1, 2, 3]

def pylst = python_eval("[3, 7, 11");
proc(attrib(pylst, "sort"))(); // Access python member routines as attributes

pylst.sort(); // <- equivalent short-notation
pylst."sort"(); // <- alternative short-notation

pylst;

= [1, 3, 7]

python_import("os"); // Gets stuff from python module ’os’
name; // The identifier of the operating system
— ’posix’

4.27.1 pyobject declarations

Syntax: pyobject name = pyobject_expression ;
Purpose: defines a python object.
Default: None

Example:
pyobject empty;

empty;
— None

"Hello World!";
17;
list(pystr, pyone);

pyobject pystr
pyobject pyone
pyobject pylst
pylst;

— [’Hello World!’, 17]
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4.27.2 pyobject expressions

A pyobject expression is (optional parts in square brackets):

1.
2.
3.

an identifier of type pyobject
a function returning pyobject

pyobject expressions combined by the arithmetic operations +, -, *, /, or =, and the member-of
operators . and ::

an list expression with elements made of pyobject expressions (see Section 3.5.5 [Type conver-
sion and casting], page 46)

5. an string expression (see Section 3.5.5 [Type conversion and casting], page 46)

6. an int expression (see Section 3.5.5 [Type conversion and casting], page 46)

Example:

pyobject pystr = "python string ";
pystr;

— ’python string °’
pyobject pyint = 2;
pyint;

= 2
pyobject pylst = list(pystr, pyint);
pylst;

— [’python string ’, 2]
pyint + pyint;

— 4
pyint * pyint;

= 4
pystr + pystr;

— ’python string python string ’
pystr * pyint;

— ’python string python string °’
python_eval("17 + 4");

— 21
typeof (L) ;

— pyobject

4.27.3 pyobject operations

+ addition

- negation or subtraction

* multiplication

/ division

L power by a positive integer
<, <=, >, >= == <>

comparators (considering leading monomials w.r.t. monomial ordering)

pyobject_expression [ int_expression ]

get the item from the pyobject by index
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pyobject_expression ( pyobject_expression_sequence )
call the pyobject with a sequence of python arguments (the latter may be empty)

pyobject_expression . ( string_expression | name ),
pyobject_expression :: ( string_expression | name ) get attribute (class member) of a
python object

Example:
pyobject two = 2;

pyobject three = 3;

two + three;

— b
two - three;
— -1
two * three;
— 6
two / three;
— 0
two ~ three;
— 8
two ** three;
— 8

three < two;

— 0

two < three;
— 1

three <= two;
= 0

two <= three;
— 1

two == three;
= 0

two == two;
— 1

three > two;
— 1

two > three;
— 0

three >= two;
— 1

two >= three;
— 0

two != two;
— 0

two != three;
=1

pyobject pystr = "Hello";
pystr + " World!";

— ’Hello World!’

pystr * 3;
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+— ’HelloHelloHello’
pystr[i];
'_> Je7

python_run("def newfunc(*args): return list(args)");

newfunc();

= [

newfunc(two, three);
— [2, 3]
newfunc."__class__";
— <type ’function’>
newfunc::"__class__";

—_— b

— <type ’function’>
newfunc.func_name;
— ’newfunc’
newfunc: :func_name;
+— ’newfunc’

4.27.4 pyobject related functions

attrib

list, get and set attributes (class members) of a pyobject (see Section 5.1.2 |attrib],
page 154)

Example:

pyobject pystr = "Kublai Khan";

// Additional functionality through attrib
attrib(pystr, "__doc__");
— "str(object=’’) -> string\n\nReturn a nice string representation of the
bject.\nIf the argument is a string, the return value is the same objec
n
proc(attrib(pystr, "count")) ("K");
= 2

pystr."__doc__"; // <- Short notations
— "str(object=’’) -> string\n\nReturn a nice string representation of the
bject.\nIf the argument is a string, the return value is the same objec

pystr.count("a"); // Even shorter (if attribute’s name is valid
= 2

python_run("def func(): return 17");

attrib(func);

— [’__call__’, ’__class__’, ’__closure__’, ’__code__’, ’__defaults__’, ’_
elattr__’, ’__dict__’, ’__doc__’, ’__format__’, ’__get__’, ’__getattrib
e__’, ’__globals__’, ’__hash__’, ’__init__’, ’__module__’, ’__name__’,
_new__’, ’__reduce__’, ’__reduce_ex__’, ’__repr__’, ’__setattr__’, ’__s
eof__’, ’__str__’, ’__subclasshook__’, ’func_closure’, ’func_code’, ’fu

_defaults’, ’func_dict’, ’func_doc’, ’func_globals’, ’func_name’]
attrib(func, "func_name");
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killattrib

— 2func’
attrib(func, "func_name", "byAnyOtherName");
attrib(func, "func_name");

— ’byAnyOtherName’

deletes an attribute from a pyobject (see Section 5.1.72 [killattrib], page 205)

Example:

LIB("pyobject.so");

python_run("def new_pyobj(): pass");
attrib(new_pyobj, "new_attr", "something");
attrib(new_pyobj, "new_attr");

— ’something’

attrib(new_pyobj) ;

— [’__call__’, ’__class__’, ’__closure__’, ’__code__’, ’__defaults__’,
elattr__’, ’__dict__’, ’__doc__’, ’__format__’, ’__get__’, ’__getattrib
e__’, ’__globals__’, ’__hash__’, ’__init__’, ’__module__’, ’__name__’,
_new__’, ’__reduce__’, ’__reduce_ex__’, ’__repr__’, ’__setattr__’,
eof __’, ’__str__’, ’__subclasshook__’, ’func_closure’, ’func_code’,
_defaults’, ’func_dict’, ’func_doc’, ’func_globals’, ’func_name’, ’new_:
tr’]

killattrib(new_pyobj, "new_attr");
attrib(new_pyobj) ;

— [’__call__’, ’__class__’, ’__closure__’, ’__code__’, ’__defaults__’,
elattr__’, ’__dict__’, ’__doc__’, ’__format__’, ’__get__’, ’__getattrib
e__’, ’__globals__’, ’__hash__’, ’__init__’, ’__module__’, ’__name__’,
_new__’, ’__reduce__’, ’__reduce_ex__’, ’__repr__’, ’__setattr__’,
eof__’, ’__str__’, ’__subclasshook__’, ’func_closure’, ’func_code’,
_defaults’, ’func_dict’, ’func_doc’, ’func_globals’, ’func_name’]

python_run

execute string-given python commands and import new symbols from python to SIN-
GULAR'’s context (see Section 4.27.7 [python_run|, page 144).

python_eval

evaluate a string-given python expression and return the result to SINGULAR (see
Section 4.27.5 [python_eval], page 143).

python_import

import python module into SINGULAR’s context (see Section 4.27.6 [python_import],
page 144)

4.27.5 python_eval

Syntax:
Type:
Purpose:

Example:

python_eval ( string_expression )
pyobject

Evaluates a python expression (given as a string) and returns the result as pyobject.

LIB("pyobject.so");
python_eval("17 + 4");
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= 21
typeof (L) ;
— pyobject
list 11 = python_eval("range(10)");

4.27.6 python_import

Syntax: python_import ( string_expression )
Type: pyobject
Purpose: Imports python module (given as a string) in the SINGULAR context.

Example:

LIB("pyobject.so");
python_import("os");

name; // e. g. ’posix’
— ’posix’

sep; // pathname separator
— ;/;

linesep; // end of line marker
— ’\n’

4.27.7 python_run

Syntax: python_run ( string_expression )
Type: none

Purpose:  Executes python commands (given as a string) in python context and syncs the contexts
afterwards.

Example:
LIB("pyobject.so");
python_run("def newfunc(*args): return list(args)");
newfunc(l, 2, 3); // newfunc also known to SINGULAR now
= [1, 2, 3]

python_run("import os");
os;

> <module ’os’ from ’/usr/lib64/python2.7/os.pyc’>
attrib(os, "name");

— ’posix’

4.28 reference and shared (experimental)

The black box data types reference and shared in SINGULAR allow for concurrently accessing
SINGULAR object data. Copying such object will only add an additional handle which allows you
to define multiple identifiers for the same object instance.

Both experimental features are hidden by default, please activate them by typing
system("reference"); or system("shared") ;, respectively, at the SINGULAR prompt.

You must initialize a reference using a named identifier or a subexpression of the latter. The
resulting object can be stored to gain read and write access from sophisticated data structures
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system("reference"); system("shared");
int i = 17;
reference ref = i;

ref;

= 17

H

ref = 19;

ref;

— 19

—

i; // original handle changed!
— 19

kill ref;
i; // ’1i’ stays alive
— 19

reference uninitialized;

uninitialized; // not initialized

— <unassigned reference or shared memory>

// error: not a named identifier:

uninitialized = 17;

> ? Can only take reference from identifier

— ? error occurred in or before ./examples/reference_and_shared__experim\
ental_.sing line 16: ‘uninitialized = 17;°

// but subexpressions of named identifiers will do
list 11 = 1ist(3,4,5);

reference ref = 11[2];

ref;

= 4

In contrast, the type shared can be used to avoid the initial identifier definition. Each copy has
equal rights for manipulating the data.

system("reference"); system("shared");
shared 11= 1ist(2,3);

11[1];
2
H
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11[1]= 17;
11;

— [1]:

— 17
— [2]:

— 3
H

In most cases the value look-up is done automatically, but sometimes you have to disambiguate
the input.

system("reference"); system("shared");
int i = 0;

reference ref = i;

shared sh = 12;

ref + sh; // automated ’dereferencing’
= 12

ref + 4;

= 4

4 + sh;

= 16

list 11 = list(ref, ref, ref, ref, ref, ref, ref);
string(11);

~ 0,0,0,0,0,0,0

ref = 1;

string(11); // all one now

- 1,1,1,1,1,1,1

11(3] = 0;
string(11l); // only third element changed
— 1,1,0,1,1,1,1

reference(11[1]) = 9;
string(11); // all others changed
= 9,9,0,9,9,9,9

def(11[1]) = 11; // alternative (generic) syntax

string(1l);

— 11,11,0,11,11,11,11
The previous example had shown that reference and shared objects can store highly structured
without duplicating data all over again. As an additional feature, you can use reference objects
for implementing procedures having side-effects.

system("reference"); system("shared");

list changeme;

changeme;

— empty list

proc setfirst(reference 11, def arg) { 11[1] = arg; }
setfirst(changeme, 17);

changeme;
— [1]:
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— 17

If you do not need write-access to proc parameters, your code will usually perform better using
the alias statement in the parameter list, see Section 4.17 [proc|, page 122.

4.28.1 reference declarations

Syntax: reference name = identifier ;
Purpose: defines a reference object.
Default: None

Example:

system("reference"); system("shared");
reference empty;
empty;

— <unassigned reference or shared memory>

string str = "Hello World!";
reference ref = str;
ref;
— Hello World!
|_>
ref = 17; // cannot change type of ’i’
‘string‘(str) = ‘int‘ is not supported
expected ‘string‘ = ‘string‘
error occurred in or before ./examples/reference_declarations.sing
ine 8: ¢ ref = 17; // cannot change type of ’i’°¢
list 11= list(4, 5, 6);
reference lref = 11[2];
lref;
= 5
H
lref = str; // change list element
11;
[1]:
4
[2]:
Hello World!
[3]:
6

I
BN N V]

111111

4.28.2 reference expressions

A reference expression:
1. any identifier
2. any subexpression of an identifier

3. an object of type reference (result will reference the original identifier, too)

Example:

system("reference"); system("shared");
int i = 17;
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reference ref = i; // new reference
ref;
— 17
H
reference second = ref;
second;
— 17
}_>
second = 9; // also tied to ’i’
i;
— 9
typeof (ref) ;
— reference

list 11 = 1list(1, 2, 3);
reference lref = 11[1];
1ref;

= 1

—
lref = 12;
11;

— [1]:

— 12

— [2]:

— 2

— [3]:

— 3

4.28.3 shared declarations

Syntax: shared name = expression ;
Purpose:  defines a shared object.
Default: None

Example:

system("reference"); system("shared");

shared empty;
empty;

’_> 4 4

’_>

shared str = "Hello World!";
str;
— Hello World!
'%
shared 11= 1list(4, 5, 6);
11;
[1]:
4
[2]:
5
[3]:

11111

148
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— 6

—
11[2] = str; // change list element
11;

— [1]:

— 4

— [2]:

— Hello World!

— [3]:

— 6

—

4.28.4 shared expressions

shared expression:
1. any expression

2. an object of type shared (result will reference the same data)

Example:

system("reference"); system("shared");
shared sh = 17; // new shared
shared second = sh;
second;
- 17
H
second = 9; // also tied to ’sh’
sh;
— 9
—
typeof (sh) ;
+— shared

shared 11 = list(1, 2, 3);
shared 1lref = 11[1];
lref;
=1
}_)
lref = 12;
11;
= [1]:
12
[2]:
2
[3]:
3

ITI11111

4.28.5 reference and shared operations

All operations of the underlying objects are forwarded by reference and shared objects. THis
kind of dereferencing is done automatically in most cases:
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Example:
system("reference"); system("shared");
int i = 2;
reference two = i;
shared three = 3;

two * three;

— 6
two ~ three;
— 8
two ** three;
— 8

two + two;
— 4
two - two;
— 0

ring r = 0, (x,y,z), dp;
poly p = x +y + z;

reference ref = p;

shared zvar =z;

subst (ref, x,1, y,2, zvar,3);
— 6

In some cases references have to be dereferenced explicitly. For instance, this is the case for n-ary
function calls not starting with a reference or shared object. You can use the link operator
or a type cast to work around this. In contrast, some constructs like left-hand subexpressions
prematurely evaluate. You can avoid this by using the def operator or by explicitly type casting
to reference.

system("reference"); system("shared");
ring r = 0, (x,y,2), dp;

poly p = x +y + z;

shared xsh = x;

subst(p, xsh,1, vy,2, z,3); // fails

> ? subst(‘poly‘, ‘shared‘, ‘int‘) failed

— ? expected subst(‘poly‘, ‘poly‘, ‘poly‘)

— 7 expected subst(‘matrix‘, ‘poly‘, ‘int‘)

— 7 error occurred in or before ./examples/reference_and_shared_operatio\
ns_1.sing line 5: ‘subst(p, xsh,1, y,2, z,3); // fails‘

subst(p, poly(xsh),1, y,2, z,3); // good

= 6

subst(p, link(xsh),1, y,2, z,3); // fine

= 6

list 11 = list(xsh, xsh, xsh);
11[1] = y; // replaced only first entry
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[3]:

X

1111

shared(11[2]) = z; // replaces the others
11;
— [1]:
y
[2]:

z

[3]:

y4

1111111

Q.
[0}
Hh
~
i
[
—
N
[}
~
|

= x; // generic alternative

1B
[l
[EY
—

y
[2]:

X

[3]:

X

1111111

In particular, explicit dereferencing is useful to distinguish between typecasting and nested con-
structings.

system("reference"); system("shared");
shared shl = list(1);

shl;

— [1]:

— 1

|_>

list(shl); // wraps ’shl’ by a list
— [1]:

—> [1]:

=1

—

link(shl); // extract the list in ’shl’
— [1]:

— 1

4.28.6 reference and shared related functions

def explicitly type casts to reference or shared, respectively. (Note: For the def decla-
ration, see Section 4.4 [def], page 78.)

Example:

system("reference"); system("shared");
int i =1;

reference ref = i;

shared sh = 17;

list 11 = list(ref, ref, ref, sh, sh);
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11[1] = 2; // replace only one entry

[3]:

[4]:
17

[5]:

JII1I1I1I1I11311111
5

Q.
0]

Hh
~
=
=
—
N
—
~

= 3; // change the others

-

[1]:
[2]:

[3]:

[4]:

[ae
~

[5]:

1171131111111 11E
2 w

Q.
®
=h
~\
'_I
'_l
~m
S
—_
A

= 19; // same here

[

[1]:
[2]:

[3]:

[4]:

[ES
©

[5]:

L A A
2 w

link explicitly dereference a reference or shared object. (Note: For the 1ink declaration,
see Section 4.9 [link], page 95.)

Example:
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system

system("reference"); system("shared");
ring r = 0, (x,y,z), dp;
poly p=x +y + z;

def x_=x;

reference xref=x_;

xref;

= X

}_)

subst(p, xref,1, y,2, z,3); // fails

— ? subst(‘poly‘, ‘reference‘, ‘int‘) failed

— ? expected subst(‘poly‘, ‘poly‘, ‘poly*)

> 7 expected subst(‘matrix‘, ‘poly‘, ‘int‘)

> ? error occurred in or before ./examples/reference_and_shared_relate
functions_1.sing line 7: ‘subst(p, xref,1, y,2, z,3); // fails‘

subst(p, link(xref),1, y,2, z,3); // fine

— 6

The reference and shared objects overload the system command to gain extended
features, see system(ref, "help") for more details. (Note: For the general system
command, see Section 5.1.153 [system], page 271.)

Example:
system("reference"); system("shared");
shared sh;
system(sh, "help");
— system(<ref>, ...): extended functionality for reference/shared data <r
>
— system(<ref>, count) - number of references pointing to <ref>
— system(<ref>, enumerate) - unique number for identifying <ref>
> system(<ref>, undefined) - checks whether <ref> had been assigned
—  system(<ref>, "help") - prints this information message
—  system(<ref>, "typeof") - actual type referenced by <ref>
—  system(<refl>, same, <ref2>) - tests for identic reference objects
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5 Functions and system variables

5.1 Functions

This section gives a complete reference of all functions, commands and special variables of the
SINGULAR kernel (i.e., all built-in commands). See Section D.1 [standard_lib], page 790, for those
functions from the standard.lib (this library is automatically loaded at start-up time) which
extend the functionality of the kernel and are written in the SINGULAR programming language.

The general syntax of a function is
[target =] function_name (<arguments>);

If no target is specified, the result is printed. In some cases (e.g., export, keepring, setring,
type) the brackets are optional. For the commands kill, help, break, quit, exit and LIB no
brackets are allowed.

5.1.1 align

Syntax: align ( vector_expression, int_expression )
align ( module_expression, int_expression )

Type: type of the first argument
Purpose: maps module generators gen(i) to gen(i+s) for all i.

Example:

ring r=0, (x,y,2),(c,dp);
align([1,2,3],3);
— [0,0,0,1,2,3]
align([0,0,1,2,3],-1);
— [0,1,2,3]
align(freemodule(2),1);
— _[11=[0,1]
— _[2]=[0,0,1]

5.1.2 attrib

Syntax: attrib ( name )
Type: none
Purpose:  displays the attribute list of the object called name.

Example:
ring r=0, (x,y,2z),dp;
ideal I=std(maxideal(2));
attrib(I);
— attr:isSB, type int
Syntax: attrib ( name , string_expression )
Type: any

Purpose: returns the value of the attribute string_expression of the variable name. If the attribute
is not defined for this variable, attrib returns the empty string.

Example:
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ring r=0, (x,y,2),dp;
ideal I=std(maxideal(2));
attrib(I,"isSB");

— 1
// maxideal(2) is a standard basis,
// SINGULAR does know it for maxideal:
attrib(maxideal(2), "isSB");

— 1

Syntax: attrib ( name, string_expression, expression )
Type: none
Purpose: sets the attribute string_expression of the variable name to the value expression.

Example:

ring r=0, (x,y,2),dp;
ideal I=maxideal(2); // the attribute "isSB" is not set
vdim(I);

— 4
attrib(I,"isSB",0); // the standard basis attribute is reset here
vdim(I);

— // **x I is no standard basis

— 4

Remark: An attribute may be described by any string_expression. Some of these are used by
the kernel of SINGULAR and referred to as reserved attributes. Non-reserved attributes
may be used, however, in procedures and can considerably speed up computations.

Reserved attributes:
(cf_class, global, isSB, isHomog, rank, ring_cf, rowShift are used by the kernel, the
other are used by libraries)

cf_class (for ring)
the internal type of the coefficients (see n_coeffType)

global (for ring)
1, if the ordering is global

isSB (for ideal, module)
the standard basis property is set by all commands computing a standard
basis like groebner, std, stdhilb etc.; used by 1ift, dim, degree, mult,
hilb, vdim, kbase

isHomog (for ideal, module)
the weight vector of module generators for homogeneous or quasihomoge-
neous ideals/modules,
used by betti, degree, highcorner, hilbert, homog, prune, sba, slimgb,
std, syz, kbase, modulo, mres, nres, stdhilb.

isCI complete intersection property
isCM Cohen-Macaulay property

maxExp (for ring/list from ringlist)
limit for each exponent (32767 by default)

rank (for module)
set/get the rank of a module (see Section 5.1.106 [nrows|, page 230)



Chapter 5: Functions and system variables 156

ring_cf (for ring)
the coefficients of the polynomial ring are considered to be a ring

withSB value of type ideal, resp. module, is std

withHilb value of type intvec is hilb(_,1) (see Section 5.1.56 [hilb], page 193)
withRes  value of type list is a free resolution

withDim  value of type int is the dimension (see Section 5.1.25 [dim], page 172)

withMult value of type int is the multiplicity (see Section 5.1.100 [mult], page 225)

See Section 5.1.72 [killattrib], page 205.

5.1.3 bareiss

qcindex Gauss

Syntax:

Type:

Purpose:

Example:

bareiss ( module_expression )
bareiss ( matrix_expression )
bareiss ( module_expression, int_expression, int_expression )
bareiss ( matrix_expression, int_expression, int_expression )

list of module and intvec

applies the sparse Gauss-Bareiss algorithm (see Section C.9 [References|, page 788, Lee
and Saunders) to a module (or with type conversion to a matrix) with an ’optimal’ pivot
strategy. The vectors of the module are the columns of the matrix, hence elimination
takes place w.r.t. rows.

With only one parameter a complete elimination is done. Result is a list: the first entry
is a module with a minimal independent set of vectors (as a matrix lower triangular),
the second entry an intvec with the permutation of the rows w.r.t. the original matrix,
that is, a k at position 1 indicates that row k was carried over to the row I.

The further parameters control the algorithm. bareiss(M,i,j) does not attempt to
diagonalize the last i rows in the elimination procedure and stops computing when the
remaining number of vectors (columns) to reduce is at most j.

ring r=0, (x,y,2), (c,dp);
module mm;

// *x generation of the module mm **

int d=7;

int b=2;

int db=d-b;

int i;

for(i=d;i>0;i--){ mm[i]=3*x*gen(i);
for(i=db;i;i--){ mm[il=mm[i]+7*y*gen(i+b); 7
for(i=d;i>db;i--){ mm[i]=mm[i]+7*y*gen(i-db);
for(i=d;i>b;i--){ mm[i]=mm[i]+11*z*gen(i-b); }
for(i=b;i;i--){ mm[i]=mm[i]+11xz*gen(i+db); }
// ** the generating matrix of mm *x
print (mm) ;

3x, 0, 11z,0, O, 7Ty, O,

0, 3x, 0, 11z,0, 0, 7y,

7y, 0, 3x, 0, 11z,0, O,

o, 7y, 0, 3x, 0, 11z,0,

1111
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— 0, 0, 7y, 0, 3x, 0,

— 11z,0, O, 7y, 0, 3x, O,

— 0, 11z,0, 0, 7y, O,
// complete elimination
list ss=bareiss(mm);
print(ss[1]);

0,
0,
0,

0,

— Ty, 0, 0, 0,

— 3x, —-33xz, 0, 0,

— 11z,-121z2,1331z3,0,

— 0, O, 0, 9317yz3,0,

— 0, 21lxy, _[5,3],146412z4,-43923xz4,0,

—~ 0, O, 0, 0,

— 0, 49y2, _[7,3]1,3993xz3,_[7,5],
ss[2];

— 2,7,5,1,4,3,6

// elimination up to 3 vectors

ss=bareiss(mm,0,3);

print(ss[1]);

— 7y, 0, 0, 0,

—~ 3x, -33xz, O, 0,

— 11z,-12122,1331z3,0,

— 0, O, 0, 9317yz3,0,
= 0, O, 0, 0,

H

H

0, 49y2, _[7,3]1,3993xz3,_[7,5],

b

b

b

b

O OO oo

b

65219y2z3,_[6,6],0,

_[7,61,_[7,7]
0, 0,
0, 0,
0, 0,
0, 0,

27951xyz3,102487yz4,65219y2z3,
0, 21ixy, _[6,3],14641z4,_[6,5],

_[6,6], -43923xz4,
_[7,6]1, _[7,7]

// elimination without the last 3 rows

ss=bareiss(mm,3,0);
print(ss[1]);

= 7y, 0, 0, 0,
= 0, 77yz,0, 0,
— 0, O, 231xyz, O,
— 0, O, 0, 1617xy2z,0,
}_)
— 0, O, 539y2z, _[6,4],
—
ss[2];
— 2,3,4,1

o O O

See Section 5.1.23 [det], page 170; Section 4.12 [matrix|, page 107.

5.1.4 betti

Syntax:

Type:

Purpose:

betti ( list_expression )
betti ( resolution_expression )

betti ( list_expression , int_expression )
betti ( resolution_expression , int_expression )

intmat

0,
0,
0,

0,

11z,21xy,-1331z3,14641z4, _[5,5],_[5,6],_[5,71,
_[6,51,_[6,6],-3773y3z,
3x, 49y2,-363xz2,3993xz3, _[7,5],_[7,6],_[7,7]

157

with 1 argument: computes the graded Betti numbers of a minimal resolution of R™ /M,
if R denotes the basering, M is a homogeneous submodule of R™ and the argument

represents a resolution of R"/M.



Chapter 5: Functions and system variables

Example:

Hence,

The entry d of the intmat at place (i,j) is the minimal number of generators in degree
i+j of the j-th syzygy module (= module of relations) of R"/M, i.e. the Oth (resp. 1st)
syzygy module of R"/M is R™ (resp. M ). The argument is considered to be the result
of a res/fres/sres/mres/nres/Ires command. This implies that a zero is only allowed
(and counted) as a generator in the first module.
For the computation betti uses only the initial monomials. This could lead to confusing
results for a non-homogeneous input.

If the optional second argument is non-zero, the Betti numbers will be minimized.
betti sets the attribute rowShift.

ring r=32003, (a,b,c,d),dp;
ideal j=bc-ad,b3-a2c,c3-bd2,ac2-b2d;
list T=mres(j,0); // O forces a full resolution
// a minimal set of generators for j:
print (T[1]);

— bc-ad,

— c3-bd2,

— ac2-b2d,

— b3-a2c
// second syzygy module of r/j which is the first
// syzygy module of j (minimal generating set):
print(T[2]);

— bd,c2,ac,b2,

~ -a,-b,0, O,

—~ ¢, d, -b,-a,

= 0, 0, -d,-c
// the second syzygy module (minimal generating set):
print (T[3]);

— b,

— a,

= -c,

= d
print (T[4]);

= 0
betti(T);

— 1,0,0,0,

— 0,1,0,0,

— 0,3,4,1
// most useful for reading off the graded Betti numbers:
print (betti(T),"betti");

= 0 1 2 3
'_> ______________________________
— 0: 1 - - -
= 1: - 1 - -
2: - 3
H ______________________________
— total 1 4 4 1
=

e the Oth syzygy module of r/j (which is r) has 1 generator in degree 0 (which is 1),
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e the Ist syzygy module T[1] (which is j) has 4 generators (one in degree 2 and three in degree
3),

e the 2nd syzygy module T[2] has 4 generators (all in degree 4),

e the 3rd syzygy module T[3] has 1 generator in degree 5,

where the generators are the columns of the displayed matrix and degrees are assigned such that
the corresponding maps have degree 0:

0+ r/j—r(1) &L r@) @ r3(3) L2 piq) &

r(5) «—0

See Section C.3 [Syzygies and resolutions], page 772; Section 5.1.48 [fres|, page 186; Section 5.1.58
[hres|, page 195; Section 5.1.83 [Ires|, page 213; Section 5.1.98 [mres], page 223; Section 5.1.119
[print], page 239; Section 5.1.132 [res], page 249; Section 4.18 [resolution], page 124; Section 5.1.147
[sres], page 265.

5.1.5 char
Syntax: char ( ring_name )
Type: int

Purpose: returns the characteristic of the coefficient field of a ring.

Example:

ring r=32003, (x,y) ,dp;
char(r);

— 32003
ring s=0, (x,y),dp;
char(s);

— 0
ring ra=(7,a),(x,y),dp;
minpoly=a~3+a+1;
char(ra);

— 7
ring rp=(49,a), (x,y),dp;
char (rp);

=7
ring rr=real,x,dp;
char (rr) ;

— 0

See Section 5.1.7 [charstr], page 160; Section 4.19 [ring], page 125.

5.1.6 char_series

Syntax: char_series ( ideal_expression )
Type: matrix

Purpose:  the rows of the matrix represent the irreducible characteristic series of the ideal with
respect to the current ordering of variables.
One application is the decomposition of the zero-set.

Example:
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ring r=32003, (x,y,2),dp;

print (char_series(ideal (xyz,xz,y)));
= v,z,
= X,y

See Section C.4 [Characteristic sets], page 773.
5.1.7 charstr

Syntax: charstr ( ring_name )
Type: string

Purpose: returns the description of the coefficient field of a ring. (Tests for certain types of
coefficients should use the routines from ring.lib as the string representation may
change.)

Example:

ring r=32003, (x,y) ,dp;
charstr(r);

— ZZ/32003
ring s=0, (x,y),dp;
charstr(s);

= QQ
ring ra=(7,a), (x,y),dp;
minpoly=a“3+a+l;
charstr(ra);

— 7,a
ring rp=(49,a), (x,y),dp;
charstr(rp);

— 49,a
ring rr=real,x,dp;
charstr(rr);

— Float()

See Section 5.1.5 [char], page 159; Section 5.1.112 [ordstr]|, page 236; Section 4.19 [ring], page 125;
Section D.2.12 [ringlib], page 939; Section 5.1.165 [varstr|, page 282.

)

5.1.8 chinrem

Syntax: chinrem ( list, intvec )
chinrem ( list, list )
chinrem ( intvec, intvec )

Type: the same type as the elements of the first argument
If the elements of the first argument are lists again, chinrem is applied recursively.

Purpose:  applies chinese remainder theorem to the first argument w.r.t. the moduli given in the
second. The elements in the first list must be of same type which can be bigint/int,
poly, ideal, module, smatrix or matrix. The moduli, if given by a list, must be of
type bigint or int.

If data depending on a ring are involved, the coeffcient field must be Q.

Example:
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chinrem(intvec(2,-3),intvec(7,11));
—~ 30
chinrem(1list(2,-3),1ist(7,11));
— 30
ring r=0, (x,y),dp;
ideal 11=bx+2y,x2+3y2+xy;
ideal 1i2=2x-3y,2x2+4y2+5xy;
chinrem(list(i1,i2),intvec(7,11));
— _[1]1=-9x+30y
— _[2]=-20x2-6xy-18y2
chinrem(list(il,i2),1list(bigint(7),bigint(11)));
— _[1]1=-9x+30y
— _[2]1=-20x2-6xy-18y2
chinrem(list(list(i1,i2),1list(i1,i2)),list(bigint(7),bigint(11)));

= [1]:

— _[1]1=-9x+30y

— _[21=-20x2-6xy-18y2
= [2]:

— _[11=-9x+30y

— _[2]=-20x2-6xy-18y2

See Section D.4.18 [modstd_lib], page 1145.

5.1.9 cleardenom

Syntax: cleardenom ( poly_expression )
cleardenom ( vector_expression )

Type: same as the input type

Purpose: multiplies a polynomial, resp. vector, by a suitable constant to cancel all denominators
from its coeflicients and then divide it by its content.

Example:

ring r=0, (x,y,2),dp;
poly f=(3x+6y)"5;
£/5;

> 243/5x5+486x4y+1944x3y2+3888x2y3+3888xy4+7776/5y5
cleardenom(£f/5);

— x5+10x4y+40x3y2+80x2y3+80xy4+32y5
vector w= [4x2+20,6x+2,0,8]; // application to a vector
print(cleardenom(w)) ;

— [2x2+10,3x+1,0,4]

See Section D.2.8.14 [content], page 891.
5.1.10 close

Syntax: close ( link_expression )
Type: none
Purpose: closes a link.

Example:
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link 1="ssi:tcp localhost:"+system("Singular");
open(l); // start SINGULAR "server" on localhost in batchmode
close(1l); // shut down SINGULAR server

See Section 4.9 [link], page 95; Section 5.1.109 [open]|, page 231.

5.1.11 coef

Syntax:

Type:
Syntax:
Type:

Purpose:

Note:

Example:

coef ( poly_expression, product_of_ringvars )
coef ( ideal_expression, product_of_ringvars )

matrix
coef ( vector_expression, product_of ringvars, matrix_name, matrix_name )
none

determines the monomials in f divisible by a ring variable of m (where f is the first
argument and m the second argument) and the coefficients of these monomials as
polynomials in the remaining variables. First case: returns a 2 x n matrix M, n being
the number of the determined monomials. The first row consists of these monomials,
the second row of the corresponding coefficients of the monomials in f. Thus, f =
M[1,1]- M[2,1] + ...+ M[1,n] - M[2,n].

Second case: apply to all generators of the ideal and combine the results into one
matrix.

Third case: the second matrix (i.e., the 4th argument) contains the monomials, the
first matrix (i.e., the 3rd argument) the corresponding coefficients of the monomials in
the vector.

coef considers only monomials which really occur in f (i.e., which are not 0), while
coeffs (see Section 5.1.12 [coeffs|, page 163) returns the coefficient 0 at the appropriate
place if a monomial is not present.

ring r=32003, (x,y,2),dp;
poly f=x5+bx4y+10x2y3+y5;
matrix m=coef (f,y);
print(m);

= y5,y3, ¥y, 1,

— 1, 10x2,5x4,x5
f=x20+xyz+xy+x2y+23;
print (coef (f,xy));

— x20,x2y,xy, 1,

= 1, 1, z+1,z3
print (coef (maxideal(3),yz));

— y3,y2z,yz2,2z3,y2,yz,22,y, z, 1,
~ 0, 0, O, 1, 0, O, O, O, O, O,
~ 0, 0, 1, 0O, 0, O, O, O, 0, O,
~ 0, 1, O, O, 0, O, O, O, 0, O,
=~ 1, 0, 0, O, O, O, O, O, 0, O,
~ 0, 0, O, O, 0, O, x, O, 0, O,
~ 0, 0, O, O, 0, x, 0, O, 0, O,
~ 0, 0, O, O, x, O, 0, O, 0, O,
~ 0, 0, O, O, 0, O, 0, 0, x2,0,
~ 0, 0, O, O, 0, O, 0, x2,0, O,
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= 0, 0, 0, O, 0, O, 0, O, O, x3
vector v=[f,zy+77+xy];
print(v);

= [x20+x2y+xyz+z3+xy, Xy+yz+77]
matrix mc; matrix mm;
coef (v,y,mc,mm) ;
print (mc) ;

= x2+xz+x,x20+z3,

— X+z, 7
print (mm) ;

= y,1,

= y,1

See Section 5.1.12 [coeffs]|, page 163.

5.1.12 coeffs

Syntax:

Type:
Syntax:

Type:

Purpose:

Note:

Example:

coeffs ( poly_expression , ring_variable )

coeffs ( ideal_expression, ring_variable )

coeffs ( vector_expression, ring_variable )

coeffs ( module_expression, ring_variable )

coeffs ( poly_expression, ring_variable, matrix_name )
coeffs ( ideal_expression, ring_variable, matrix_name )
coeffs ( vector_expression, ring_variable, matrix_name )
coeffs ( module_expression, ring_variable, matrix_name )

matrix

coeffs ( ring_expression )

cring

develops each polynomial of the first argument J as a univariate polynomial in the

given ring_variable z, and returns the coefficients as a matrix M.

With e denoting the maximal z-degree occurring in the polynomials of J, and d:=e+1,
M = (my;) satisfies the following conditions:
(i) If J is a single polynomial f, then M is a (d x 1)-matrix and m;;1;,0 <1i <ee,
is the coefficient of 2% in f.
(ii) If J is an ideal with generators fi, fa,..., fr then M is a (d x k)-matrix and
miy1;,0 <i<e,1<j<k,is the coefficient of z* in f;.
(iii) If J is a k-dimensional vector with entries fi, fa,..., fr then M is a (dk x 1)-
matrix and mg;_1yayit1,1,0 <7 <e,1 <j <k, is the coefficient of z* in f;.
(iV) If J is a module generated by s vectors vy, vy, ..., v, of dimension k then M
is a (dk x s)-matrix and m_1)g4i+1,,,0 <7 < e, 1 < j < k1 < r < s, is the
coefficient of 2 in the j-th entry of v,.

The optional third argument T can be used to return the matrix of powers of z such
that matrix(J) = T*M holds in each of the previous four cases.

coeffs returns the coefficient 0 at the appropriate matrix entry if a monomial is not
present, while coef considers only monomials which actually occur in the given expres-
sion.



Chapter 5: Functions and system variables

Syntax:

Type:
Purpose:

Note:

Example:
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ring r;
poly f = (x+y)~3;
poly g = xyz+z10y4;
ideal 1 = £, g;
matrix M = coeffs(i, y);
print (M) ;

x3, 0,

3x2,%xz,

3x, O,

1, O,

0, z10
vector v = [f, g]l;
M = coeffs(v, y);
print (M) ;

x3,

3x2,

3%,

11111

1111111111

z10

coeffs ( ideal_expression, ideal_expression )

coeffs ( module_expression, module_expression )

coeffs ( ideal_expression, ideal_expression, product_of_ringvars )
coeffs ( module_expression, module_expression, product_of_ringvars )

matrix

expresses each polynomial of the first argument M as a sum Zle m; - a; - x, where the
m; come from a specified set of monomials, the a; are from the underlying coefficient
ring (or field), and the x° are powers of a specified ring variable x.

The second parameter K provides the set of monomials which should be sufficient to
generate all entries of M.

Both M and K can be thought of as the matrices obtained by matrix(M) and matrix(K),
respectively. (If M and K are given by ideals, then this matrix has just one row.)

The optional parameter product_of ringvars determines the variable x: It is expected
to be either the product of all ring variables (then x is 1, and each polynomial will
be expressed as Zle m; - a;, or product_of_ringvars is the product of all ring variables
except one variable (which then determines x). If product_of_ringvars is omitted then
x = 1 as default.

If K contains all monomials that are necessary to express the entries of M, then the
returned matrix A satisfies K - A = M. Otherwise only a subset of entries of K - A
and M will coincide. In this case, the valid entries start at M[1,1] and run from left to
right, top to bottom.

Note that in general not all entries of K*A and M will coincide, depending on the set
of monomials provided by K.

ring r=32003, (x,y,z),dp;
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Syntax:
Type:
Purpose:

Example:

module M = [y3+x2z, xyl, [-xy, y2+x2z];
print (M) ;
— y3+x2z,-xy,
= Xy, X2z+y2
module K = [x2, xyl, [y3, xyl, [xy, x];
print (K);
— x2,y3,XYy,
XY ,XY,X
matrix A = coeffs(M, K, xy); // leaving z as variable of interest
print(A); // attention: only the first row of M is reproduced by K*A
—~ z,0,
— 1,0,
— 0,-1

coeffs ( ring_expression )
cring

return the coeffcient ring of the argument

ring R=QQ,x,dp;
coeffs(R);
— QQ

See Section 5.1.11 [coef], page 162; Section 5.1.69 [kbase], page 203.

5.1.13 contract

Syntax:
Type:

Purpose:

Example:

contract ( ideal_expression, ideal_expression )
matrix

contracts each of the n elements of the second ideal J by each of the m elements of the
first ideal I, producing an m X n matrix.
Contraction is defined on monomials by:

(B_A) 1 > .
Contract(x“‘, 2B) = {1’ , if B> A componentwise
0, otherwise.

where A and B are the multiexponents of the ring variables represented by x. contract
is extended bilinearly to all polynomials.

ring r=0, (a,b,c,d),dp;
ideal I=a2,a2+bc,abc;
ideal J=a2-bc,abcd;
print (contract(I,J));
— 1,0,
— 0,ad,
— 0,d

See Section 5.1.24 [diff], page 171.
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5.1.14 create_ring

Procedure from library standard.lib (see Section D.1 [standard_lib], page 790).

Usage:

Return:

Note:

Example:

create_ring(11, 12, 13[, 14, "no_minpoly"]);
11 int or list, 12 list or string, 13 list or string, 14 ideal

ring(list(11, 12, 13, 14))

11,12, 13, 14 are assumed to be the four entries of ring_list(R) where R is the ring to be
returned.

Optional arguments: If 14 is not given, it is assumend to be ideal(0). If "no_minpoly"
is given, then the minimal polynomial in 11, if present, is set to 0.

Shortcuts: Strings such as "0", "(32003)" or "(0,a,b,c)" can be given as 11. Indexed
parameters as in "(0,a(1..3))" are not supported. Strings such as "(x,y,z)" can be given
as 12. Indexed variables as in "(x(1..3),y,z)" are not supported. Strings representing
orderings such as "dp" or "(Ip(3), ds(2))" can be given as 13, except matrix orderings
given by

"M([intmat_expression])".

ring R = (0,a), x, lp;
ring_list(R);
— [1]:
— 0,a

I
mm
N

II1313111111111111

(3

[1]:
x
1:
[1]:
[1]:
1p
[2]:
1
[2]:
[1]:
C
[2]:
0

_[11=0

minpoly = a"2+1;
qring Q = ideal(x"3-2);
ring S = create_ring(ring list(Q)[1], "(x,y,t)", "dp", "no_minpoly");

basering;

— // coefficients: QQ[al/(a2+1)

+ // number of vars : 3

= // block 1 : ordering dp

= // : names Xyt
= // block 2 : ordering C

5.1.15 crossprod

Syntax:

crossprod ( cring_expression, ... )
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Type: cring
Purpose:  crooss product of several objects of type cring

Example:

crossprod(ZZ/32003,Float());
— ZZ/32003 x Float()

See Section 4.1 [cring], page 73.
5.1.16 datetime

Procedure from library standard.lib (see Section D.1 [standard_lib], page 790).
Syntax: datetime ()

Return: string

Purpose: return the current date and time as a string

Example:

datetime();
— Fr 24. Feb 09:07:05 2023

5.1.17 dbprint

Syntax: dbprint ( int_expression, expression_list )
Type: none

Purpose:  applies the print command to each expression in the expression_list if int_expression is
positive. dbprint may also be used in procedures in order to print results subject to
certain conditions.

Syntax: dbprint ( expression )
Type: none
Purpose: The print command is applied to the expression if printlevel>=voice.

Note: See Section 3.8 [Libraries|, page 55, for an example how this is used for displaying
comments while procedures are executed.

Example:
int debug=0;
intvec i=1,2,3;
dbprint (debug,i) ;
debug=1;
dbprint (debug,i) ;

voice;
=1
printlevel;
— 0
dbprint(i);

See Section 3.9 [Debugging tools], page 68; Section 5.1.119 [print], page 239; Section 5.3.6 [print-
level], page 301; Section 5.3.11 [voice], page 305.
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5.1.18 defined

Syntax: defined ( name )
Type: int

Purpose: returns a value <>0 (TRUE) if there is a user-defined object with this name, and 0
(FALSE) otherwise.
A non-zero return value is the level where the object is defined (level 1 denotes the top
level, level 2 the level of a first procedure, level 3 the level of a procedure called by a
first procedure, etc.). For ring variables and other constants, -1 is returned.

Note: A local object m may be identified by if (defined(m)==voice).

Example:
ring r=(0,t), (x,y),dp;
matrix m[5] [6]=x,y,1,2,0,x+y;
defined (mm) ;
— 0
defined(r) and defined(m);
— 1
defined(m)==voice; // m is defined in the current level
— 1
defined(x);
= -1
defined(z);
= 0
defined("z");
— -1
defined(t);
= -1
defined(42);
-1

See Section 5.1.137 [rvar], page 255; Section 5.3.11 [voice], page 305.
5.1.19 deg

Syntax: deg ( poly_expression )
deg ( vector_expression )
deg ( poly_expression , intvec_expression )
deg ( vector_expression , intvec_expression )

Type: int

Purpose: returns the maximal (weighted) degree of the terms of a polynomial or a vector;
deg(0) is -1.
The optional second argument gives the weight vector, otherwise weight 1 is used for
lex orderings and block ordering, the default weights of the base ring are used for
orderings consisting of one block.

Example:
ring r=0, (x,y,2),1lp;
deg(0);
- -1
deg (x3+y4+xyz3) ;
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— 5
ring rr=7,(x,y),wp(2,3);
poly f=x2+y3;
deg(£f);

= 9
ring R=7, (x,y),ws(2,3);
poly f=x2+y3;
deg(£);

= 9
vector v=[x2,y];
deg(v);

= 4

169

See Section 5.1.68 [jet], page 202; Section 5.1.111 [ord], page 235; Section 4.16 [poly], page 118;

Section 4.22 [vector|, page 132.
5.1.20 degree

Syntax: degree ( ideal_expression )
degree ( module_expression )

Type: string

Purpose: computes the (Krull) dimension and the multiplicity of the ideal, resp. module, gener-
ated by the leading monomials of the input and prints it. This is equal to the dimension
and multiplicity of the ideal, resp. module, if the input is a standard basis with respect

to a degree ordering.

Example:

ring r3=32003, (x,y,2) ,ds;

int a,b,c,t=11,10,3,1;

poly f=x"a+y b+z” (3xc)+x”~ (c+2)*y~ (c-1)+x" (c-1)*y~ (c-1)*z3
+x7 (c=2) ¥y c* (y2+t*x) "2;

ideal i=jacob(f);

ideal iO=std(i);

degree(i0);

— // dimension (local)

— // multiplicity = 314

I
(@]

See Section 5.1.25 [dim], page 172; Section 4.5 [ideal], page 79; Section 5.1.100 [mult], page 225;

Section 5.1.149 [std], page 267; Section 5.1.166 [vdim], page 282.
5.1.21 delete

Syntax: delete ( list_expression, int_expression )
delete ( intvec_expression, int_expression )
delete ( ideal_expression, int_expression )
delete ( module_expression, int_expression )
delete ( list_expression, intvec_expression )
delete ( ideal_expression, intvec_expression )
delete ( module_expression, intvec_expression )

Type: type of the first argument

Purpose: deletes the element(s) with the given index/indices from a list/intvec/ideal/module

(the input is not changed).
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Example:
list 1="a","b","c";
list ll=delete(1,2);11;
— [1]:
— a
— [2]:

111111

delete(1..5,2);

— 1,3,4,5
ring r=0, (x,y,2),dp;
delete(maxideal(1),1);

= _[1]l=y

= _[2]==z
delete(maxideal(1),1..2);

— _[1]=z

See Section 4.5 [ideal], page 79; Section 5.1.62 [insert], page 198; Section 4.8 [intvec|, page 92;
Section 4.10 [list], page 102; Section 4.13 [module|, page 111.

5.1.22 denominator

Syntax: denominator ( number_expression )
Type: number
Purpose: returns the denominator of a number.

Example:
ring r = 0, x, dp;
number n = 3/2;
denominator(n) ;
— 2

See Section 5.1.9 [cleardenom], page 161; Section D.2.8.14 [content|, page 891; Section 5.1.107
[numerator], page 230.

5.1.23 det

Syntax: det ( intmat_expression )
det ( matrix_expression )
det ( smatrix_expression )
det ( matrix_expression , string_expression )
det ( smatrix_expression , string_expression )

Type: int, resp. poly

Purpose: returns the determinant of a square matrix. The applied algorithms depend on type of
input or the optional second argument.
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Example:

The optional second argument specifies the algorithm to use. Possible values are
"Bareiss", "SBareiss", "Mu" and "Factory".

ring r=7, (x,y),wp(2,3);
matrix m[3][3]=1,2,3,4,5,6,7,8,%;
det (m) ;

— -3x-1

See Section 4.7 [intmat], page 89; Section 4.12 [matrix]|, page 107; Section 5.1.92 [minor|, page 219.

5.1.24 diff

Syntax:

Type:
Syntax:
Type:
Syntax:
Type:

Purpose:

Example:

diff ( poly_expression, ring_variable )
diff ( vector_expression, ring_variable )
diff ( ideal_expression, ring_variable )
diff ( module_expression, ring_variable )
diff ( matrix_expression, ring_variable )

the same as the type of the first argument
diff ( ideal_expression, ideal_expression )
matrix

diff ( number_expression, ring_parameter )
number

computes the partial derivative of a polynomial object by a ring variable (first forms)

respectively differentiates each polynomial (1..n) of the second ideal by the differential
operator corresponding to each polynomial (1..m) in the first ideal, producing an m x
n matrix.

respectively if the coefficient ring is a transcendental field extension, differentiates a
number (that is, a rational function) by a transcendental variable (ring parameter).

ring r=0, (x,y,2),dp;
poly f=2x3y+3z5;
diff (f,x);
— 6x2y
vector v=[f,y2+z];
diff(v,z);
> 16z4*gen(1)+gen(2)
ideal j=x2-yz,xyz;
ideal i=x2,x2+yz,xyz;
// corresponds to differential operators
// d2/dx2, d2/dx2+d2/dydz, d3/dxdydz:
print (diff(i,j));
— 2,0,
— 1,x,
— 0,1
// differentiation of rational functions:
ring R=(0,t), (x),dp;
number f = t°2/(1-t)"2;
diff(f,t);
= (-2t)/(t3-3t2+3t-1)
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See Section 5.1.13 [contract], page 165; Section 4.5 [ideal], page 79; Section 5.1.66 [jacob], page 201;
Section 4.12 [matrix|, page 107; Section 4.13 [module], page 111; Section 4.16 [poly|, page 118;
Section 5.1.163 [var], page 281; Section 4.22 [vector], page 132.

5.1.25 dim

Syntax: dim ( ideal_expression )
dim ( module_expression )
dim ( resolution_expression )
dim ( ideal_expression , ideal_expression )
dim ( module_expression , ideal_expression )

Type: int

Purpose: computes the dimension of the ideal, resp. module, generated by the leading monomials
of the given generators of the ideal, resp. module. This is also the dimension of the
ideal if it is represented by a standard basis.

dim(I,J) is the dimension of I/J.
dim( res ) computes the cohomological dimension of res[1].

Note: The dimension of an ideal I means the Krull dimension of the basering modulo I.
The dimension of a module is the dimension of its annihilator ideal.
In the case of ideal (1), -1 is returned.

Example:
ring r=32003, (x,y,2),dp;
ideal I=x2-y,x3;
dim(std(I));
— 1
dim(std(ideal(1)));
— -1

See Section 5.1.20 [degree], page 169; Section 4.5 [ideal], page 79; Section 5.1.100 [mult], page 225;
Section 5.1.149 [std], page 267; Section 5.1.166 [vdim], page 282.

5.1.26 division

Syntax: division ( ideal_expression, ideal_expression )
division ( module_expression, module_expression )
division ( ideal_expression, ideal_expression, int_expression )
division ( module_expression, module_expression, int_expression )
division ( ideal_expression, ideal_expression, int_expression, intvec_expression )
division ( module_expression, module_expression, int_expression,
intvec_expression )

Type: list

Purpose: division computes a division with remainder. For two ideals resp. modules M
(first argument) and N (second argument), it returns a list T,R,U where T is a ma-
trix, R is an ideal resp. a module, and U is a diagonal matrix of units such that
matrix (M) *U=matrix (N)*T+matrix(R) is a standard representation for the normal
form R of M with respect to a standard basis of N. division uses different algorithms
depending on whether N is represented by a standard basis. For a polynomial basering,
the matrix U is the identity matrix. A matrix T as above is also computed by 1ift.



Chapter 5: Functions and system variables 173

For additional arguments n (third argument) and w (fourth argument), division re-
turns a list T,R as above such that matrix(M)=matrix(N)*T+matrix(R) is a standard
representation for the normal form R of M with respect to N up to weighted degree n
with respect to the weight vector w. The weighted degree of T and R respect to w is at
most n. If the weight vector w is not given, division uses the standard weight vector
w=1,...,1.

Example:

ring R=0, (x,y) ,ds;
poly f=x5+x2y2+y5;
division(f, jacob(f)); // automatic conversion: poly -> ideal
— [1]:
—> _[1,11=1/5%
—  _[2,1]1=3/10y
— [2]:
—  _[1]=-1/2y5
— [3]:
— _[1,1]1=1
division(£~2,jacob(f));
— [1]:
_[1,11=1/20x6-9/80xy5-5/16x7y+5/8x2y6
_[2,1]1=1/8x2y3+1/5x5y+1/20y6-3/4x3y4-5/4x6y2-5/16xy7
[2]:
_[11=0
[3]:
_[1,11=1/4-25/16xy
division(ideal (£f°2),jacob(f),10);
— // **x _ is no standard basis
— [1]:
—  _[1,11=-75/8y9
— _[2,1]1=1/2x2y3+x5y-1/4y6-3/2x3y4+15/4xy7+375/16x2y8
— [2]:
— _[11=x10+9/4y10

111111

See Section 4.5 [ideal|, page 79; Section 5.1.80 [lift], page 209; Section 4.13 [module], page 111
Section 4.16.3 [poly operations], page 120; Section 5.1.129 [reduce], page 247

5.1.27 dump

Syntax: dump ( link_expression )
Type: none

Purpose: dumps (i.e., writes in a "message" or "block") the state of the SINGULAR session (i.e.,
all defined variables and their values) to the specified link (which must be either an
ASCII or ssi link) such that a getdump can retrieve it later on.

Example:
ring r;
// write the whole session to the file dump.ascii
// in ASCII format
dump(":w dump.ascii");
kill r; // kill the basering
// reread the session from the file



Chapter 5: Functions and system variables 174

// redefining everything which was not explicitly killed before
getdump ("dump.ascii");
r;

— // coefficients: ZZ/32003

— // number of vars : 3

= // block 1 : ordering dp

= // : names Xy z
= // block 2 : ordering C

Restrictions:

For ASCII links, integer matrices contained in lists are dumped as integer list ele-
ments (and not as integer matrices), and lists of lists are dumped as one flatted list.
Furthermore, links themselves are not dumped.

See Section 5.1.52 [getdump], page 189; Section 4.9 [link], page 95; Section 5.1.172 [write], page 285.

5.1.28 eliminate

Syntax:

Type:

Purpose:

Note:

Example:

eliminate ( ideal_expression, product_of_ring_variables )

eliminate ( module_expression, product_of_ring_variables )

eliminate ( ideal_expression, intvec_expression )

eliminate ( module_expression, intvec_expression )

eliminate ( ideal_expression, product_of_ring variables, intvec_hilb )
eliminate ( module_expression, product_of_ring_variables, intvec_hilb )

the same as the type of the first argument

eliminates variables occurring as factors/entries of the second argument from an ideal
(resp. a submodule of a free module), by intersecting it (resp. each component of the
submodule) with the subring not containing these variables.

eliminate does not need a special ordering nor a standard basis as input.

Since elimination is expensive, for homogeneous input it might be useful first to com-
pute the Hilbert function of the ideal (first argument) with a fast ordering (e.g., dp).
Then make use of it to speed up the computation: a Hilbert-driven elimination uses
the intvec provided as the third argument.

If the ideal (resp. module) is not homogeneous with weights 1, this intvec will be
silently ignored.

ring r=32003, (x,y,z),dp;
ideal i=x2,xy,y5;
eliminate(i,x);

— _[1]=y5
ring R=0, (x,y,t,s,z),dp;
ideal i=x-t,y-t2,z-t3,s-x+y3;
eliminate(i,ts);

= _[1]=y2-xz

= _[2]=xy-z

= _[3]=x2-y
ideal j=x2,xy,y2;
intvec v=hilb(std(j),1);
eliminate(j,y,v);

— _[1]=x2
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See Section 5.1.56 [hilb], page 193; Section 4.5 [ideal], page 79; Section 4.13 [module|, page 111;
Section 5.1.149 [std], page 267.

5.1.29 eval

Syntax: eval ( expression )
Type: none

Purpose: evaluates (quoted) expressions. Within a quoted expression, the quote can be "undone"
by an eval (i.e., each eval "undoes" the effect of exactly one quote). Used only when
receiving a quoted expression from an ssi link, with quote and write to prevent local
evaluations when writing to an ssi link.

Example:

link 1="ssi:w example.ssi";

ring r=0, (x,y,2),ds;

ideal i=maxideal(3);

ideal j=x7+x3,x2,z;

// compute i+j before writing, but not std
// this writes ’std(ideal(x3,...,z))°
write (1, quote(std(eval(i+j))));
option(prot);

close(1);

// now read it in again and evaluate

// read(1l) forces to compute ’std(ideal(x3,...,z))°

read(1l);
— _[1]==z
— _[2]=x2
= _[3]=xy2
— _[4]=y3

close(1l);

See Section 4.9.5 [Ssi links], page 97; Section 5.1.124 [quote], page 244; Section 5.1.172 [write],
page 285.

5.1.30 ERROR

Syntax: ERROR ( string_expression )
Type: none

Purpose: Immediately interrupts the current computation, returns to the top-level, and displays
the argument string_expression as error message

Note: This should be used as an emergency, resp. failure, exit within procedures.

Example:
int i=1;
proc myError() {ERROR("Need to leave now");i=2;}
myError () ;

? Need to leave now

7 leaving ::myError (O)

1811
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5.1.31 example

Syntax: example topic ;

Purpose: computes an example for topic. Examples are available for all SINGULAR kernel and
library functions. Where available (e.g., within Emacs), use <TAB> completion for a
list of all available example topics.

Example:
example prime;
example intvec_declarations;

Section 5.1.54 [help], page 191
5.1.32 execute

Syntax: execute ( string_expression )
Type: none
Purpose:  executes a string containing a sequence of SINGULAR commands.

Note: The command return cannot appear in the string.
execute should be avoided in procedures whenever possible, since it may give rise to
name conflicts. Moreover, such procedures cannot be precompiled (a feature which
SINGULAR will provide in the future).

Example:

ring r=32003, (x,y,2z),dp;
ideal i=x+y,z3+22y;
write(":w save_i",i);
ring r0=0, (x,y,2z),Dp;
string s="ideal k="+read("save_i")+";";
S;

— ideal k=x+y,z3+22y;
execute(s); // define the ideal k
k;

— k[1]=x+y

— k[2]=2z3+22y

5.1.33 extged

Syntax: extged ( int_expression, int_expression )
extged ( bigint_expression, bigint_expression )
extgecd ( poly_expression, poly_expression )

Type: list of 3 objects of the same type as the type of the arguments

Purpose: computes extended ged: the first element is the greatest common divisor of the two
arguments, the second and third are factors such that if 1ist L=extgcd(a,b); then
L[1]=a*L[2]+b*L[3].

Note: Polynomials must be univariate (in the same variable) to apply extgcd.

Example:
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extgcd(24,10);
[1]:
2
[2]:
-2
[3]:
5
ring r=0, (x,y),1lp;
extged (x4-x6, (x2+x5) * (x2+x3) ) ;
[1]:
x5+x4
[2]:
1/2x2+1/2x+1/2
[3]:
1/2

111111

111111

See Section 5.1.50 [ged], page 188; Section 4.6 [int], page 83.

5.1.34 facstd

Syntax:

Type:

Purpose:

Note:

Example:

facstd ( ideal_expression )
facstd ( ideal_expression, ideal_expression )

list of ideals

returns a list of ideals computed by the factorizing Groebner basis algorithm.

The intersection of these ideals has the same zero-set as the input, i.e., the radical of
the intersection coincides with the radical of the input ideal. In many (but not all!)
cases this is already a decomposition of the radical of the ideal. (Note however that in
general, no inclusion between the input and output ideals holds.)

The second, optional argument gives a list of polynomials which define non-zero con-
straints: those ideals which contain one of the constraint polynomials are omitted from
the output list. Thus the zero set of the intersection of the output ideals is contained
in the zero set V of the first input ideal and contains the complement in V of the zero
set of the second input ideal.

Not implemented for baserings over real ground fields and Galois fields (that is, only
implemented for ground fields for which Section 5.1.36 [factorize|, page 178 is imple-
mented).

ring r=32003, (x,y,2),(c,dp);
ideal I=xyz,x2z;
facstd(I);
— [1]:
— _[1]==z
— [2]:
—> _[1]=x
facstd(I,x);
= [1]:
> _[1]==z

See Section 4.5 [ideal], page 79; Section 4.19 [ring], page 125; Section 5.1.149 [std], page 267.
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5.1.35 factmodd

Syntax: factmodd ( poly_expression, int_expression
[, poly_expression, poly_expression ]
[, int_expression, int_expression ]

)
Type: list of polys

Purpose: Computes a factorization of a polynomial h(x, y) in K[[x]][y] up to a certain degree in
x, whenever a factorization of h(0, y) is provided or can be computed.
The algorithm is based on Hensel’s lemma: Let h(x, y) denote a monic polynomial in y
of degree m + n with coefficients in K][[x]]. Suppose there are two monic factors f_0(y)
(of degree n) and g_0(y) of degree (m) such that
h(0, y) = f20(y) * g-0(y) and <f_0, g-0> = K]y].
Fix an integer d >= 0. Then there are monic polynomials in y with coefficients in
K[[x]], namely f(x, y) of degree n and g(x, y) of degree m such that
h(x, y) = f(x, y) * g(x, y) modulo <x~(d+1)> (*).
The function’s six arguments are h, d, .0, g_0, xIndex, and yIndex, where xIndex and
yIndex denote indices of ring variables that are to play the roles of x and y as above.
h must be provided as an element of K[x,y] since all terms of h with x-degree larger
than d can be ignored due to (*).
If £0 and g_0 are not given, the algorithm computes the factorization of h(0, y) and
is expected to find exactly two distinct factors (which may appear with multiplicities
larger than 1) and uses these as f-0 and g_0.
If xIndex and yIndex are missing they will be expected to be 1 and 2, respectively.

Note: The function expects the ground ring to contain at least two variables.

Example:
ring r = 0, (x,y), dp;
poly fO = y240; poly g0 = y102+1;
poly h = y342+14x260+7x140y110+2x120y130+y240;

int d = 260;
list L = factmodd(h, d, f0, g0); L;

— [1]:

— -14x260y204-4x240y224-14x260y102-7x140y212-2x120y232+14x260+7x140y11
2x120y130+y240

— [2]:

— 42x260y66+8x240y86+7x140y74+2x120y94+y102+1
// check result: next output should be zero
reduce(h - L[1] * L[2], std(x~(d+1)));

= 0

See Section 5.1.36 [factorize], page 178.
5.1.36 factorize

Syntax: factorize ( poly_expression )
factorize ( poly_expression, 0 )
factorize ( poly_expression, 2 )

Type: list of ideal and intvec
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Syntax:
Type:

Purpose:

Note:

Example:
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factorize ( poly_expression, 1)
ideal

computes the irreducible factors (as an ideal) of the polynomial together with or without
the multiplicities (as an intvec) depending on the second argument:

0: returns factors and multiplicities, first factor is a constant.
May also be written with only one argument.

1: returns non-constant factors (no multiplicities).

2: returns non-constant factors and multiplicities.

Not implemented for the coefficient fields real, finite fields of type (p™n,a) and ZZ/m.

ring r=32003, (x,y,z),dp;
factorize (9% (x-1) "2*(y+z));
— [1]:

_[11=9

_[2]=y+z

_[3]=x-1

[2]:

1,1,2
factorize (9% (x-1) "2x(y+z),1);
= _[1]=y+z
= _[2]=x-1

factorize (9% (x-1) "2*(y+z),2);
— [1]:
_[1]=y+z
_[2]=x-1
[2]:

1,2
ring rQ=0,x,dp;
poly f = x2+1; // irreducible in Q[x]
factorize(f);

— [1]:
_[11=1
_[2]=x2+1
[2]:

1,1
ring rQi = (0,1i),x,dp;
minpoly = i2+1;
poly f = x2+1; // splits into linear factors in Q(i) [x]
factorize(f);

— [1]:
_[11=1
_[2]=x+(-1)
_[31=x+(1)
[2]:
1,1,1

1111 1111 11111

11111

See Section D.4.1.1 [absFactorize], page 998; Section 4.16 [poly], page 118.

5.1.37 farey
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Syntax:

Type:

Purpose:

Note:

Example:

See Section 5
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farey ( bigint_expression , bigint_expression )
farey ( ideal_expression , bigint_expression )
farey ( module_expression , bigint_expression )
farey ( matrix_expression , bigint_expression )
farey ( smatrix_expression , bigint_expression )
farey ( list_expression , bigint_expression )

type of the first argument (unless it is 1ist)

lift the first argument modulo the second to the rationals.

The (coefficients of the) result a/b is the best approximation under the
condition |al,|b] <= /(N —1)/2 farey(list(a,b,..),B) is equivalent to
list(farey(a,B),farey(b,B),.. .).

The current coefficient field must be the rationals.

ring r=0,x,dp;
farey(2,32003) ;
= 2

8 [chinrem], page 160.

5.1.38 fetch

Syntax:

Type:

Purpose:

Note:

Example:

fetch ( ring_.name, name )
fetch ( ring_ name, name, intvec_expression )
fetch ( ring_.name, name, intvec_expression, intvec_expression )

number, poly, vector, ideal, module, matrix or list (the same type as the second argu-
ment)

maps objects between rings. fetch is the identity map between rings and qrings, in
the first case the i-th variable of the source ring is mapped to the i-th variable of the
basering. If the basering has less variables than the source ring these variables are
mapped to zero. In the 3rd and 4th arguments the intvec describes the permutation
of the variables: an i at position j maps the variable var (j) of the source to the vari-
able var (i) of the destination. Negative numbers (and the fourth argument) describe
mapping of parameters.

A zero means that that variable/parameter is mapped to 0.

The coefficient fields must be compatible. (See Section 4.11 [map]|, page 104 for a de-
scription of possible mappings between different ground fields).

fetch offers a convenient way to change variable names or orderings, or to map objects
from a ring to a quotient ring of that ring or vice versa.

option(Imap); reports the mapping.

Compared with imap, fetch uses the position of the ring variables, not their names.

ring r=0, (x,y,2),dp;
ideal i=maxideal(2);
ideal j=std(i);

poly f=x+y2+z3;
vector v=[f,1];
qring 9=j;

poly f=fetch(r,f);
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f;
= z3+y2+x

vector v=fetch(r,v);

v
— z3*gen(1)+y2*xgen(1l)+x*gen(1)+gen(2)
ideal i=fetch(r,i);
i;

i[1]=z2

i[2]=yz

i[3]=y2

i[4]=xz

i[Bl=xy

i[6]=x2
ring rr=0,(a,b,c),1p;
poly f=fetch(q,f);
f;
— at+b2+c3

vector v=fetch(r,v);

V3
— a*gen(1)+b2*gen(1)+c3*gen(1)+gen(2)
ideal k=fetch(q,1i);
k;

k[1]=c2

k[2]=bc

k[3]=b2

k[4]=ac

k[5]=ab

k[6]=a2
fetch(q,i,1..nvars(q)); // equivalent to fetch(q,i)
_[1]=c2

_[2]=bc

_[3]=b2

_[4]=ac

_[5]=ab

_[6]=a2

111111

111111

ITI11111

See Section 5.1.59 [imap], page 196; Section 4.11 [map], page 104; Section 5.1.110 [option], page 231;
Section 4.19.1 [qring], page 125; Section 4.19 [ring], page 125.

5.1.39 fglm

Syntax: fglm ( ring_name, ideal_name )
Type: ideal

Purpose: computes for the given ideal in the given ring a reduced Groebner basis in the current
ring, by applying the so-called FGLM (Faugere, Gianni, Lazard, Mora) algorithm.
The main application is to compute a lexicographical Groebner basis from a reduced
Groebner basis with respect to a degree ordering. This can be much faster than com-
puting a lexicographical Groebner basis directly.

Assume:  The ideal must be zero-dimensional and given as a reduced Groebner basis in the given
ring. The monomial ordering must be global.

Note: The only permissible differences between the given ring and the current ring are the
monomial ordering and a permutation of the variables, resp. parameters.
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Example:
ring r=0, (x,y,2),dp;
ideal i=y3+x2, x2y+x2, x3-x2, z4-x2-y;
option(redSB); // force the computation of a reduced SB
i=std(i);
vdim(i);
— 28
ring s=0,(z,x,y),1lp;
ideal j=fglm(r,i);
Js
— j[1]=y4+y3
— j[2]=xy3-y3
— j[3]=x2+y3
= j[4]=2z4+y3-y
See Section 5.1.40 [fglmquot], page 182; Section 5.1.110 [option], page 231; Section 4.19.1 [qring],
page 125; Section 4.19 [ring], page 125; Section 5.1.149 [std], page 267; Section 5.1.150 [stdfglm]
page 269; Section 5.1.166 [vdim], page 282.

5.1.40 fglmquot

Syntax: fglmquot ( ideal_expression, poly_expression )
Type: ideal

Purpose: computes a reduced Groebner basis of the ideal quotient I:p of a zero-dimensional
ideal I and a polynomial p using FGLM-techniques.

Assume:  The ideal must be zero-dimensional and given as a reduced Groebner basis in the given
ring. The polynomial must be reduced with respect to the ideal.

Example:
ring r=0, (x,y,2z),1p;
ideal i=y3+x2,x2y+x2,x3-x2,z4-x2-y;
option(redSB); // force the computation of a reduced SB
i=std(i);
poly p=reduce(x+yz2+z10,1);
ideal j=fglmquot(i,p);
s
— j[1]1=z12
= j[2]=yz4-z8
— j[3]=y2+y-z8-z4
— j[4]=x+y-z10-z6-2z4
See Section 5.1.39 [fglm], page 181; Section 5.1.110 [option|, page 231; Section 5.1.125 [quotient],
page 244; Section 4.19 [ring], page 125; Section 5.1.149 [std], page 267; Section 5.1.166 [vdim],
page 282.

5.1.41 files, input from

Syntax: < "filename"
Type: none
Purpose: Read and execute the content of the file filename. Shorthand for

execute(read(filename)).



Chapter 5: Functions and system variables 183

Example:

< "example"; //read in the file example and execute it

See Section 5.1.32 [execute], page 176; Section 5.1.128 [read], page 246.

5.1.42 find

Syntax: find ( string_expression, substring_expression )
find ( string_expression, substring_expression, int_expression )

Type: int

Purpose: returns the first position of the substring in the string or 0 (if not found),
starts the search at the position given in the 3rd argument.

Example:

find("Aac","a");
= 2

find(“aba " s ||all+llbll) ;
= 1

find(llaba n s ||all+llb|| ’2) ;
= 3

find("abab","ab",3);
= 3

find("0123","abcd");
— 0

See Section 4.21 [string], page 128.

5.1.43 finduni

Syntax:

Type:

Purpose:

Assume:

Example:

finduni ( ideal_expression )
ideal

returns an ideal which is contained in the ideal_expression, such that the i-th generator
is a univariate polynomial in the i-th ring variable.
The polynomials have minimal degree w.r.t. this property.

The ideal must be zero-dimensional and given as a reduced Groebner basis in the
current ring.

ring r=0,(x,y,z), dp;
ideal i=y3+x2,x2y+x2,z4-x2-y;
option(redSB); // force computation of reduced basis
i=std(i);
ideal k=finduni(i);
print (k) ;
— x4-x2,
— y4+y3,
— z12

See Section 5.1.110 [option], page 231; Section 4.19 [ring], page 125; Section 5.1.149 [std], page 267;
Section 5.1.166 [vdim], page 282.
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5.1.44 flintQ

Syntax:
Type:

Purpose:

Example:

f1lintQ ( list_of_names )

cring

184

returns a coefficient ring of multivariate rational functions over Q to be used in ring

definitions. Require flint >=2.5.3.

—>
H
H
}_)

=

LIB "flint.so";
ring R1=f1lintQ(a,b), (x,y) ,dp;

R1;

// coefficients: flintQQ(a,b)
// number of vars :

//
//
//

block

block

1

2

: ordering dp
! names Xy
2

ordering C

See Section 4.1 [cring], page 73; Section 4.19 [ring], page 125.

5.1.45 Float

Syntax:

Type:

Purpose:

Example:

Float ()
Float ( int_expression )
Float ( int_expression , int_expression )

cring

returns a coefficient ring of floating point (inexact) real number to be used in ring
definitions.

11111

11111

ring Ri=Float(), (x,y),dp;

R1;

// coefficients: Float()
// number of vars :

//
//
//

R2;

block

block

1

2

: ordering dp
! names Xy
2 :
ring R2=Float(10,20), (a,b),dp;

ordering C

// coefficients: Float(10,20)
// number of vars :

//
//
//

block

block

1

2

: ordering dp
: names ab
2 :

ordering C

See Section 4.1 [cring], page 73; Section 4.19 [ring], page 125.

5.1.46 fprintf

Procedure from library standard.lib (see Section D.1 [standard_lib], page 790).

Syntax:

Return:

fprintf ( link_expression, string_expression [, any_expressions] )

none
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Purpose: fprintf(1l,fmt,...); performs output formatting. The second argument is a format
control string. Additional arguments may be required, depending on the content of
the control string. A series of output characters is generated as directed by the control
string; these characters are written to the link 1. The control string fmt is simply text
to be copied, except that the string may contain conversion specifications.

Type help print; for a listing of valid conversion specifications. As an addition to
the conversions of print, the %n and %2 conversion specification does not consume an
additional argument, but simply generates a newline character.

Note: If one of the additional arguments is a list, then it should be enclosed once more into
a list () command, since passing a list as an argument flattens the list by one level.

Example:

ring r=0, (x,y,z),dp;
module m=[1,y], [0,x+z];
intmat M=betti(mres(m,0));
list 1=r,m,M;
link 1i=""; // link to stdout
fprintf(li,"s:%s,1:%1",1,2);
— s:1,1:int(2)
fprintf(li,"s:%s",1);
= s:(QQ), (x,y,2), (dp(3),C)
fprintf(li,"s:%s",list(1));
— s:(QQ), (x,y,2),(dp(3),C) ,y*gen(2)+gen(1) ,x*gen(2) +zxgen(2) ,1,1
fprintf (1i,"21:%21",1ist(1));
= 21:1ist("(QQ) , (x,y,2), (dp(3),C)",
— module (y*gen(2)+gen(1),
— x*xgen(2)+z*gen(2)),
— intmat(intvec(1,1 ),1,2))

}—)
fprintf (1i,"%p",list(1));
[1]:
// coefficients: QQ
// number of vars : 3
// block 1 : ordering dp
// : names Xy z
// block 2 : ordering C
[2]:

_[11=y*gen(2)+gen(1)
_[2]=x*gen(2) +zxgen(2)

[3]:
1,1
rintf(1i,"%;",1ist(1));
[1]:
// coefficients: QQ
// number of vars : 3
// block 1 : ordering dp
// : names Xy z
// block 2 : ordering C
[2]:

_[11=y*gen(2)+gen(1)
_[2]=x*gen(2) +z*gen(2)
[3]:

111111111l 30331111
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— 1,1
—>
fprintf (1i,"%b",M);

See also: Section 5.1.119 [print], page 239; Section 5.1.120 [printf], page 241; Section 5.1.146
[sprintf], page 264; Section 4.21 [string], page 128.

5.1.47 freemodule

Syntax: freemodule ( int_expression )

Type: module

Purpose: creates the free module of rank n generated by gen(1), ..., gen(n).
Example:

ring r=32003, (x,y), (c,dp);
freemodule(3);
= _[1]1=[1]
— _[2]=[0,1]
— _[31=[0,0,1]
matrix m=freemodule(3); // generates the 3x3 unit matrix
print(m);
— 1,0,0,
—~ 0,1,0,
— 0,0,1
See Section 5.1.51 [gen], page 189; Section 4.13 [module|, page 111.

5.1.48 fres

Syntax: fres ( ideal_expression/module_expression , int_expression , [ string_expression ])
Type: resolution

Purpose: computes a (not necessarily minimal) free resolution of the input ideal/module, using
Schreyer’s algorithm, see reference.
If the second argument is n > 0, then the resolution is computed up to step n. If it is
0, fres computes the whole resolution.
The optional third argument can be set to
e "complete" (default) to compute the whole syzygy module in each step,
e "frame" to compute only the so-called frame,

e "extended frame" to compute only the first two terms of each generator w.r.t.
the induced monomial ordering, or

e "single module" to return only the frame of each module except the last one and
to return the last module in its entirety. This option can be used to reduce the
amount of memory needed for the computation.

Note: The input ideal/module must be a standard basis.
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Reference:
B. Erocal, O. Motsak, F.-O. Schreyer, A. Steenpass: Refined Algorithms to Compute
Syzygies. J. Symb. Comput. 74 (2016), 308-327. http://arxiv.org/abs/1502.01654

Example:

ring r = 0, (w,x,y,z), dp;
ideal I = w2-xz, wx-yz, X2-Wy, Xy-z2, y2-wz;
attrib(I, "isSB", 1);
resolution s = fres(I, 0);
S;
1 5 6 2
r <-—— r <-—- 1 <-——- 1T

0 1 2 3
resolution not minimized yet

11111

print(betti(s, 0), "betti");

111

1
i

|
o
o
-

111
t
(e}
ot
o
'_l
[
ol
(o)}
N

list 1 = s;
print(1[1]);

w2-XZ,

WX-yz,

x2-wy,

xy-z2,

y2-wz
print(1[2]);

-x,y, 0, -z,0, -y2+wz,
w, -xX,-y,0, z, z2,
-z,w, 0, -y,0, O,
0, 0, w, x, -y,-yz,
0, 0, -z,-w,x, w2
print(1[3]1);

0, -y2+wz,

y, z2,

-X,-WYy,

w, yz,

-Z,-W2,

1, x

113111 11111

111111

See Section A.3.4 [Free resolution], page 716; Section 5.1.93 [minres|, page 221; Section 5.1.132
[res], page 249; Section 5.1.147 [sres], page 265; Section 5.1.154 [syz], page 276.

5.1.49 frwalk

Syntax: frwalk ( ring_name, ideal_name )
frwalk ( ring name, ideal_name , int_expression )
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Type: ideal

Purpose: computes for the ideal ideal_name in the ring ring_name a Groebner basis in the cur-
rent ring, by applying the fractal walk algorithm.
The main application is to compute a lexicographical Groebner basis from a reduced
Groebner basis with respect to a degree ordering. This can be much faster than com-
puting a lexicographical Groebner basis directly.

Note: When calling frwalk, the only permissible difference between the ring ring_name and
the active base ring is the monomial ordering.

Example:
ring r=0, (x,y,2),dp;
ideal i=y3+x2, x2y+x2, x3-x2, z4-x2-y;
i=std(i);
ring s=0, (x,y,2),1lp;
ideal j=frwalk(r,i);
Js
jl11=z12
j[2]=yz4-28
j[31=y2+y-z8-z4
j[4]=xy-xz4-y+z4
j[6]=x2+y-z4

11111

See Section 5.1.39 [fglm], page 181; Section 5.1.53 [groebmer], page 189; Section 4.19.1 [qring],

page 125; Section 4.19 [ring|, page 125; Section 5.1.149 [std], page 267.
5.1.50 gcd

Syntax: gcd ( int_expression, int_expression )
gcd ( bigint_expression, bigint_expression )
gcd ( number_expression, number_expression )
gcd ( poly_expression, poly_expression )

Type: the same as the type of the arguments
Purpose: computes the greatest common divisor.

Note: Not implemented for the coefficient fields real and finite fields of type (p~™n,a).
The gcd of two numbers is their ged as integer numbers or polynomials, otherwise it is
not defined.

Example:
gcd(2,3);
= 1
gcd(bigint (2) "20,bigint (3)°23); // also applicable for bigints
= 1
typeof (L) ;
— bigint
ring r=0, (x,y,2),1lp;
ged (3x2* (x+y) , 9x* (y2-x2) ) ;
= X2+xy
gcd (number (6472674604870) ,number (878646537247372)) ;
= 2

See Section 4.2 [bigint], page 74; Section 5.1.33 [extgcd]|, page 176; Section 4.6 [int], page 83;
Section 4.14 [number|, page 114.
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5.1.51 gen
Syntax: gen ( int_expression )
Type: vector

Purpose: returns the i-th free generator of a free module.

Example:

ring r=32003, (x,y,z), (c,dp);
gen(3);

— [0,0,1]
vector v=gen(5);
poly f=xyz;
v=v+f*gen(4); v;

~ [0,0,0,xyz,1]
ring rr=32003, (x,y,z),dp;
fetch(r,v);

— xyz*gen(4)+gen(5)

See Section 5.1.47 [freemodule], page 186; Section 4.6 [int], page 83; Section 4.22 [vector|, page 132.
5.1.52 getdump

Syntax: getdump ( link_expression )
Type: none

Purpose: reads the content of the entire file, resp. link, and restores all variables from it. For
ASCII links, getdump is equivalent to an execute(read( link )) command. For ssi
links, getdump should only be used on data which were previously dump‘ed.

Example:
int i=3;
dump(":w example.txt");
kill i;
option(noredefine);
getdump ("example.txt") ;
i;
= 3
Restrictions:
getdump is not supported for DBM links, or for a link connecting to stdin (standard
input).

See Section 5.1.27 [dump]|, page 173; Section 4.9 [link], page 95; Section 5.1.128 [read], page 246.

5.1.53 groebner

Procedure from library standard.lib (see Section D.1 [standard_lib], page 790).

Syntax: groebner ( ideal_expression )
groebner ( module_expression )
groebner ( ideal_expression, list of string_expressions )
groebner ( ideal_expression, list of string_expressions and int_expression )

Type: type of the first argument
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Purpose:

Hint:

Example:

computes a standard basis of the first argument I (ideal or module) by a heuristically
chosen method (default) or by a method specified by further arguments of type string.
Possible methods are:

- the direct methods "std" or "slimgb" without conversion,

- conversion methods "hilb" or "fglm" where a Groebner basis is first computed with
an "easy" ordering and then converted to the ordering of the basering by the Hilbert
driven Groebner basis computation or by linear algebra. The actual computation of
the Groebner basis can be specified by "std" or by "slimgb" (not for all orderings
implemented).

- "HC": using the "high corner" from char p in char 0, finding a SB for 0-dimensional
ideals in local orderings faster.

A further string "par2var" converts parameters to an extra block of variables before a
Groebner basis computation (and afterwards back). option(prot) informs about the
chosen method.

Since there exists no uniform best method for computing standard bases, and since
the difference in performance of a method on different examples can be huge, it is
recommended to test, for hard examples, first various methods on a simplified example
(e.g. use characteristic 32003 instead of 0 or substitute a subset of parameters/variables
by integers, etc.).

intvec opt = option(get);
option(prot);
ring r = 0,(a,b,c,d),dp;
ideal i = atb+c+d,ab+ad+bc+cd,abctabd+acd+bcd,abcd-1;
groebner (i) ;

111111111

std in (QQ), (a,b,c,d), (dp(4),C)
[65535:2]11(3)s2(2)s3s4-sbss6-s7-—
product criterion:8 chain criterion:5
_[1]=a+b+c+d

_[2]1=b2+2bd+d2

_[3]=bc2+c2d-bd2-d3
_[4]=bcd2+c2d2-bd3+cd3-d4-1
_[5]=bd4+d5-b-d

_[6]=c3d2+c2d3-c-d
_[71=c2d4+bc-bd+cd-2d2

ring s = 0,(a,b,c,d),lp;
ideal i = imap(r,i);
groebner (i,"hilb");

11111111111

compute hilbert series with std in ring (QQ),(a,b,c,d,@),(dp(5),C)
weights used for hilbert series: 1,1,1,1,1
[1048575:2]1(3)s2(2)s3s4-s5s56-s7--

product criterion:8 chain criterion:5

std with hilb in (QQ), (a,b,c,d,@),(1p(4),dp(1),C)
[1048575:2]11(6)s2(5)s3(4) s4-s5sshh6(3) shhhhh8shh
product criterion:9 chain criterion:8

hilbert series criterion:9

dehomogenization

simplification

imap to ring (QQ),(a,b,c,d),(1p(4),C)
_[11=c2d6-c2d2-d4+1
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— _[2]=c3d2+c2d3-c-d

— _[3]=bd4-b+d5-d

— _[4]=bc-bd5+c2d4+cd-d6-d2

— _[5]=b2+2bd+d2

— _[6]=a+b+c+d

ring R = (0,a),(b,c,d),1p;

minpoly = a2+1;

ideal i = atb+c+d,ab+ad+bc+cd,abc+abd+acd+bcd,d2-c2b2;
groebner (i, "par2var","slimgb");

//add minpoly to input

compute hilbert series with slimgb in ring (QQ), (b,c,d,a,@),(dp(5),C)
weights used for hilbert series: 1,1,1,1,1

slimgb in ring (QQ),(b,c,d,a,@),(dp(5),C)

CC2M[2,2] (2)C3M[1,1] (2)4M[2,e1] (2)CBEM[2,e2] (3)C6M[1,1] (0)
NF:8 product criterion:15, ext_product criterion:3

std with hilb in (QQ),(b,c,d,a,@), (1p(3),dp(1),dp(1),C)
[1048575:2]1(7)s2(6)s(5)s3(4) s4-s5sshh6 (3) shhhhh
product criterion:15 chain criterion:5

hilbert series criterion:7

dehomogenization

simplification

imap to ring (QQ), (b,c,d,a), (1p(3),dp(1),C)
//simplification

(S:4)rtrtrtr

//imap to original ring

_[1]=d2

_[2]=c+(a)

_[31=b+c+d+(a)

roebner(i,"fglm"); //computes a reduced standard basis
std in (0,a), (b,c,d), (dp(3),C)
[1048575:2]1(3)s2(2)s3s4-s5ss6-s7

(S:2)--

product criterion:9 chain criterion:1

R

vdim= 2

b

_[1]1=d2

_[2]=c+(a)

_[3]=b+d

option(set,opt);

ring Rt = (0,t), (x,y,2),ds;

poly F = y10+(t2)*x7y7+x15+x9y6+(2t) *x6y9+x6y623+x5y11+221;
ideal I = jacob(F);

I=groebner (I,"HC","prot");

— computing HC in char 32003

— found HC in char 32003: x7y2z38

— computing std with HC

See also: Section D.4.9 [ffmodstd_lib], page 1077; Section D.4.18 [modstd_lib], page 1145; Sec-
tion D.4.22 [nfmodstd_lib], page 1174; Section 5.1.143 [slimgb], page 262; Section 5.1.149 [std],
page 267; Section 5.1.150 [stdfglm], page 269; Section 5.1.151 [stdhilb], page 270.

N A A S A

5.1.54 help
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Syntax:

Type:

Purpose:

Note:

Example:

Functions and system variables 192

help;
help topic ;

none

displays online help information for topic using the currently set help browser. If no
topic is given, the title page of the manual is displayed.

? may be used instead of help.

topic can be an index entry of the SINGULAR manual or the name of a (loaded)
procedure which has a help section.

topic may contain wildcard characters (i.e., * characters).

If a (possibly "wildcarded") topic cannot be found (or uniquely matched) a warn-
ing is displayed and no help information is provided.

If topic is the name of a (loaded) procedure whose help section has changed
w.r.t. the help available in the manual then, instead of displaying the respective
help section of the manual in the help browser, the "newer" help section of the
procedure is simply printed to the terminal.

The browser in which the help information is displayed can be either set with the
command-line option --browser=<browser> (see Section 3.1.6 [Command line op-
tions|, page 19), or with the command system("--browser", "<browser>"). Use

the command system("browsers"); for a list of all available browsers. See Sec-
tion 3.1.3 [The online help system]|, page 15, for more details about help browsers.

help; // display title page of manual

help ring; // display help for ’ring’

?ringe; // equivalent to ’help ringe;’

= // *x No help for topic ’ringe’ (not even for ’*ringex*’)

= // *x Try ’7;’ for general help

= // xx or ’7Index;’ for all available help topics

?ringx;

// ** No unique help for ’rings’

// *x Try one of

7Rings and orderings; 7Rings and standard bases; 7ring;
?ring declarations; 7ring operations; 7ring related functions;
?ring.lib; 7ring_lib; 7ringtensor; 7ringweights;

help Rings and orderings;

help standard.lib; // displays help for library ’standard.lib’

11111

See Section 3.1.6 [Command line options|, page 19; Section 3.8 [Libraries|, page 55; Section 3.7.1
[Procedure definition|, page 51; Section 3.1.3 [The online help system]|, page 15; Section 5.1.153
[system], page 271.

5.1.55 highcorner

Syntax:

Type:

highcorner ( ideal_expression )
highcorner ( module_expression )

poly, resp. vector
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Purpose:

Note:

Example:

See Section 5.1.25 [dim], page 172; Section 5.1.53 [groebner|, page 189; Section 5.1.149 [std]

returns the smallest monomial not contained in the ideal, resp. module, generated by
the initial terms of the given generators. If the generators are a standard basis, this is
also the smallest monomial not contained in the ideal, resp. module.

If the ideal, resp. module, is not zero-dimensional, 0 is returned.

The command works also in global orderings, but is not very useful there.

Let the ideal I be given by a standard basis. Then highcorner (I) returns 0 if and
only if dim(I)>0 or dim(I)=-1. Otherwise it returns the smallest monomial m not in
I which has the following properties (with z; the variables of the basering):

e if ; > 1 then z; does not divide m (hence, m=1 if the ordering is global)

e given any set of generators fi,..., fy of I, let f/ be obtained from f; by deleting
the terms divisible by x; - m for all i with z; < 1. Then fi,..., f; generate L.

ring r=0, (x,y),ds;

ideal i=x3,x2y,y3;
highcorner(std(i));

= xy2
highcorner(std(ideal(1)));
= 0

page 267; Section 5.1.166 [vdim], page 282.

5.1.56 hilb

Syntax:

Type:

Purpose:

Caution:

Syntax:
Type:

Purpose:

hilb ( ideal_expression )

hilb ( module_expression )

hilb ( ideal_expression, int_expression )

hilb ( module_expression, in